Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanoparticles
2.3. Characterization
2.4. Preparation of Composite Solutions
2.5. Rheological Measurement
2.6. In Vitro Release of BMP-2
2.7. Bioactivity Assessment of Released BMP-2
2.8. Statistical Analysis
3. Results and Discussions
3.1. Parameters of Nanoparticles
3.2. Gelation Properties of Hydrogels
3.3. In Vitro BMP-2 Release
3.4. Bioactivity Assessment of Released BMP-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.H.; Yao, Z.; Goodman, S.B. Inflammation, fracture and bone repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, K.W.; Ulery, B.D.; Ashe, K.M.; Laurencin, C.T. Studies of bone morphogenetic protein-based surgical repair. Adv. Drug Deliv. Rev. 2012, 64, 1277–1291. [Google Scholar] [CrossRef]
- Ferracini, R.; Herreros, I.M.; Russo, A.; Casalini, T.; Rossi, F.; Perale, G. Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics 2018, 10, 122. [Google Scholar] [CrossRef]
- Riedel, G.E.; Valentin-Opran, A. Clinical evaluation of rhBMP-2/ACS in orthopedic trauma: A progress report. Orthopedics 1999, 22, 663–665. [Google Scholar] [PubMed]
- Zhang, S.; Doschak, M.R.; Uludag, H. Pharmacokinetics and bone formation by BMP-2 entrapped in polyethyleniminecoated albumin nanoparticles. Biomaterials 2009, 30, 5143–5155. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamamoto, M.; Tabata, Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 2005, 26, 4856–4865. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Marra, K.G. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010, 3, 1746–1767. [Google Scholar] [CrossRef]
- Kondiah, P.J.; Choonara, Y.E.; Kondiah, P.P.D.; Marimuthu, T.; Kumar, P.; du Toit, L.C.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 2016, 21, 1580. [Google Scholar] [CrossRef] [PubMed]
- Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N. Rheological characterization of thermogelling chitosan/glycerolphosphate solutions. Carbohydr. Polym. 2001, 46, 39–46. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Jiang, L.J.; Cao, P.P.; Li, J.B.; Chen, X.G. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr. Polym. 2015, 117, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Creber, K.A.M.; Peppley, B.; Bui, V.T. Ionic conductivity and tensile properties of hydroxyethyl and hydroxypropyl chitosan membranes. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 1379–1397. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, Q.; Wang, S.; Zhang, S.; Hu, Z. Mechanical properties of porous polylactide/chitosan blend membranes. Macromol. Mater. Eng. 2007, 292, 598–607. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Luo, Y.; Wan, Y.; Sun, S. Mechanical properties and permeability of porous chitosan-poly(p-dioxanone)/silk fibroin conduits used for peripheral nerve repair. J. Mech. Behav. Biomed. Mater. 2015, 50, 192–205. [Google Scholar] [CrossRef]
- Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 2014, 35, 4333–4344. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Yamaguchi, A.; Komaki, M.; Abe, E.; Takahashi, N.; Ikeda, T.; Rosen, V.; Wozney, J.M.; Fujisawa-Sehara, A.; Suda, T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 1994, 127, 1755–1766. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Billings, P.C.; O’Connell, M.P.; Kaplan, F.S.; Shore, E.M.; Glaser, D.L. Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J. Biol. Chem. 2007, 282, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Bento, D.; Jesus, S.; Lebre, F.; Goncalves, T.; Borges, O. Chitosan plus compound 48/80: Formulation and preliminary evaluation as a hepatitis B vaccine adjuvant. Pharmaceutics 2019, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, M.; Fernandez-Delgado, A.; Moya, M.L.; Blanco-Arevalo, D.; Carrera, C.; de la Haba, R.R.; Ventosa, A.; Bernal, E.; Lopez-Cornejo, P. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics 2019, 11, 57. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 2009, 77, 1–9. [Google Scholar] [CrossRef]
- Lam, J.; Lu, S.; Kasper, F.K.; Mikos, A.G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 2015, 84, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.K.; Wang, X.L.; Wang, Y.Z. Poly(p-dioxanone) and its copolymers. J. Macromol. Sci. Polym. Rev. 2002, C42, 373–398. [Google Scholar] [CrossRef]
- Nishida, H.; Yamashita, M.; Hattori, N.; Endo, T.; Tokiwa, Y. Thermal decomposition of poly (1,4-dioxan-2-one). Polym. Degrad. Stab. 2000, 70, 485–496. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2005, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol. 2019, 49, 66–81. [Google Scholar] [CrossRef]
- Kretlow, J.D.; Klouda, L.; Mikos, A.G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 263–273. [Google Scholar] [CrossRef]
- Sivashanmugam, A.; Kumar, R.A.; Priya, M.V.; Nair, S.V.; Jayakumar, R. An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J. 2015, 72, 543–565. [Google Scholar] [CrossRef]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Bessa, P.C.; Machado, R.; Nurnberger, S.; Dopler, D.; Banerjee, A.; Cunha, A.M.; Rodriguez-Cabello, J.C.; Redl, H.; Griensven, M.; Reis, R.L.; et al. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J. Control. Release 2010, 142, 312–318. [Google Scholar] [CrossRef]
- Gothard, D.; Smith, E.L.; Kanczler, J.M.; Rashidi, H.; Qutachi, O.; Henstock, J.; Rotherham, M.; Haj, A.E.; Shakesheff, K.M.; Oreffo, R.O.C. Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. Euro. Cells Mater. 2014, 28, 166–208. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym. 2011, 71, 280–287. [Google Scholar] [CrossRef]
- Zhu, G.; Schwendeman, S.P. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: Mechanism of stabilization by basic additives. Pharm. Res. 2000, 17, 351–357. [Google Scholar] [CrossRef]
- Tabata, Y.; Ikada, Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 1998, 31, 287–301. [Google Scholar] [CrossRef]
- Chan, O.C.; So, K.F.; Chan, B.P. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J. Control. Release 2008, 129, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Shelton, R.M.; Jin, Y.; Chapple, I.L.C. Localized delivery of growth factors for periodontal tissue regeneration: Role, strategies, and perspectives. Med. Res. Rev. 2009, 29, 472–513. [Google Scholar] [CrossRef] [PubMed]
Sample Name | HA/CH (m/m) | HA:CH-PDO (m/m) b | Mean Size (nm) | PDI c | ζ (mV) | SI (%) |
---|---|---|---|---|---|---|
AN1 a | 4:4 | - | 208.1 ± 8.38 | 0.13 | 24.7 ± 3.16 | 86.4 ± 10.5 |
AN2 | 4:3 | - | 232.6 ± 13.92 | 0.17 | −1.6 ± 0.46 | 92.9 ± 12.1 |
AN3 | 4:2 | - | 271.8 ± 12.71 | 0.16 | −28.4 ± 3.82 | 108.2 ± 14.9 |
AN4 | - | 4:4 | 225.3 ± 10.41 | 0.15 | 22.4 ± 2.97 | 89.1 ± 11.6 |
AN5 | - | 4:3 | 248.2 ± 12.16 | 0.18 | −1.9 ± 0.55 | 95.7 ± 11.8 |
AN6 | - | 4:2 | 297.5 ± 14.73 | 0.14 | −32.2 ± 3.74 | 104.5 ± 13.2 |
Sample Name | HA/CH (m/m) | HA/CH-PDO b (m/m) | BMP-2 Feed Amount (ng/mL) | Mean Size (nm) | PDI | ζ (mV) | EE (%) | SI (%) |
---|---|---|---|---|---|---|---|---|
BN1 a | 4:3 | - | 20 | 242.1 ± 12.69 | 0.15 | −1.3 ± 0.48 | 56.2 ± 3.64 | 97.4 ± 11.7 |
BN2 | 4:3 | - | 40 | 249.8 ± 10.27 | 0.18 | −1.2 ± 0.37 | 64.8 ± 3.16 | 95.2 ± 10.9 |
BN3 | 4:3 | - | 60 | 254.3 ± 12.08 | 0.14 | −1.4 ± 0.44 | 68.1 ± 2.93 | 91.6 ± 12.5 |
BN4 | - | 4:3 | 20 | 261.5 ± 11.35 | 0.19 | −1.8 ± 0.52 | 80.4 ± 2.62 | 101.1 ± 11.8 |
BN5 | - | 4:3 | 40 | 258.9 ± 12.46 | 0.17 | −1.5 ± 0.46 | 88.3 ± 3.47 | 94.8 ± 10.2 |
BN6 | - | 4:3 | 60 | 267.6 ± 13.14 | 0.13 | −1.1 ± 0.41 | 89.9 ± 2.85 | 96.3 ± 12.6 |
Sample Name | CH (w/v %) | GP (w/v %) | Blank HA/CH NPs (w/v %) | Blank HA/CH-PDO NPs (w/v %) | pH | Gelation Time at 37 °C (sec) d | Ti (°C) e |
---|---|---|---|---|---|---|---|
CH/GP a | 2.0 | 5.0 | - | - | 6.97 ± 0.08 | 550 ± 11 | 36.5 ± 1.07 |
GL-I b | 2.0 | 5.0 | 0.5 | - | 7.04 ± 0.06 | 525 ± 10 | 36.1 ± 1.12 |
GL-II | 2.0 | 5.0 | 1.0 | - | 7.11 ± 0.07 | 485 ± 10 | 35.4 ± 1.08 |
GL-III | 2.0 | 5.0 | 1.5 | - | 7.19 ± 0.08 | 430 ± 11 | 34.8 ± 1.13 |
GL-IV c | 2.0 | 5.0 | - | 0.5 | 7.08 ± 0.06 | 540 ± 16 | 35.7 ± 1.04 |
GL-V | 2.0 | 5.0 | - | 1.0 | 7.07 ± 0.07 | 495 ± 10 | 35.2 ± 1.02 |
GL-VI | 2.0 | 5.0 | - | 1.5 | 7.15 ± 0.07 | 435 ± 10 | 34.5 ± 1.15 |
Sample Name | CH (w/v %) | BMP-2-Encapsulated HA/CH NPs (w/v %) | BMP-2-Encapsulated HA/CH-PDO NPs (w/v %) | BMP-2 Content in Gel (ng/mL) | pH | Gelation Time at 37 °C (sec) | Ti (°C) |
---|---|---|---|---|---|---|---|
GEL-1 b | 2.0 | 0.5 | - | 154.2 ± 9.73 | 7.06 ± 0.07 | 530 ± 11 | 36.3 ± 1.09 |
GEL-2 | 2.0 | 1.0 | - | 312.6 ± 11.39 | 7.09 ± 0.08 | 490 ± 11 | 35.1 ± 1.16 |
GEL-3 | 2.0 | 1.5 | - | 472.3 ± 14.62 | 7.14 ± 0.07 | 425 ± 10 | 34.2 ± 1.08 |
GEL-4 c | 2.0 | - | 0.5 | 209.5 ± 17.81 | 7.12 ± 0.09 | 545 ± 19 | 35.8 ± 1.15 |
GEL-5 | 2.0 | - | 1.0 | 421.7 ± 18.95 | 7.09 ± 0.07 | 490 ± 11 | 34.9 ± 1.12 |
GEL-6 | 2.0 | - | 1.5 | 630.1 ± 19.48 | 7.11 ± 0.08 | 420 ± 16 | 34.4 ± 1.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Q.; Yu, X.; Liu, J.; Wu, J.; Wan, Y. Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2. Pharmaceutics 2019, 11, 214. https://doi.org/10.3390/pharmaceutics11050214
Min Q, Yu X, Liu J, Wu J, Wan Y. Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2. Pharmaceutics. 2019; 11(5):214. https://doi.org/10.3390/pharmaceutics11050214
Chicago/Turabian StyleMin, Qing, Xiaofeng Yu, Jiaoyan Liu, Jiliang Wu, and Ying Wan. 2019. "Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2" Pharmaceutics 11, no. 5: 214. https://doi.org/10.3390/pharmaceutics11050214
APA StyleMin, Q., Yu, X., Liu, J., Wu, J., & Wan, Y. (2019). Chitosan-Based Hydrogels Embedded with Hyaluronic Acid Complex Nanoparticles for Controlled Delivery of Bone Morphogenetic Protein-2. Pharmaceutics, 11(5), 214. https://doi.org/10.3390/pharmaceutics11050214