Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation
Abstract
:1. Introduction
2. Metabolism and Toxicity
2.1. Sources and Bioavailability
2.1.1. Uptake
2.1.2. Metabolism
2.1.3. Excretion
2.2. Functions
2.2.1. Connective Tissue
2.2.2. Bone
2.2.3. Skin
2.2.4. Vessels
2.2.5. Immune System
2.2.6. Nervous System
2.3. Toxicity
3. Mediated Calcium-Silicate Mineralization
3.1. Guided Calcium-Silicate Biomineralization
3.2. Detailed Structure Analysis Using X-Ray Techniques
4. Si-Containing Scaffolds for Stem Cell-Based Bone Formation
4.1. Scaffold Manufacturing
4.2. Nanostructured Si-Containing Scaffolds
- Rapid prototyping (RP) methods such as selective laser sintering (SLS), selective laser ablation (SLA), and fused deposition modeling (FDM) [146];
- Electrospinning methods to form fibers of various diameters [147];
- Chemical and physical vapor deposition (CVD, PVD) for surface functionalization and modification, i.e., hydrophobic versus hydrophilic surfaces [148];
- Self-assembly methods, e.g., the Langmuir–Blodgett technique for monolayer formation, including (d) the spreading of polymer solution, (e) compression to a single monolayer, and (f) film transformation onto substrates; and electrospinning rigid (g) and flexible (h) polymers [151].
4.3. Commercial Products and Patents
4.4. Si-Containing Drug Release Materials in Bone Regeneration
5. Future Aspects
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
AM | acetoxymethyl |
BET | Bruhauer–Emmett–Teller |
BMD | bone mineral density |
BMP-2 | bone morphogenetic protein-2 |
CaP | Calcium phosphate |
CHO | Chinese hamster ovary |
DOSY | diffusion-ordered spectroscopy |
ECM | extracellular matrix |
EFSA | European Food Safety Authority |
EPIDOS | epidemiology of osteoporosis |
ERK | extracellular signal–regulated kinases |
FDA | Food and Drug Administration |
FDM | fused deposition modeling |
FTIR | Fourier-transform infrared spectroscopy |
GI-SAXS | gracing incidence small angle X-ray scattering |
HA | hydroxy apatite |
HMBC | heteronuclear multiple-bond correlation spectroscopy |
HSQC | heteronuclear single-quantum correlation spectroscopy |
HUVEC | human umbilical cord vein endothelial cells |
LB | Langmuir–Blodgett |
LDA | linear discrimination analysis |
LPS | lipopolysaccharides |
MCPM | monocalcium phosphate monohydrate |
MSC | mesenchymal stem cells |
NCPs | noncollagenous proteins |
NMR | nuclear magnetic resonance |
OPG | osteoprotegerin |
PDGF | platelet-derived growth factor |
PINP | procollagen Type 1 N-terminal propeptide |
PLS-DA | partial least squares regression discrimination analysis |
RANK | receptor activator of nuclear factor κB |
RANKL | receptor activator of nuclear factor κB ligand |
RP | rapid prototyping |
SLS | selective laser sintering |
SLA | selective laser ablation |
SAXS | small-angle X-ray scattering |
SEC | size exclusion chromatography |
Si | silicon |
SiO2 | silicon oxide |
ß-TCP | beta-tricalcium phosphate |
TGA | thermogravimetric analysis |
T-SAXS | transition mode SAXS |
VEGF | vascular endothelial growth factors |
WAXS | wide-angle X-ray scattering |
XPS | X-ray photon spectroscopy |
XRD | X-ray diffraction |
References
- Jugdaohsingh, R. Silicone and bone health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar] [PubMed]
- Pietak, A.M.; Reid, J.W.; Scott, M.J.; Sayer, M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007, 28, 4023–4032. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Draenert, F.G.; Albert, O.; Schröder, H.C.; Mailänder, V.; Mitov, G.; Müller, W.E.G. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 2017, 67, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Hing, K.A.; Revell, P.A.; Smith, N.; Buckland, T. Effect of silicon level on rate, quality and progression of bone healing within silicate substituted porous hydroxyapatite scaffolds. Biomaterials 2006, 27, 5014–5026. [Google Scholar] [CrossRef] [PubMed]
- Mieszawska, A.J.; Fourligas, N.; Georgakoudi, I.; Ouhib, N.M.; Belton, D.J.; Perry, C.C.; Kaplan, D.L. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 2010, 31, 8902–8910. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, K.; Zhang, F.; Wei, W.; Chen, C.; Huang, Q. Microstructure and in vitro Bioactivity of Silicon-Substituted Hydroxyapatite. Silicon 2017, 9, 543–553. [Google Scholar] [CrossRef]
- Ma, R.; Tang, S.; Tan, H.; Qian, J.; Lin, W.; Wang, Y.; Liu, C.; Wei, J.; Tang, T. Preparation, characterization, in vitro bioactivity and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Appl. Mater. Interfaces 2014, 6, 12214–12225. [Google Scholar] [CrossRef]
- Pabbruwe, M.B.; Standard, O.C.; Sorrell, C.C.; Howlett, C.R. Effect of silicon doping on bone formation within alumina porous domains. J. Biomed. Mater. Res. Part A 2004, 71, 250–257. [Google Scholar] [CrossRef]
- Cha, J.N.; Shimizu, K.; Zhou, Y. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. USA 1999, 96, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Shimizu, K.; Cha, J.N.; Stucky, G.D.; Morse, D.E. Efficient Catalysis of Polysiloxane Synthesis by Silicatein α Requires Specific Hydroxy and Imidazole Functionalities. Angew. Chem. Int. Ed. 1999, 38, 779–782. [Google Scholar] [CrossRef]
- Nakata, K.; Kubo, T.; Numako, C.; Onoki, T.; Nakahira, A. Synthesis and characterization of silicon-doped hydroxyapatite. Mater. Transactions 2009, 50, 1046–1049. [Google Scholar] [CrossRef]
- Manchón, A.; Alkhraisat, M.; Rueda-Rodriguez, C.; Torres, J.; Prados-Frutos, J.C.; Ewald, A.; Gbureck, U.; Cabrejos-Azama, J.; Rodriguez-González, A.; López-Cabarcos, E. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. J. Biomed. Mater. Res. Part A 2015, 103, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.G. Silicon Biomineralization: Biology–Biochemistry–Molecular Biology–Biotechnology; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-55486-5. [Google Scholar]
- Henstock, J.R.; Canham, L.T.; Anderson, S.I. Silicon: The evolution of its use in biomaterials. Acta Biomater. 2015, 11, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.R. Silicon: The health benefits of a metalloid. Met. Ions Life Sci. 2013, 13, 451–473. [Google Scholar] [CrossRef]
- Powell, J.J.; McNuaghton, S.A.; Jugdaohsingh, R.; Anderson, S.H.; Dear, J.; Khot, F.; Mowatt, L.; Gleason, K.L.; Sykes, M.; Thompson, R.P.; et al. A provisional database for the silicon content of foods in the United Kingdom. Br. J. Nutr. 2005, 94, 804–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Schröder, H.C.; Wiens, M.; Schloßmacher, U.; Müller, W.E.G. Biosilica: Molecular biology, biochemistry and function in desmosponges as well as its applied aspects for tissue engineering. Adv. Mar. Biol. 2012, 62, 231–271. [Google Scholar] [CrossRef]
- Granito, R.N.; Custódio, M.R.; Rennó, A.C.M. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1717–1727. [Google Scholar] [CrossRef]
- Wang, X.; Schröder, H.C.; Wiens, M.; Ushijima, H.; Müller, W.E.G. Bio-silica and bio-polyphosphate: Applications in biomedicine (bone formation). Curr. Opin. Biotechnol. 2012, 23, 570–578. [Google Scholar] [CrossRef]
- Wang, X.; Schröder, H.C.; Müller, W.E.G. Enzyme-based biosilica and biocalcite: Biomaterials for the future in regenerative medicine. Trend Biotechnol. 2014, 32, 441–447. [Google Scholar] [CrossRef]
- Farooq, M.A.; Dietz, K.-J. Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Front. Plant Sci. 2015, 6, 994. [Google Scholar] [CrossRef]
- Robberecht, H.; Van Cauwenbergh, R.; Van Vlaslaer, V.; Hermans, N. Dietary silicon intake in Belgium: Sources, availability from foods and human serum levels. Sci. Total Environ. 2009, 407, 4777–4782. [Google Scholar] [CrossRef] [PubMed]
- Sripanyakorn, S.; Jugdaohsingh, R.; Dissayabutr, W.; Anderson, S.H.; Thompson, R.P.; Powell, J.J. The comparative absorption of silicon from different foods and food supplements. Br. J. Nutr. 2009, 102, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 2014, 28, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Bisse, E.; Epting, T.; Beil, A.; Lindinger, G.; Lang, H.; Wieland, H. Reference values for serum silicon in adults. Anal. Biochem. 2005, 337, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Durkin, C.A.; Koester, J.A.; Bender, S.J.; Armbrust, E.V. The evolution of silicon transporters in diatoms. J. Phycol. 2016, 52, 716–731. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N. A cooperative system of silicon transports in plants. Trends Plant Sci. 2015, 20, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, S.; Jugdaohsingh, R.; Vivancos, J.; Marron, A.; Deshmukh, R.; Ma, J.F.; Mitani-Ueno, N.; Robertson, J.; Wills, J.; Boekschoeten, M.V.; et al. Identification of a mammalian silicon transporter. Am. J. Physiol. Cell Physiol. 2017, 312, C550–C561. [Google Scholar] [CrossRef] [PubMed]
- Garneau, A.P.; Carpentier, G.A.; Marcoux, A.A.; Frenette-Cotton, R.; Simard, C.F.; Remus-Borel, W.; Caron, L.; Jacob-Wagner, M.; Noel, M.; Powell, J.J.; et al. Aquaporins mediate silicon transport in humans. PLoS ONE 2015, 10, e0136149. [Google Scholar] [CrossRef]
- Pruksa, S.; Stripinyanond, A.; Powell, J.J.; Jugdaohsingh, R. Silicon balance in human volunteers; a pilot study to establish the variance in silicon excretion versus intake. Nutr. Metabol. 2014, 11, 4. [Google Scholar] [CrossRef]
- Jurkić, L.M.; Cepanec, I.; Pavelić, S.K.; Pavelić, K. Biological and therapeutic effects of ortho-silic acid and some ortho-silic acid-releasing compounds: New perspectives for therapy. Nutr. Metab. 2013, 10, 2. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; Watson, A.I.; Pedro, L.D.; Powell, J.J. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover. Bone 2015, 75, 40–48. [Google Scholar] [CrossRef]
- Rodella, L.F.; Bonazza, V.; Labanca, M.; Lonati, C.; Rezzani, R. A review of the effects of dietary silicon intake on bone homeostasis and regeneration. J. Nutr. Health Aging 2014, 18, 820826. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; Watson, A.I.; Bhattacharya, P.; van Lenthe, G.H.; Powell, J.J. Positive association between serum silicon levels and bone mineral density in female rats following oral silicon suplementation with monomethylsilanotriol. Osteoporos. Int. 2015, 26, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Jugdaohsingh, R.; Tucker, K.L.; Qiao, N.; Cupples, L.A.; Kiel, D.P.; Powell, J.J. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J. Bone Miner. Res. 2004, 19, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Jugdaohsingh, R.; Kessler, K.; Messner, B.; Stoiber, M.; Pedro, L.D.; Schima, H.; Laufer, G.; Powell, J.J.; Bernhard, D. Dietary silicon deficiency does not exacerbate diet-induced fatty lesions in female ApoE knockout mice. J. Nutr. 2015, 7, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Hardcastle, A.C.; Jugdaohsingh, R. Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone 2012, 50, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Spector, T.D.; Calomme, M.R.; Anderson, S.H.; Clement, G.; Bevan, L.; Demeester, N.; Swaminathan, R.; Jugdaohsingh, R.; Berghe, D.A.; Powell, J.J. Choline—Stabilized orthosilic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: A randomized, placebo-controlled trial. BMC Musculoskelet. Disord. 2008, 9, 85. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; Pedro, L.D.; Watson, A.; Powell, J.J. Silicon and boron differ in their localization and loading of bone. Bone Rep. 2014, 4, 9–15. [Google Scholar] [CrossRef]
- Dashnyam, K.; El-Fiqi, A.; Buitrago, J.O.; Perez, R.A.; Knowles, J.C.; Kim, H.-W. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J. Tissue Eng. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Ding, S.-J.; Chang, H.-C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011, 7, 2604–2614. [Google Scholar] [CrossRef]
- Reffitt, D.M.; Ogston, N.; Jugdaohsingh, R.; Cehung, H.F.J.; Evans, R.P.H.; Thompson, J.J.; Powell, J.J.; Hamosn, G.N. Orthosilic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003, 32, 127–135. [Google Scholar] [CrossRef]
- Gao, T.; Aro, H.A.T.; Ylänen, H.; Vuorio, E. Silica-based bioactive glasses modulate expressioan and bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 2001, 22, 1475–1483. [Google Scholar] [CrossRef]
- Armugam, M.Q.; Ireland, D.C.; Brooks, R.A.; Rushton, N.; Bonfield, W. The effect of orthosilic acid on collagen type I, alkaline phosphatase and osteocalcin mRNA expression in human bone-derived osteoblasts in vitro. Key Eng. Mater. 2006, 32, 309–311. [Google Scholar]
- Maehira, F.; Iinuma, Y.; Eguchi, Y.; Miyagi, I.; Teruya, S. Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J. Bone Miner. Metab. 2008, 26, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Wiens, M.; Wang, X.; Schloßmacher, U.; Lieberwirth, I.; Glasser, G.; Ushijima, H.; Schröder, H.C.; Müller, W.E.G. Osteogenic Potential of Biosilica on Human Osteoblast-Like (SaOS-2) Cells. Calcif. Tissue Int. 2010, 87, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.G.; Boreiko, A.; Wang, X.; Krasko, A.; Geurtsen, W.; Custódio, M.R.; Winkler, T.; Lukić-Bilela, L.; Link, T.; Schröder, H.C. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcif. Tissue Int. 2007, 81, 382–393. [Google Scholar] [CrossRef]
- Wiens, M.; Wang, X.; Schröder, H.C.; Kolb, U.; Schloßmacher, U.; Ushijma, H.; Müller, W.E.G. The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 2010, 31, 7716–7725. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Wang, X.H.; Cui, F.Z.; Jochum, K.P.; Tremel, W.; Bill, J.; Schröder, H.C.; Natalio, F.; Schloßmacher, U.; Wiens, M. Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials. Appl. Microbiol. Biotechnol. 2009, 83, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.C.; Wang, X.H.; Wiens, M.; Diehl-Seifert, B.; Kropf, K.; Schloßmacher, U.; Müller, W.E.G. Silicate modulates the cross-talk between osteoblasts (SaOs-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast growth and differentiation. J. Cell Biochem. 2012, 113, 3197–3206. [Google Scholar] [CrossRef]
- Barel, A.; Calomme, M.; Timchenko, A.; De Paepe, K.; Demeester, N.; Rogiers, V.; Clarys, P.; Vanden Berghe, D. Effect of oral intake of choline-stabilized orthosilic acid on skin, nails and hair in women with photodamaged skin. Arch. Dermatol. Res. 2005, 297, 147–153. [Google Scholar] [CrossRef]
- Wickett, R.R.; Kossmann, E.; Barel, A.; Demeester, N.; Clarys, P.; Vanden Berghe, D.; Calomme, M. Effect of oral intake of choline-stabilized orthosilic acid on hair tensile strength and morphology in women with fine hair. Arch. Dermatol. Res. 2007, 299, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Buffoli, B.; Foglio, E.; Borsani, E.; Exley, C.; Rezzani, R.; Rodella, L.F. Silic acid in drinking water prevents age-related alterations in the endothelium-dependent vascular relaxation modulating eNOS and AQP1 expression in experimental mice: An immunohistochemical study. Acta Histochem. 2013, 115, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Lu, H.; Wu, C.; Chen, L.; Lin, X.; Naaoki, K.; Chen, G.; Chang, J. Stimulatory effects oft he ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 2013, 9, 8004–8014. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. A novel silicon complex is as effective as sodium metasilicate in enhancing the collagen-induced inflammatory response of silicon-deprived rats. J. Trace Elem. Med. Biol. 2008, 22, 39–49. [Google Scholar] [CrossRef]
- Nielsen, F.H. Silicon deprivation does not significantly modify the acute white blood cell response but does modify tissue mineral distribution response to an endotoxin challenge. Bio. Trace Elem. Res. 2010, 135, 45–55. [Google Scholar] [CrossRef]
- Joshi, G.N.; Knecht, D.A. Silica phagocytosis causes apoptosis and necrosis by different temporal and molecular pathways in alveolar macrophages. Apoptosis 2013, 18, 271–285. [Google Scholar] [CrossRef]
- Hamilton, R.F.; Thakur, S.A.; Holian, A. Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 2008, 44, 1246–1258. [Google Scholar] [CrossRef] [Green Version]
- Rondeau, V.; Jacqmin-Gadda, H.; Comenges, D.; Helmer, C.; Dartigues, J.-F. Aluminium and silica in drinking water and the risk of Alzheimer’s disease for cofnitive decline: Findings from 15-year follow-up of the PAQUID chort. Am. J. Epidemiol. 2009, 169, 489–496. [Google Scholar] [CrossRef]
- Gillette-Guyonnet, S.; Andrieu, S.; Nourhashemi, F.; de La Guéronnière, V.; Grandjean, H.; Vellas, B. Cognitive impairment and composition of drinking water in women: Findings of the EPIDOS study. Am. J. Clin. Nutr. 2005, 81, 897–902. [Google Scholar] [CrossRef]
- European Food Society Authority (EFSA). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the tolerable upper intake level of silicon. EFSA J. 2004, 60, 1–11. [Google Scholar]
- Lee, J.-H.; Lee, K.-S.; Chang, J.-S.; Cho, W.S.; Kim, Y.; Kim, S.-R.; Kim, Y.-T. Biocompatibility of Si-substituted hydroxyapatite. Key Eng Mater. 2004, 254–256, 135–138. [Google Scholar] [CrossRef]
- Lai, W.; Garino, J.; Ducheyne, P. Si excretion from bioactive glass implanted in rabbit bone. Biomaterials 2002, 23, 213–217. [Google Scholar] [CrossRef]
- Kido, H.W.; Oliveira, P.; Parizotto, N.A.; Crovace, M.C.; Zanotto, E.D.; Peitl-Filho, O.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Ribeiro, D.A.; Renno, A.C.M. Histoptahological, cytotoxicity and genotoxicity evaluation of Biosiliacte® glass-ceramic scaffolds. J. Biomed. Mater. Res. Part A 2013, 101A, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Matsuzaki, H.; Kumagei-Takei, N.; Yoshimote, K.; Maeda, M.; Chen, Y.; Kusaka, M.; Urakami, K.; Hayashi, H.; Fujimoto, W.; et al. Silica exposure and altered regulation of autoimmunity. Environ. Health Prev. Med. 2014, 19, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusaka, T.; Nakayama, M.; Nakamura, K.; Ishimiya, M.; Furusawa, E.; Ogasawara, K. Effect of silica particle size on macrophage inflammatory responses. PLoS ONE 2014, 9, e92634. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Park, Y.H.; Park, H.J.; Lee, K.; Um, K.; Park, J.W.; Lee, J.H. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir. Res. 2016, 17, 60. [Google Scholar] [CrossRef]
- European Food Society Authority (EFSA); EFSA panel on food additives and nutrient sources added to food (ANS). Re-evaluation of silicon dioxide (E 551) as food additive. EFSA J. 2018, 16, 5088. [Google Scholar]
- Drago, L.; Toscano, M.; Bottagisio, M. Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review. Materials 2018, 11, 326. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012, 8, 1401–1421. [Google Scholar] [CrossRef] [Green Version]
- Dorozhkin, S.V. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22–107. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates in dentistry. J. Mater. Sci. Mater. Med. 2013, 24, 1335–1363. [Google Scholar] [CrossRef]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2017, 31, D37–D47. [Google Scholar] [CrossRef]
- Huang, M.; Hill, R.G.; Rawlinson, S.C.F. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): A therapeutic role for Sr in dentine repair? Acta Biomater. 2016, 38, 201–211. [Google Scholar] [CrossRef]
- Pavani, K.V.; Srujana, N.; Preethi, G.; Swati, T. Synthesis of copper nanoparticles by Aspergillus species. Lett. Appl. NanoBioScience 2013, 2, 110–113. [Google Scholar]
- Verron, E.; Khairoun, I.; Guicheux, J.; Bouler, J.-M. Calcium phosphate biomaterials as bone drug delivery systems: A review. Drug Discov. Today 2010, 15, 547–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Sharma, V.K. Designed synthesis of hydroxyapatite nanostructures: Bullet-like single crystal and whiskered hollow ellipsoid. J. Mater. Sci. Mater. Med. 2014, 25, 1395–1401. [Google Scholar] [CrossRef]
- Argyropoulos, D.S.; Sadeghifar, H.; Cui, C.; Sen, S. Synthesis and Characterization of Poly(arylene ether sulfone) Kraft Lignin Heat Stable Copolymers. ACS Sustain. Chem. Eng. 2013, 2, 264–271. [Google Scholar] [CrossRef]
- Han, X.; Wang, D.; Chen, X.; Lin, H.; Qu, F. One-pot synthesis of macro-mesoporous bioactive glasses/polylactic acid for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 43, 367–374. [Google Scholar] [CrossRef]
- Billström, G.H.; Blom, A.W.; Larsson, S.; Beswick, A.D. Application of scaffolds for bone regeneration strategies: Current trends and future directions. Injury 2013, 44, S28–S33. [Google Scholar] [CrossRef]
- Luz, G.M.; Mano, J.F. Tissue Engineering Using Ceramics and Polymers; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Lee, E.-J.; Shin, D.-S.; Kim, H.-E.H.-W.; Koh, Y.-H.; Jang, J.-H. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009, 30, 743–750. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Zhang, Q.; Wu, W.; Xin, J.; Li, J. Multifunctional hydrogels based on β-cyclodextrin with both biomineralization and anti-inflammatory properties. Carbohydr. Polym. 2014, 102, 869–876. [Google Scholar] [CrossRef]
- Caridade, S.G.; Merino, E.G.; Alves, N.M.; Bermudez, V.D.Z.; Boccaccini, A.R.; Mano, J.F. Chitosan membranes containing micro or nano-size bioactive glass particles: Evolution of biomineralization followed by in situ dynamic mechanical analysis. J. Mech. Behav. Biomed. Mater. 2013, 20, 173–183. [Google Scholar] [CrossRef]
- Alves, N.M.; Leonor, I.B.; Azevedo, H.S.; Reis, R.L.; Mano, J.F. Designing biomaterials based on biomineralization of bone. J. Mater. Chem. 2010, 20, 2911–2921. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Liu, X.; Ma, P.X. Principles of Regenerative Medicine, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Luan, P.-P.; Jiang, Y.-J.; Zhang, S.-P.; Gao, J.; Su, Z.-G.; Ma, G.-H.; Zhang, Y.-F. Chitosan-mediated formation of biomimetic silica nanoparticles: An effective method for manganese peroxidase immobilization and stabilization. J. Biosci. Bioeng. 2014, 118, 575–582. [Google Scholar] [CrossRef]
- Vollet, D.R.; Donaiti, D.A.; Campanha, J.R. A Kinetic Model for the Ultrasound Catalyzed Hydrolysis of Solventless TEOS-Water Mixtures and the Role of the Initial Additions of Ethanol. J. Sol-Gel Sci. Technol. 1996, 63, 57–63. [Google Scholar] [CrossRef]
- Islam, M.S.; Trini, B.; Shohag, H.; Ahmed, M.U.; Al Maruf, H. Bioavailability of omeprazole 20 mg capsules containing omeprazole 22.5% enteric coated pellets versus a reference product in healthy Bangladeshi male subjects: An open-label, single-dose, randomized-sequence, two-way crossover study. Int. J. Clin. Pharm. Ther. 2011, 49, 778–786. [Google Scholar] [CrossRef]
- Spoerke, E.D.; Anthony, S.G.; Stupp, S.I. Enzyme Directed Templating of Artificial Bone Mineral. Adv. Mater. 2009, 21, 425. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Wang, X. Silicatein: From chemical through enzymatic silica formation, to synthesis of biomimetic nanomaterials. FEBS J. 2012, 279, 1709. [Google Scholar] [CrossRef]
- Meldrum, F.C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432. [Google Scholar] [CrossRef]
- Antonietti, M.; Breulmann, M.; Goltner, C.G.; Colfen, H.; Wong, K.K.W.; Walsh, D.; Mann, S. Inorganic/organic mesostructures with complex architectures: Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers. Chem. A. Eur. J. 1999, 4, 2493–2500. [Google Scholar] [CrossRef]
- Moroni, L.; de Wijn, J.R.; van Blitterswijk, C.A. Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polym. Ed. 2008, 19, 543–572. [Google Scholar] [CrossRef]
- Ginebra, M.P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090–1110. [Google Scholar] [CrossRef]
- Xianmiao, C.; Yubao, L.; Yi, Z.; Li, Z.; Jidong, L.; Huanan, W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mat. Sci. Eng. C 2009, 29, 29–35. [Google Scholar] [CrossRef]
- Sajesh, K.M.; Jayakumar, R.; Nair, S.V.; Chennazhi, K.P. Biocompatible conducting chitosan/polypyrrole alginate composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2013, 62, 465–471. [Google Scholar] [CrossRef]
- Kavya, K.C.; Jayakumar, R.; Nair, S.; Chennazhi, K.P. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2013, 59, 255–263. [Google Scholar] [CrossRef]
- Leite, A.J.; Sher, P.; Mano, J.F. Chitosan/chondroitin sulfate multilayers as supports for calcium phosphate biomineralization. Mater. Lett. 2014, 121, 62–65. [Google Scholar] [CrossRef]
- Palmer, L.C.; Newcomb, C.J.; Kaltz, S.R.; Spoerke, E.D.; Stupp, S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008, 108, 4754–4783. [Google Scholar] [CrossRef]
- Mata, A. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 2010, 31, 6004–6012. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Wang, L.; Chen, X.; Chae, S.-K. Biomimetic and molecular level-based silicate bioactive glass-gelatin hybrid implants for loading-bearing bone fixation and repair. J. Mater. Chem. B 2013, 1, 5153–5162. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Ai, X.; Zhang, S. Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnol. Adv. 2014, 32, 744–760. [Google Scholar] [CrossRef]
- Lewandowska-Łańcucka, J.; Fiejdasz, S.; Rodzik, L.; Kozieł, M.; Nowakowska, M. Novel hybrid materials for preparation of bone tissue engineering scaffolds. Biomed. Mater. 2015, 10, 015020. [Google Scholar] [CrossRef]
- Li, C. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J. Bone Miner. Res. 2010, 25, 968–975. [Google Scholar] [CrossRef]
- Querido, W.; Rossi, A.L.; Farina, M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron 2015, 80, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Kaabara, W.; Gundogdu, O.; Laklouk, A.; Bunk, O.; Pfeiffer, F.; Farquharsone, M.J.; Bradley, D.A. μ-PIXE and SAXS studies at the bone–cartilage interface. Appl. Rad. Isotopes 2010, 68, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qu, F.; Li, W.; Lin, H.; Jin, Y. Synthesis of hierarchically porous bioactive glasses using natural plants as template for bone tissue regeneration. J. Sol-Gel Sci. Technol. 2012, 63, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, A.; Peterlik, H.; Bernstorff, S.; Akbarzadeh, J.; Kirchner, H.O.K.; Puchegger, S.; Binder, W.-H.; Zioupos, P. Timescales of self-healing in human bone tissue and polymeric ionic liquids. Bioinsp. Biomim. Nanobiomater. 2014, 3, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Toskas, G.; Cherif, C.; Hund, R.-D.; Laourine, E.; Mahltig, B.; Fahmi, A.; Heinemann, C.; Hanke, T. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr. Polym. 2013, 94, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, M.; Müller, R.; Schneider, P. Techniques to assess bone ultrastructure organization: Orientation and arrangement of mineralized collagen fibrils. J. R. Soc. Interface 2016, 13, 20160088. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Morales, J.; Iafisco, M.; Delgado-López, J.M.; Sarda, S.; Drouet, C. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Prog. Cryst. Growth Charact. Mater. 2013, 59, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Pabisch, S.; Wagermaier, W.; Zander, T.; Li, C.; Fratzl, P. Chapter Eighteen—Imaging the Nanostructure of Bone and Dentin Through Small- and Wide-Angle X-Ray Scattering. In Research Methods in Biomineralization Science; Yoreo, J.J., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 391–413. [Google Scholar]
- Georgiadis, M.; Guizar-Sicairos, M.; Zwahlen, A.; Trüssel, A.J.; Bunk, O.; Müller, R.; Schneider, P. 3D scanning SAXS: A novel method for the assessment of bone ultrastructure orientation. Bone 2017, 71, 42–52. [Google Scholar] [CrossRef]
- Salama, A.; El-Sakhawy, M. Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydr. Polym. 2014, 113, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Sowjanya, J.; Singh, J.; Mohita, T.; Sarvanan, S.; Moorthi, S.N.; Selvamurugan, N. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf. Biointerfaces 2013, 109, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Tobiasch, E. Artificial scaffolds and mesenchymal stem cells for hard tissues. In Tissue Engineering III: Cell-Surface Interactions for Tissue Culture; Kasper, C., Witte, F., Pörtner, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 126, pp. 153–194. ISBN 978-3-642-28282-9. [Google Scholar]
- Zippel, N.; Schulze, M.; Tobiasch, E. Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat. Biotechnol. 2010, 4, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Leiendecker, A.; Schulze, M.; Tobiasch, E.; Witzleben, S. Template-mediated Biomineralization for Bone Regeneration. Curr. Stem Cell Res. Ther. 2017, 12, 103–123. [Google Scholar] [CrossRef] [PubMed]
- El Khaldi-Hansen, B.; El-Sayed, F.; Schipper, D.; Tobiasch, E.; Witzleben, S.; Schulze, M. Functionalized 3D Scaffolds for Template-mediated Biomineralization. In Bone Regeneration; Rhaman, A., Ed.; Bentham Science Publishers: Sharjah, UAE, 2017; Volume 5, pp. 130–178. ISBN 978-1-68108-475-6. [Google Scholar]
- Karunya, A.; Xin-Chun, H.; Hsin-Yun, H. Bio-templated silica composites for next-generation biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 272–289. [Google Scholar] [CrossRef]
- Lechner, C.C.; Becker, C.F. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation. Mar. Drugs 2015, 13, 5297–5333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Khan, D.; Delling, J.; Tobiasch, E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci. World J. 2012, 793823. [Google Scholar] [CrossRef]
- Tobiasch, E. Differentiation Potential of Adult Human Mesenchymal Stem Cells. In Stem Cell Engineering; Artmann, G.M., Hescheler, J., Minger, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–76. ISBN 978-3-642-11865-4. [Google Scholar]
- Pansky, A.; Roitzheim, B.; Tobiasch, E. Differentiation potential of adult of human mesenchymal stem cells. Clin. Lab. 2007, 53, 81–84. [Google Scholar]
- Witzler, M.; Alzagameem, A.; Bergs, M.; El Khaldi-Hansen, B.; Klein, S.E.; Hielscher, D.; Kamm, B.; Kreyenschmidt, J.; Tobiasch, E.; Schulze, M. Lignin-Derived Biomaterials for Drug Release and Tissue Engineering. Molecules 2018, 23, 1885. [Google Scholar] [CrossRef]
- Haddouti, E.-M.; Skroch, M.; Zippel, N.; Müller, C.; Birova, B.; Pansky, A.; Kleinfeld, C.; Winter, M.; Tobiasch, E. Human Dental Follicle Precursor Cells of Wisdom Teeth: Isolation and Differentiation towards Osteoblasts for Implants with and without Scaffolds. Mat. Sci. Eng. Technol. 2009, 40, 732–737. [Google Scholar] [CrossRef]
- Khan, D.; Kleinfeld, C.; Winter, M.; Tobiasch, E. Oral Tissues as Source for Bone Regeneration in Dental Implantology. In Tissue Regeneration. From Basic biology to Clinical Application; InTech Open: London, UK, 2012; ISBN 978-953-307-876-2. [Google Scholar] [Green Version]
- Kohl, F.; Schmitz, J.; Furtmann, N.; Schulz-Fincke, A.-C.; Mertens, M.D.; Küppers, J.; Benkhoff, M.; Tobiasch, E.; Bartz, U.; Bajorath, J.; et al. Design, characterization and cellular uptake studies of fluorescence-labeled prototypic cathepsin inhibitors. Org. Biomol. Chem. 2015, 13, 10310–10323. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin de Almeida, M.; Vicentis de Oliveira Fernandes, G.; Muniz de Oliveira, A.; Granjeiro, J.M. Calcium silicate as a graft material for bone fractures: A systematic review. J. Int. Med. Res. 2018, 46, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, N.; Mankoci, S.; Sahai, N. Silicates in orthopedics and bone tissue engineering materials. J. Biomed. Mater. Res. Part A 2017, 105, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Gaharwar, A.K.; Mihaila, S.M.; Swami, A.; Patel, A.; Sant, S.; Reis, R.L.; Marques, A.P.; Gomes, M.E.; Khademhosseini, A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 2013, 25, 3329–3336. [Google Scholar] [CrossRef]
- Mendes, L.S.; Saska, S.; Coelho, F.; Capote, T.S.O.; Scarel-Caminaga, R.M.; Marchetto, R.; Carrodeguas, R.G.; Gaspar, A.M.M.; Rodríguez, M.A. Injectable β-TCP/MCPM cement associated with mesoporous silica for bone regeneration: Characterization and toxicity evaluation. Biomed. Mater. 2017, 13, 025023. [Google Scholar] [CrossRef]
- Khan, F.; Saleema, M.; Afzal, A.; Ali, A.; Khan, A.; Khan, A.R. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Mater. Sci. Eng. C 2014, 35, 245–252. [Google Scholar] [CrossRef]
- Patel, N.; Best, S.M.; Bonfield, W.; Gibson, I.R.; Hing, K.A.; Damien, E.; Revell, P.A. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J. Mater. Sci. Mater. Med. 2002, 13, 1199–1206. [Google Scholar] [CrossRef]
- Gaisser, D.M.; Hench, L.L. Clinical applications of bioactive glass: Orthopaedics. In An Introduction to Bioceramics, 2nd ed.; Hench, L.L., Ed.; World Scientific Publishing Inc.: Singapore, 2013; pp. 151–158. ISBN -13 978-1908977151. [Google Scholar]
- Pallan, N.F.B.; Matori, K.A.; Hashim, M.; Lim, W.F.; Quah, H.J.; Fauzana, A.N.; Rosnah, N.; Khiri, M.Z.A.; Farhana, S.; Zainuddin, N.; et al. Preparation of SiO2-Na2O-CaO-P2O5 Glass-Ceramic from Waste Materials and Heat Treatment Effects on its Morphology. Mater. Sci. Forum 2016, 846, 189–192. [Google Scholar] [CrossRef]
- Xing, M.; Wang, X.; Wang, E.; Gao, L.; Chang, J. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomater. 2018, 72, 381–395. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Yang, Q.; Du, Y.; Wang, Y.; Wang, Z.; Mai, J.; Wang, Y.; Zhang, S. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration. Front. Mater. Sci. 2017, 11, 106–119. [Google Scholar] [CrossRef]
- De Godoy, R.F.; Hutchens, S.; Campion, C.; Blunn, G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 5387. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-N.; Jiang, S.; Pan, H.; Tang, R. Less is more: Silicate in the crystallization of hydroxyapatite in simulated body fluids. Cryst. Eng. Commun. 2016, 18, 379–383. [Google Scholar] [CrossRef]
- Sadeghzade, S.; Emadi, R.; Tavangarian, F.; Naderi, M. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications. Mater. Sci. Eng. C 2017, 71, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Belton, D.J.; Deschaume, O.; Perry, C.C. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012, 279, 1710–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schipper, D.; Babczyk, P.; El-Sayed, F.; Klein, S.E.; Schulze, M.; Tobiasch, E. The Effect of Nanostructured Surfaces on Stem Cell Fate. In Set Nanostructures for Novel Therapy; Grumezescu, A.M., Ficai, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 567–589. ISBN 978-0-32346-148-1. [Google Scholar]
- Wei, G.; Ma, P.X. Nanostructured biomaterials for regeneration, nano-scaled drug release systems incorporated into nanostructured biomaterials represents a novel and promising strategy to tissue regeneration. Adv. Funct. Mater. 2008, 18, 3568–3582. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.I.; Sultana, N.; Hamdan, S. Bioactivity Assessment of Poly(ε-caprolactone)/Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application. J. Nanomater. 2014, 1–6. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, D.; Lee, H.R.; Moon, H.-J.; Lee, B.R.; Ko, W.-K.; Song, S.-J.; Lee, S.J.; Shin, K.; Jang, W.; et al. Generation of functionalized polymer nanolayer or implant surface via initiated chemical vapor deposition (iCVD). J. Colloid Interface Sci. 2015, 439, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Fedorovich, N.E.; Alblas, J.; Hennink, W.E.; Öner, F.C.; Dhert, W.J.A. Organ printing: The future of bone regeneration? Trends Biotechnol. 2011, 29, 601–606. [Google Scholar] [CrossRef]
- Bens, A.T.; Tille, C.; Leukers, B.; Bermes, G.; Emons, M.; Sobe, R.; Pansky, A.; Roitzheim, B.; Schulze, M.; Tobiasch, E.; et al. Mechanical properties and bioanalytical characterization for a novel non-toxic flexible photopolymer formulation class. In Proceedings of the 16th Annual Solid Freeform Fabrication Symposium, Austin, TX, USA, 1–3 August 2005; University of Texas: Austin, TX, USA, 2005; pp. 162–173. [Google Scholar]
- Wu, C.; Han, P.; Liu, X.; Xu, M.; Tian, T.; Chang, J.; Xiao, Y. Mussel-inspired bioceramic with self-assembled Ca-P/polydopamine composite nanolayer: Preparation, formation mechanis, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Acta Biomater. 2014, 10, 428–438. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Anisimov, A.S.; Pikhitsa, P.V. Investigations of NanoBud formation. Chem. Phys. Lett. 2007, 446, 109–114. [Google Scholar] [CrossRef]
- Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009, 4, 66–80. [Google Scholar] [CrossRef]
- Kim, K.; Dean, D.; Lu, A.; Mikos, A.G.; Fisher, J.P. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticles content and initial cell seeding density in biodegradable nanocomposites scaffolds. Acta Biomater. 2011, 7, 1249–1264. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesopouros silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Trofimov, A.D.; Ivanova, A.A.; Zyuzin, M.V.; Timin, A.S. Porous inoranic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics 2018, 10, 167. [Google Scholar] [CrossRef]
- Gonçalves, M.C. Sol-gel silica nanoparticles in medicine: A natural choice. Design, synthesis and products. Molecules 2018, 23, 2021. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Sousa, R.A.; Malafaya, P.B. In vivo study of dendron-like nanoparticles for stem cells “tune-up”: From nano to tissues. Nanomedicine 2011, 7, 914–924. [Google Scholar] [CrossRef]
- Shadjou, N.; Hasanzadeha, M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress. Mater. Sci. Eng. C 2015, 55, 401–409. [Google Scholar] [CrossRef]
- Fan, D.M.; Akkaraju, G.R.; Couch, E.F. The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 2011, 3, 354–361. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, C.; Li, C.; Li, T.; Peng, M.; Wang, J.; Dai, K. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci. Rep. 2017, 7, 5588. [Google Scholar] [CrossRef]
- Witzleben, S.T.; Walbrueck, K.; Klein, S.E.; Schulze, M. Investigation of Temperature Dependency of Morphological Properties of Thermoplastic Polyurethane using WAXS and SAXS Monitoring. J. Chem. Chem. Eng. 2015, 494–499. [Google Scholar] [CrossRef]
- Hansen, B.; Kamm, B.; Schulze, M. Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the Organosolv process. J. Polym. Environ. 2016, 24, 85–97. [Google Scholar] [CrossRef]
- Monakhova, Y.; Diehl, B.W.K.; Do, X.T.; Witzleben, S.; Schulze, M. Novel method for the determination of average molecular weight of natural polymers based on 2D DOSY NMR and chemometrics: Example of heparin. J. Pharm. Biomed. Anal. 2018, 149, 128–132. [Google Scholar] [CrossRef]
- Jenis, L.G.; Banco, R.J. Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion. Spine 2010, 35, E1058–E1063. [Google Scholar] [CrossRef]
- Gredes, T.; Heinemann, F.; Dominiak, M.; Mack, H.; Gedrange, T.; Spassov, A.; Klinke, T.; Kunert-Keil, C. Bone substitution materials on the basis of BONITmatrix® up-regulate mRNA expression of IGF1 and Col1a1. Influence of varus/valgus positioning of the Nanos® and Metha® short-stemmed prostheses on stress shielding of metaphyseal bone. Ann Anat. 2012, 194, 179–184. [Google Scholar] [CrossRef]
- Brinkmann, V.; Radetzki, F.; Gutteck, N.; Delank, S.; Zeh, A. Influence of varus/valgus positioning of the Nanos® and Metha® short-stemmed prostheses on stress shielding of metaphyseal bone. Acta Orthop. Belg. 2017, 83, 57–66. [Google Scholar]
- Shahsavari, R.; Miller, J.B.; Adesireddy, A.; Yamato, K. Calcium-Silicate-Based Porous Particles, Composition, Method of Making and Use Thereof. WO2017059111A1, 29 September 2015. [Google Scholar]
- Bose, S.; Pullman, W.A.; Bandyopadhyay, A.; Suzhou, X.W. Mesoporous Calcium Silicate compositions and Methods for Synthesis of Controlled Release of Bioactive Compounds. US 9539359 B2, 25 April 2015. [Google Scholar]
- Varanasi, V.G.; Ilyas, A.; Kramer, P.R.; Azimaie, T. In Vivo Live 3d Printing of Regenerative Bone Healing Scaffolds for Rapid Fracture Healing. US20170143831A1, 24 November 2015. [Google Scholar]
- Peretti, G.; Fraschini, G.; Sannino, A.; Gervaso, F.; Scalera, F.; Di Giancamillo, A.; Domeneghini, C.; Deponti, D.R. Composite Scaffold for Tissue Repair. US20160106885A1, 17 May 2013. [Google Scholar]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S.; Pressato, D.; Luca, C.D. Pluri-Substituted Hydroxyapatite and the Composite Thereof With a Natural and/or Synthetic Polymer, Their Preparation and Uses Thereof. US 9,327,976 B2, 3 May 2016. [Google Scholar]
- Ginebra, M.P.; Espanol, M.; Montufar, E.B.; Perez, R.A.; Mestres, G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Biomaterialia 2010, 6, 2863–2873. [Google Scholar] [CrossRef]
- Zhang, Y.; Tobiasch, E. The role of purinergic receptors in stem cells in their derived consecutive tissues. In Adult Stem Cell Standardization; River Publishers: Roma, Italy, 2011; pp. 73–98. [Google Scholar]
- Zippel, N.; Limbach, C.A.; Ratajski, N.; Urban, C.; Luparello, C.; Pansky, A.; Kassack, M.U.; Tobiasch, E. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. 2012, 21, 884–900. [Google Scholar] [CrossRef]
- Kaebisch, C.; Schipper, D.; Babczyk, P.; Tobiasch, E. The role of purinergic receptors in stem cell differentiation. Comput. Struct. Biotechnol. J. 2014, 13, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lau, P.; Pansky, A.; Kassack, M.; Hemmersbach, R.; Tobiasch, E. The influence of simulated microgravity on purinergic signaling is different between individual culture and endothelial and smooth muscle cell coculture. Biomed. Res. Int. 2014, 2014, 413708. [Google Scholar] [CrossRef]
- Babczyk, P.; Conzendorf, C.; Klose, J.; Schulze, M.; Harre, K.; Tobiasch, E. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. J. Clin. Med. 2014, 3, 39–87. [Google Scholar] [CrossRef]
- Seifert, A.; Knapp, S.; Werheid, D.; Tobiasch, E. Role of Hox Genes in Stem Cell Differentiation. World J. Stem Cells 2015, 7, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Grotheer, V.; Schulze, M.; Tobiasch, E. Trends in Bone Tissue Engineering: Proteins for Osteogenic Differentiation and the Respective Scaffolding. In Protein Purification—Principles and Trends; iConcept Press Ltd.: Hongkong, China, 2016; ISBN 13 978-1-92222-740-9. [Google Scholar]
- Hielscher, D.; Kaebisch, C.; Braun, B.J.V.; Gray, K.; Tobiasch, E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev. 2018. [Google Scholar] [CrossRef]
- Gericke, M.; Witzler, M.; Enkelmann, A.; Schneider, G.; Schulze, M.; Heinze, T. Highly functional polysaccharide hydrogels. In Proceedings of the Cellulose and Renewable Materials Division at the 255th ACS National Meeting, New Orleans, LA, USA, 18–22 March 2018. [Google Scholar]
- Kamm, B.; Kamm, M.; Hirth, T.; Schulze, M. Lignocelluloses Based Chemical Products and Product Family Trees. In Biorefineries—Industrial Processes and Products; Kamm, M., Kamm, B., Gruber, P.C., Eds.; Wiley-VCH: Weinheim, Germany, 2006; Volume 2, pp. 97–150. ISBN 3-527-31027-4. [Google Scholar]
- Hansen, B.; Kamm, B.; Schulze, M. Qualitative and quantitative analysis of lignins from different sources and isolation methods for an application as a biobased chemical resource and polymeric material. In Analytical Techniques and Methods for Biomass Products; Vaz, S., Jr., Seidl, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–44. ISBN 978-3-319-41414-0. [Google Scholar]
- Alzagameem, A.; El Khaldi-Hansen, B.; Kamm, B.; Schulze, M. Lignocellulosic biomass for energy, biofuels, biomaterials and chemicals. In Biomass and Green Chemistry, 1st ed.; Vaz, S., Jr., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 95–132. ISBN 978-3-319-66736-2. [Google Scholar]
- Pochert, A.; Vernikouskaya, I.; Pascher, F.; Rasche, V.; Lindén, M. Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J. Colloid Interface Sci. 2017, 488, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Li, Y.; Shi, J. Silica/organosilica cross-linked block copolymer micelles: A versatile theranostic platform. Chem. Soc. Rev. 2017, 46, 569–585. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C 2018, 83, 90–98. [Google Scholar] [CrossRef]
Scaffolds | Composition | Manufacturing | Reference |
---|---|---|---|
Si-containing calcium phosphate cements | Injectable β-TCP-based cements with mesoporous Si particles (monocalcium phosphate monohydrate, MCPM) | β-TCP/MCPM/Si with 5% silica and a solution of polyethylene glycol 400 in deionized water (1:1, v/v) as a liquid component in the preparation of the cements | Mendes et al., 2017 [133] |
Si-containing ceramics | Si-substituted calcium phosphate-based bioceramics HA/0.8 wt % Si-substituted HA granules | Reviewing various preparation methods and mechanism of bone bonding to calcium phosphate Si-containing bioceramics Prepared by aqueous precipitation and processed into granules of 0.5–1.0 mm in diameter, sintered at 1200 °C | Khan et al., 2014 [134] Patel et al., 2002 [135] |
Si-containing bioglass | Bioglass 45S5® (46.1 mol % SiO2, 24.4 mol % Na2O, 26.9 mol % CaO, 2.6 mol % P2O5), NovaBone Products LLC, US S53P4® (53.8 mol % SiO2, 22.7 mol % Na2O, 21.8 mol % CaO, 1.7 mol % P2O5), BonAlive Biomaterials, Finland | Modern sol-gel techniques to introduce pores of various sizes | Gaisser et al., 2013 [136] |
Synthetic silicate-based ceramics, originally SiO2, Na2O, CaO, P2O5 | Pallan et al., 2016 [137] | ||
Silicate-based ceramics including strontium ions | Xing et al., 2018 [138] |
Product | Origin | Application | Description | Reference |
---|---|---|---|---|
ActifuseTM | artificial | oral reconstruction, bone augmentation | 76% nanocrystalline Ca phosphate plus 24% SiO2; 80% porosity; osteoinductive | case study: Jenis et al., 2010 [165] |
BONITmatrix® | artificial | oral reconstruction, bone augmentation | nanocrystalline HA (60%), ß-TCP (40%); sol-gel mixture (87:13) in SiO2 matrix, interconnective pores, osteoconductive | Gredes et al., 2012 [166] |
Nanos® | artificial | extraction defect restoration, oral reconstruction, bone augmentation | nanocrystalline Ca phosphate in SiO2 matrix (no sintering); osteoconductive | Brinkmann et al., 2017 [167] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götz, W.; Tobiasch, E.; Witzleben, S.; Schulze, M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019, 11, 117. https://doi.org/10.3390/pharmaceutics11030117
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics. 2019; 11(3):117. https://doi.org/10.3390/pharmaceutics11030117
Chicago/Turabian StyleGötz, Werner, Edda Tobiasch, Steffen Witzleben, and Margit Schulze. 2019. "Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation" Pharmaceutics 11, no. 3: 117. https://doi.org/10.3390/pharmaceutics11030117
APA StyleGötz, W., Tobiasch, E., Witzleben, S., & Schulze, M. (2019). Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics, 11(3), 117. https://doi.org/10.3390/pharmaceutics11030117