CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Unpredictable Chronic Mild Stress (UCMS)
2.4. Fecal Sample Collection
2.5. Fecal Corticosterone Metabolite Enzyme Immunoassay
2.6. Plasma Corticosterone Radioimmunoassay
2.7. Statistics
3. Results
3.1. Fecal Corticosterone Metabolites
3.1.1. HPA Axis Circadian Activity
3.1.2. HPA Axis Negative Feedback
3.2. Plasma Corticosterone
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gold, P.W. The Organization of the Stress System and Its Dysregulation in Depressive Illness. Mol. Psychiatry 2015, 20, 32–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keck, M.E.; Holsboer, F. Hyperactivity of CRH Neuronal Circuits as a Target for Therapeutic Interventions in Affective Disorders. Peptides 2001, 22, 835–844. [Google Scholar] [CrossRef]
- Raadsheer, F.C.; van Heerikhuize, J.J.; Lucassen, P.J.; Hoogendijk, W.J.; Tilders, F.J.; Swaab, D.F. Corticotropin-Releasing Hormone MRNA Levels in the Paraventricular Nucleus of Patients with Alzheimer’s Disease and Depression. Am. J. Psychiatry 1995, 152, 1372–1376. [Google Scholar] [CrossRef]
- Raadsheer, F.C.; Hoogendijk, W.J.; Stam, F.C.; Tilders, F.J.; Swaab, D.F. Increased Numbers of Corticotropin-Releasing Hormone Expressing Neurons in the Hypothalamic Paraventricular Nucleus of Depressed Patients. Neuroendocrinology 1994, 60, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Lou, S.; Huang, Z.-H.; Wang, Z.; Shan, Q.-H.; Wang, Y.; Yang, Y.; Li, X.; Gong, H.; Jin, Y.; et al. Prefrontal Cortex Corticotropin-Releasing Factor Neurons Control Behavioral Style Selection under Challenging Situations. Neuron 2020, 106, 301–315.e7. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Long, B.; Yuan, J.; Peng, X.; Ni, H.; Li, X.; Gong, H.; Luo, Q.; Li, A. A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain. Front. Neuroanat. 2017, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.B.; Zimmermann, S.; Sillaber, I.; Hagemeyer, T.P.; Deussing, J.M.; Timpl, P.; Kormann, M.S.D.; Droste, S.K.; Kühn, R.; Reul, J.M.H.M.; et al. Limbic Corticotropin-Releasing Hormone Receptor 1 Mediates Anxiety-Related Behavior and Hormonal Adaptation to Stress. Nat. Neurosci. 2003, 6, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.B.; Uhr, M.; Holsboer, F.; Keck, M.E. Hypothalamic-Pituitary-Adrenocortical System and Mood Disorders: Highlights from Mutant Mice. Neuroendocrinology 2004, 79, 1–12. [Google Scholar] [CrossRef]
- Ducottet, C.; Griebel, G.; Belzung, C. Effects of the Selective Nonpeptide Corticotropin-Releasing Factor Receptor 1 Antagonist Antalarmin in the Chronic Mild Stress Model of Depression in Mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 625–631. [Google Scholar] [CrossRef]
- Griebel, G.; Simiand, J.; Steinberg, R.; Jung, M.; Gully, D.; Roger, P.; Geslin, M.; Scatton, B.; Maffrand, J.P.; Soubrie, P. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine Hydrochloride (SSR125543A), a Potent and Selective Corticotrophin-Releasing Factor1 Receptor Antagonist. II. Characterization in Rodent Models of Stress-Related Disorders. J. Pharmacol. Exp. Ther. 2002, 301, 333–345. [Google Scholar] [PubMed]
- Griebel, G.; Perrault, G.; Sanger, D.J. Characterization of the Behavioral Profile of the Non-Peptide CRF Receptor Antagonist CP-154,526 in Anxiety Models in Rodents. Comparison with Diazepam and Buspirone. Psychopharmacology 1998, 138, 55–66. [Google Scholar] [CrossRef]
- Lelas, S.; Wong, H.; Li, Y.-W.; Heman, K.L.; Ward, K.A.; Zeller, K.L.; Sieracki, K.K.; Polino, J.L.; Godonis, H.E.; Ren, S.X.; et al. Anxiolytic-Like Effects of the Corticotropin-Releasing Factor1 (CRF1) Antagonist DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine] Administered Acutely or Chronically at Doses Occupying Central CRF1 Receptors in Rats. J. Pharmacol. Exp. Ther. 2004, 309, 293–302. [Google Scholar] [CrossRef] [PubMed]
- McElroy, J.F.; Ward, K.A.; Zeller, K.L.; Jones, K.W.; Gilligan, P.J.; He, L.; Lelas, S. The CRF1 Receptor Antagonist DMP696 Produces Anxiolytic Effects and Inhibits the Stress-Induced Hypothalamic-Pituitary-Adrenal Axis Activation without Sedation or Ataxia in Rats. Psychopharmacology 2002, 165, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Schulz, D.W.; Mansbach, R.S.; Sprouse, J.; Braselton, J.P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.; Schmidt, A.W.; Seeger, T.; et al. CP-154,526: A Potent and Selective Nonpeptide Antagonist of Corticotropin Releasing Factor Receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 10477–10482. [Google Scholar] [CrossRef] [Green Version]
- Surget, A.; Saxe, M.; Leman, S.; Ibarguen-Vargas, Y.; Chalon, S.; Griebel, G.; Hen, R.; Belzung, C. Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biol. Psychiatry 2008, 64, 293–301. [Google Scholar] [CrossRef]
- Zorrilla, E.P.; Valdez, G.R.; Nozulak, J.; Koob, G.F.; Markou, A. Effects of Antalarmin, a CRF Type 1 Receptor Antagonist, on Anxiety-like Behavior and Motor Activation in the Rat. Brain Res. 2002, 952, 188–199. [Google Scholar] [CrossRef]
- Zobel, A.W.; Nickel, T.; Kunzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the High-Affinity Corticotropin-Releasing Hormone Receptor 1 Antagonist R121919 in Major Depression: The First 20 Patients Treated. J. Psychiatr. Res. 2000, 34, 171–181. [Google Scholar] [CrossRef]
- Spierling, S.R.; Zorrilla, E.P. Don’t Stress about CRF: Assessing the Translational Failures of CRF1antagonists. Psychopharmacology 2017, 234, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, D.H.; Griebel, G. Antidepressant-like Effects of CRF1 Receptor Antagonist SSR125543 in an Animal Model of Depression. Eur. J. Pharmacol. 2004, 497, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Philbert, J.; Beeske, S.; Belzung, C.; Griebel, G. The CRF1 Receptor Antagonist SSR125543 Prevents Stress-Induced Long-Lasting Sleep Disturbances in a Mouse Model of PTSD: Comparison with Paroxetine and d-Cycloserine. Behav. Brain Res. 2015, 279, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, C.; Blanchard, D.C.; Griebel, G.; Yang, M.; Gonzales, C.; Markham, C.; Blanchard, R.J. Effects of the CRF1 Antagonist SSR125543A on Aggressive Behaviors in Hamsters. Pharmacol. Biochem. Behav. 2004, 77, 465–469. [Google Scholar] [CrossRef]
- Dournes, C.; Beeské, S.; Belzung, C.; Griebel, G. Deep Brain Stimulation in Treatment-Resistant Depression in Mice: Comparison with the CRF1 Antagonist, SSR125543. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Philbert, J.; Pichat, P.; Palme, R.; Belzung, C.; Griebel, G. The CRF1 Receptor Antagonist SSR125543 Attenuates Long-Term Cognitive Deficit Induced by Acute Inescapable Stress in Mice, Independently from the Hypothalamic Pituitary Adrenal Axis. Pharmacol. Biochem. Behav. 2012, 102, 415–422. [Google Scholar] [CrossRef]
- Urani, A.; Philbert, J.; Cohen, C.; Griebel, G. The Corticotropin-Releasing Factor 1 Receptor Antagonist, SSR125543, and the Vasopressin 1b Receptor Antagonist, SSR149415, Prevent Stress-Induced Cognitive Impairment in Mice. Pharmacol. Biochem. Behav. 2011, 98, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Philbert, J.; Belzung, C.; Griebel, G. The CRF₁ Receptor Antagonist SSR125543 Prevents Stress-Induced Cognitive Deficit Associated with Hippocampal Dysfunction: Comparison with Paroxetine and D-Cycloserine. Psychopharmacology 2013, 228, 97–107. [Google Scholar] [CrossRef]
- Alonso, R.; Griebel, G.; Pavone, G.; Stemmelin, J.; Le Fur, G.; Soubrie, P. Blockade of CRF1 or V1b Receptors Reverses Stress-Induced Suppression of Neurogenesis in a Mouse Model of Depression. Mol. Psychiatry 2004, 9, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Surget, A.; Wang, Y.; Leman, S.; Ibarguen-Vargas, Y.; Edgar, N.; Griebel, G.; Belzung, C.; Sibille, E. Corticolimbic Transcriptome Changes Are State-Dependent and Region-Specific in a Rodent Model of Depression and of Antidepressant Reversal. Neuropsychopharmacology 2009, 34, 1363–1380. [Google Scholar] [CrossRef]
- Surget, A.; Tanti, A.; Leonardo, E.D.; Laugeray, A.; Rainer, Q.; Touma, C.; Palme, R.; Griebel, G.; Ibarguen-Vargas, Y.; Hen, R.; et al. Antidepressants Recruit New Neurons to Improve Stress Response Regulation. Mol. Psychiatry 2011, 16, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Sanofi an Eight-Week, Multinational, Multicenter, Double-Blind, Active- and Placebo-Controlled Clinical Trial Evaluating the Efficacy and Tolerability of Three Fixed Doses of SSR125543 (20 Mg Daily, 50 Mg Daily and 100 Mg Daily) in Outpatients with Major Depressive Disorder. 2011. Available online: https://clinicaltrials.gov/ct2/show/NCT01034995 (accessed on 30 November 2021).
- Ramos, A.T.; Tufik, S.; Troncone, L.R.P. Control of Stress-Induced ACTH Secretion by Vasopressin and CRH: Additional Evidence. Neuropsychobiology 2016, 73, 184–190. [Google Scholar] [CrossRef]
- Gully, D.; Geslin, M.; Serva, L.; Fontaine, E.; Roger, P.; Lair, C.; Darre, V.; Marcy, C.; Rouby, P.E.; Simiand, J.; et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine Hydrochloride (SSR125543A): A Potent and Selective Corticotrophin-Releasing Factor1 Receptor Antagonist. I. Biochemical and Pharmacological Characterization. J. Pharmacol. Exp. Ther. 2002, 301, 322–332. [Google Scholar] [PubMed] [Green Version]
- Nollet, M.; Le Guisquet, A.M.; Belzung, C. Models of Depression: Unpredictable Chronic Mild Stress in Mice. Curr. Protoc. Pharmacol. 2013, 61, 5–65. [Google Scholar] [CrossRef]
- Law, J.; Ibarguen-Vargas, Y.; Belzung, C.; Surget, A. Decline of Hippocampal Stress Reactivity and Neuronal Ensemble Coherence in a Mouse Model of Depression. Psychoneuroendocrinology 2016, 67, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Surget, A.; Belzung, C. Unpredictable Chronic Mild Stress in Mice. In Experimental Models in Neurobehavioral Research; Kalueff, A.V., LaPorte, J.L., Eds.; Nova Science: New York, NY, USA, 2008; pp. 79–112. [Google Scholar]
- Touma, C.; Palme, R.; Sachser, N. Analyzing Corticosterone Metabolites in Fecal Samples of Mice: A Noninvasive Technique to Monitor Stress Hormones. Horm. Behav. 2004, 45, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Sachser, N.; Mostl, E.; Palme, R. Effects of Sex and Time of Day on Metabolism and Excretion of Corticosterone in Urine and Feces of Mice. Gen. Comp. Endocrinol. 2003, 130, 267–278. [Google Scholar] [CrossRef]
- Palme, R. Non-Invasive Measurement of Glucocorticoids: Advances and Problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Ising, M.; Horstmann, S.; Kloiber, S.; Lucae, S.; Binder, E.B.; Kern, N.; Kunzel, H.E.; Pfennig, A.; Uhr, M.; Holsboer, F. Combined Dexamethasone/Corticotropin Releasing Hormone Test Predicts Treatment Response in Major Depression—A Potential Biomarker? Biol. Psychiatry 2007, 62, 47–54. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Yuzurihara, M.; Ishige, A.; Sasaki, H.; Chui, D.H.; Tabira, T. Chronic Stress Differentially Regulates Glucocorticoid Negative Feedback Response in Rats. Psychoneuroendocrinology 2001, 26, 443–459. [Google Scholar] [CrossRef]
- Nollet, M.; Hicks, H.; McCarthy, A.P.; Wu, H.; Möller-Levet, C.S.; Laing, E.E.; Malki, K.; Lawless, N.; Wafford, K.A.; Dijk, D.-J.; et al. REM Sleep’s Unique Associations with Corticosterone Regulation, Apoptotic Pathways, and Behavior in Chronic Stress in Mice. Proc. Natl. Acad. Sci. USA 2019, 116, 2733–2742. [Google Scholar] [CrossRef] [Green Version]
- Arborelius, L.; Skelton, K.H.; Thrivikraman, K.V.; Plotsky, P.M.; Schulz, D.W.; Owens, M.J. Chronic Administration of the Selective Corticotropin-Releasing Factor 1 Receptor Antagonist CP-154,526: Behavioral, Endocrine and Neurochemical Effects in the Rat. J. Pharmacol. Exp. Ther. 2000, 294, 588–597. [Google Scholar]
- Gutman, D.A.; Owens, M.J.; Thrivikraman, K.V.; Nemeroff, C.B. Persistent Anxiolytic Affects after Chronic Administration of the CRF₁ Receptor Antagonist R121919 in Rats. Neuropharmacology 2011, 60, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Oshima, A.; Flachskamm, C.; Reul, J.M.H.M.; Holsboer, F.; Linthorst, A.C.E. Altered Serotonergic Neurotransmission but Normal Hypothalamic-Pituitary-Adrenocortical Axis Activity in Mice Chronically Treated with the Corticotropin-Releasing Hormone Receptor Type 1 Antagonist NBI 30775. Neuropsychopharmacology 2003, 28, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Ising, M.; Zimmermann, U.S.; Kunzel, H.E.; Uhr, M.; Foster, A.C.; Learned-Coughlin, S.M.; Holsboer, F.; Grigoriadis, D.E. High-Affinity CRF1 Receptor Antagonist NBI-34041: Preclinical and Clinical Data Suggest Safety and Efficacy in Attenuating Elevated Stress Response. Neuropsychopharmacology 2007, 32, 1941–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunzel, H.E.; Zobel, A.W.; Nickel, T.; Ackl, N.; Uhr, M.; Sonntag, A.; Ising, M.; Holsboer, F. Treatment of Depression with the CRH-1-Receptor Antagonist R121919: Endocrine Changes and Side Effects. J. Psychiatr. Res. 2003, 37, 525–533. [Google Scholar] [CrossRef]
- Torrisi, S.A.; Lavanco, G.; Maurel, O.M.; Gulisano, W.; Laudani, S.; Geraci, F.; Grasso, M.; Barbagallo, C.; Caraci, F.; Bucolo, C.; et al. A Novel Arousal-Based Individual Screening Reveals Susceptibility and Resilience to PTSD-like Phenotypes in Mice. Neurobiol. Stress 2021, 14, 100286. [Google Scholar] [CrossRef]
- Cooper, J.R.; Bloom, F.E.; Roth, R.H. The Biochemical Basis of Neuropharmacology; Oxford University Press: Oxford, UK, 2003; ISBN 978-0-19-514008-8. [Google Scholar]
- Montastruc, J.L.; Galitzky, J.; Berlan, M.; Montastruc, P. Mechanism of receptor regulation during repeated administration of drugs. Therapie 1993, 48, 421–426. [Google Scholar]
- Morton, R.A.; Baptista-Hon, D.T.; Hales, T.G.; Lovinger, D.M. Agonist- and Antagonist-Induced up-Regulation of Surface 5-HT3A Receptors. Br. J. Pharmacol. 2015, 172, 4066–4077. [Google Scholar] [CrossRef] [Green Version]
- Dunn, H.A.; Chahal, H.S.; Caetano, F.A.; Holmes, K.D.; Yuan, G.Y.; Parikh, R.; Heit, B.; Ferguson, S.S.G. PSD-95 Regulates CRFR1 Localization, Trafficking and β-Arrestin2 Recruitment. Cell. Signal. 2016, 28, 531–540. [Google Scholar] [CrossRef]
- Maier, S.F.; Ryan, S.M.; Barksdale, C.M.; Kalin, N.H. Stressor Controllability and the Pituitary-Adrenal System. Behav. Neurosci. 1986, 100, 669–674. [Google Scholar] [CrossRef]
- Rivier, C.L.; Plotsky, P.M. Mediation by Corticotropin Releasing Factor (CRF) of Adenohypophysial Hormone Secretion. Annu. Rev. Physiol. 1986, 48, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Watts, V.J. Molecular Mechanisms for Heterologous Sensitization of Adenylate Cyclase. J. Pharmacol. Exp. Ther. 2002, 302, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.M.; Lightman, S.L. The Arginine Vasopressin and Corticotrophin-Releasing Hormone Gene Transcription Responses to Varied Frequencies of Repeated Stress in Rats. J. Physiol. 1998, 510 Pt 2, 605–614. [Google Scholar] [CrossRef] [PubMed]
- McCarty, R.; Horwatt, K.; Konarska, M. Chronic Stress and Sympathetic-Adrenal Medullary Responsiveness. Soc. Sci. Med. 1988, 26, 333–341. [Google Scholar] [CrossRef]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-Pituitary-Adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Auchus, R.J.; Sarafoglou, K.; Fechner, P.Y.; Vogiatzi, M.G.; Imel, E.A.; Davis, S.M.; Giri, N.; Sturgeon, J.; Roberts, E.; Chan, J.L.; et al. Crinecerfont Lowers Elevated Hormone Markers in Adults with 21-Hydroxylase Deficiency Congenital Adrenal Hyperplasia. J. Clin. Endocrinol. Metab. 2021, dgab749. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarguen-Vargas, Y.; Leman, S.; Palme, R.; Belzung, C.; Surget, A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics 2021, 13, 2114. https://doi.org/10.3390/pharmaceutics13122114
Ibarguen-Vargas Y, Leman S, Palme R, Belzung C, Surget A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics. 2021; 13(12):2114. https://doi.org/10.3390/pharmaceutics13122114
Chicago/Turabian StyleIbarguen-Vargas, Yadira, Samuel Leman, Rupert Palme, Catherine Belzung, and Alexandre Surget. 2021. "CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity" Pharmaceutics 13, no. 12: 2114. https://doi.org/10.3390/pharmaceutics13122114
APA StyleIbarguen-Vargas, Y., Leman, S., Palme, R., Belzung, C., & Surget, A. (2021). CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics, 13(12), 2114. https://doi.org/10.3390/pharmaceutics13122114