Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sardesai, S.; Biniwale, M.; Wertheimer, F.; Garingo, A.; Ramanathan, R. Evolution of surfactant therapy for respiratory distress syndrome: Past, present, and future. Pediatr. Res. 2017, 81, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Nkadi, P.O.; Merritt, T.A.; Pillers, D.M. An overview of pulmonary surfactant in the neonate: Genetics, metabolism, and the role of surfactant in health and disease. Mol. Genet. Metab. 2009, 97, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Parra, E.; Pérez-Gil, J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.; Ikegami, M. Mechanisms initiating lung injury in the preterm. Early Hum. Dev. 1998, 53, 81–94. [Google Scholar] [CrossRef]
- Herting, E. Less Invasive Surfactant Administration (LISA)—Ways to deliver surfactant in spontaneously breathing infants. Early Hum. Dev. 2013, 89, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Dargaville, P.A.; Aiyappan, A.; De Paoli, A.G.; Kuschel, C.A.; Kamlin, C.O.F.; Carlin, J.B.; Davis, P.G. Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Arch. Dis. Child. 2013, 98, F122–F126. [Google Scholar] [CrossRef] [PubMed]
- Dargaville, P.A.; Ali, S.K.M.; Jackson, H.D.; Williams, C.; De Paoli, A.G. Impact of Minimally Invasive Surfactant Therapy in Preterm Infants at 29–32 Weeks Gestation. Neonatology 2018, 113, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kribs, A. Minimally Invasive Surfactant Therapy and Noninvasive Respiratory Support. Clin. Perinatol. 2016, 43, 755–771. [Google Scholar] [CrossRef]
- More, K.; Sakhuja, P.; Shah, P.S. Minimally Invasive Surfactant Administration in Preterm Infants A Meta-narrative Review. JAMA Pediatr. 2014, 168, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Verder, H.; Robertson, B.; Greisen, G.; Ebbesen, F.; Albertsen, P.; Lundstrom, K.; Jacobsen, T.; Agertoft, L.; Hobolth, N.; Djernes, B.; et al. Surfactant Therapy and Nasal Continuous Positive Airway Pressure for Newborns with Respiratory-Distress Syndrome. N. Engl. J. Med. 1994, 331, 1051–1055. [Google Scholar] [CrossRef]
- Dani, C.; Corsini, I.; Bertini, G.; Fontanelli, G.; Pratesi, S.; Rubaltelli, F.F. The INSURE method in preterm infants of less than 30 weeks’ gestation. J. Matern. Fetal Neonatal Med. 2010, 23, 1024–1029. [Google Scholar] [CrossRef]
- Aguar, M.; Cernada, M.; Brugada, M.; Gimeno, A.; Gutierrez, A.; Vento, M. Minimally invasive surfactant therapy with a gastric tube is as effective as the intubation, surfactant, and extubation technique in preterm babies. Acta Paediatr. 2014, 103, E229–E233. [Google Scholar] [CrossRef] [PubMed]
- Dolovich, M.B.; Dhand, R. Aerosol drug delivery: Developments in device design and clinical use. Lancet 2011, 377, 1032–1045. [Google Scholar] [CrossRef]
- Rubin, B.; Fink, J. The delivery of inhaled medication to the young child. Pediatr. Clin. North. Am. 2003, 50, 717–731. [Google Scholar] [CrossRef]
- Martin, A.R.; Finlay, W.H. Nebulizers for drug delivery to the lungs. Expert Opin. Drug Deliv. 2015, 12, 889–900. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, C.; Barry, P. The science of nebulised drug delivery. Thorax 1997, 52, S31–S44. [Google Scholar] [CrossRef]
- Finlay, W.H. Jet Nebulizers. In The Mechanics of Inhaled Pharmaceutical Aerosols, 1st ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 175–220. [Google Scholar]
- Pillow, J.J.; Minocchieri, S. Innovation in Surfactant Therapy II: Surfactant Administration by Aerosolization. Neonatology 2012, 101, 337–344. [Google Scholar] [CrossRef]
- Tiemersma, S.; Minocchieri, S.; van Lingen, R.A.; Nelle, M.; Devadason, S.G. Vibrating Membrane Devices Deliver Aerosols More Efficient than Standard Devices: A Study in a Neonatal Upper Airway Model. J. Aerosol Med. Pulm. Drug Deliv. 2013, 26, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Moon, S.; Park, S.; Cho, G.; Nam, K.C.; Park, B.J. Fabrication and Characterization of Medical Mesh-Nebulizer for Aerosol Drug Delivery. Appl. Sci. 2018, 8, 604. [Google Scholar] [CrossRef]
- Mazela, J.; Polin, R.A. Aerosol delivery to ventilated newborn infants: Historical challenges and new directions. Eur. J. Pediatr. 2011, 170, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Koehler, E.; Jilg, G.; Avenarius, S.; Jorch, G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch. Dis. Child. 2008, 93, F275–F279. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Jorch, G.; Hartl, H.; Roth, B.; Kribs, A.; Gortner, L.; Schaible, T.; Hennecke, K.; Poets, C. Surfactant aerosol treatment of respiratory distress syndrome in spontaneously breathing premature infants. Pediatr. Pulmonol. 1997, 24, 222–224. [Google Scholar] [CrossRef]
- Arroe, M.; Pedersen-Bjergaard, L.; Albertsen, P.; Bode, S.; Greisen, G.; Jonsbo, F.; Lundstrom, K.; Struck, J.; Westergaard, M.; Peitersen, B. Inhalation of aerosolized surfactant (Exosurf (R)) to neonates treated with nasal continuous positive airway pressure. Prenat. Neonatal Med. 1998, 3, 346–352. [Google Scholar]
- Berggren, E.; Liljedahl, M.; Winbladh, B.; Andreasson, B.; Curstedt, T.; Robertson, B.; Schollin, J. Pilot study of nebulized surfactant therapy for neonatal respiratory distress syndrome. Acta Paediatr. 2000, 89, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Finer, N.N.; Merritt, T.A.; Bernstein, G.; Job, L.; Mazela, J.; Segal, R. An Open Label, Pilot Study of Aerosurf (R) Combined with nCPAP to Prevent RDS in Preterm Neonates. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Minocchieri, S.; Berry, C.; Pillow, J. Nebulised surfactant to reduce severity of respiratory distress: A blinded, parallel, randomised controlled trial. Arch. Dis. Child. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rey-Santano, C.; Mielgo, V.E.; Andres, L.; Ruiz-del-Yerro, E.; Valls-i-Soler, A.; Murgia, X. Acute and sustained effects of aerosolized vs. bolus surfactant therapy in premature lambs with respiratory distress syndrome. Pediatr. Res. 2013, 73, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Murgia, X.; Gastiasoro, E.; Mielgo, V.; Alvarez-Diaz, F.; Lafuente, H.; Valls-i-Soler, A.; Angel Gomez-Solaetxe, M.; Luis Larrabe, J.; Rey-Santano, C. Surfactant and Perfluorocarbon Aerosolization by Means of Inhalation Catheters for the Treatment of Respiratory Distress Syndrome: An In Vitro Study. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 81–87. [Google Scholar] [CrossRef]
- Murgia, X.; Gastiasoro, E.; Mielgo, V.; Ruiz-del-Yerro, E.; Jose Alvarez-Diaz, F.; Lafuente, H.; Valls-i-Soler, A.; Angel Gomez-Solaetxe, M.; Rey-Santano, C. Surfactant and Perfluorocarbon Aerosolization During Different Mechanical Ventilation Strategies by Means of Inhalation Catheters: An In Vitro Study. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 23–31. [Google Scholar] [CrossRef]
- Burkhardt, W.; Kraft, S.; Ochs, M.; Proquitte, H.; Mense, L.; Ruediger, M. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats. PLoS ONE 2012, 7, e47923. [Google Scholar] [CrossRef] [PubMed]
- Goikoetxea, E.; Murgia, X.; Serna-Grande, P.; Valls-i-Soler, A.; Rey-Santano, C.; Rivas, A.; Anton, R.; Basterretxea, F.J.; Minambres, L.; Mendez, E.; et al. In Vitro Surfactant and Perfluorocarbon Aerosol Deposition in a Neonatal Physical Model of the Upper Conducting Airways. PLoS ONE 2014, 9, e106835. [Google Scholar] [CrossRef] [PubMed]
- Goikoetxea, E.; Rivas, A.; Murgia, X.; Antón, R. Mathematical modeling and numerical simulation of surfactant delivery within a physical model of the neonatal trachea for different aerosol characteristics. Aerosol Sci. Technol. 2017, 51, 168–177. [Google Scholar] [CrossRef]
- Syedain, Z.H.; Naqwi, A.A.; Dolovich, M.; Somani, A. In Vitro Evaluation of a Device for Intra-Pulmonary Aerosol Generation and Delivery. Aerosol Sci. Technol 2015, 49, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Milesi, I.; Tingay, D.G.; Zannin, E.; Bianco, F.; Tagliabue, P.; Mosca, F.; Lavizzari, A.; Ventura, M.L.; Zonneveld, C.E.; Perkins, E.J.; et al. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome. Pediatr. Res. 2016, 80, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Milesi, I.; Tingay, D.G.; Lavizzari, A.; Bianco, F.; Zannin, E.; Tagliabue, P.; Mosca, F.; Ventura, M.L.; Rajapaksa, A.; Perkins, E.J.; et al. Supraglottic Atomization of Surfactant in Spontaneously Breathing Lambs Receiving Continuous Positive Airway Pressure. Pediatr. Crit. Care Med. 2017, 18, E428–E434. [Google Scholar] [CrossRef]
- Xi, J.; Si, X.; Longest, P.W. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways. Pharmaceutics 2014, 6, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Aramendia, I.; Fernandez-Gamiz, U.; Lopez-Arraiza, A.; Rey-Santano, C.; Mielgo, V.; Jose Basterretxea, F.; Sancho, J.; Angel Gomez-Solaetxe, M. Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants. Int. J. Environ. Res. Public Health 2018, 15, 423. [Google Scholar] [CrossRef]
- Holbrook, L.; Hindle, M.; Longest, P.W. Generating charged pharmaceutical aerosols intended to improve targeted drug delivery in ventilated infants. J. Aerosol Sci. 2015, 88, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Fritsching, U. Spray Systems. In Multiphase Flow Handbook; Crowe, C.T., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 499–598. [Google Scholar]
- Guo, Z.; Lu, G.; Ren, T.; Zheng, Y.; Gong, J.; Yu, J.; Liang, Y. Partial liquid ventilation confers protection against acute lung injury induced by endotoxin in juvenile piglets. Respir. Physiol. Neurobiol. 2009, 167, 221–226. [Google Scholar] [CrossRef]
- Kacmarek, R.; Wiedemann, H.; Lavin, P.; Wedel, M.; Tutuncu, A.; Slutsky, A. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir Crit. Care Med. 2006, 173, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Kandler, M.; von der Hardt, K.; Schoof, E.; Dotsch, J.; Rascher, W. Persistent improvement of gas exchange and lung mechanics by aerosolized perfluorocarbon. Am. J. Respir Crit. Care Med. 2001, 164, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Von der Hardt, K.; Kandler, M.; Brenn, G.; Scheuerer, K.; Schoof, E.; Dotsch, A.; Rascher, W. Comparison of aerosol therapy with different perfluorocarbons in surfactant-depleted animals. Crit. Care Med. 2004, 32, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.P. Aerosol Deposition Considerations in Inhalation-Therapy. Chest 1985, 88, S152–S160. [Google Scholar] [CrossRef]
Parameter | H2Od | PFD | FC75 |
---|---|---|---|
Density (ρ) [g/mL] | 0.99 | 1.95 | 1.78 |
Kinematic viscosity (ν) [cSt] | 1.003 | 2.70 | 0.81 |
Surface tension (γ) [dyn/cm] | 73 | 15 | 15 |
P (bar) | PROTOTYPE 1 (a) | PROTOTYPE 2 (a) |
---|---|---|
1 | 1.79 ± 0.03 | 1.95 ± 0.31 |
1.5 | 1.86 ± 0.05 | 2.31 ± 0.26 |
2 | 1.86 ± 0.06 | 2.47 ± 0.28 |
3 | 1.90 ± 0.05 | 2.37 ± 0.12 |
PROTOTYPE 1 (a) | PROTOTYPE 2 (a) | |||
---|---|---|---|---|
P (bar) | PFD | FC75 | PFD | FC75 |
1.5 | 2.23 ± 0.14 | 2.26 ± 0.12 | 2.34 ± 0.02 | 2.00 ± 0.08 |
3 | 2.24 ± 0.10 | 2.25 ± 0.08 | 2.29 ± 0.02 | 2.04 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aramendia, I.; Fernandez-Gamiz, U.; Lopez-Arraiza, A.; Rey-Santano, C.; Mielgo, V.; Basterretxea, F.J.; Sancho, J.; Gomez-Solaetxe, M.A. Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes. Pharmaceutics 2019, 11, 19. https://doi.org/10.3390/pharmaceutics11010019
Aramendia I, Fernandez-Gamiz U, Lopez-Arraiza A, Rey-Santano C, Mielgo V, Basterretxea FJ, Sancho J, Gomez-Solaetxe MA. Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes. Pharmaceutics. 2019; 11(1):19. https://doi.org/10.3390/pharmaceutics11010019
Chicago/Turabian StyleAramendia, Iñigo, Unai Fernandez-Gamiz, Alberto Lopez-Arraiza, Carmen Rey-Santano, Victoria Mielgo, Francisco Jose Basterretxea, Javier Sancho, and Miguel Angel Gomez-Solaetxe. 2019. "Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes" Pharmaceutics 11, no. 1: 19. https://doi.org/10.3390/pharmaceutics11010019
APA StyleAramendia, I., Fernandez-Gamiz, U., Lopez-Arraiza, A., Rey-Santano, C., Mielgo, V., Basterretxea, F. J., Sancho, J., & Gomez-Solaetxe, M. A. (2019). Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes. Pharmaceutics, 11(1), 19. https://doi.org/10.3390/pharmaceutics11010019