Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Phase Solubility Analysis
2.3. Quantification of Aniracetam
2.4. Preparation of Inclusion Complexes
2.5. Stability Test Using Design of Experiments
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. Data Analysis
3. Results
3.1. Phase Solubility Analysis
3.2. Stability of Aniracetam:HP-β-CD Inclusion Complex
3.3. Characterizing Aniracetam: HP-β-CD Inclusion Complex
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tchkonia, T.; Kirkland, J. Aging, cell senescence and chronic disease: Emerging Therapeutic Strategies. J. Am. Med. Assoc. 2018, 320, 1321–1323. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K. Aniracetam: Its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries. CNS Drug Rev. 2002, 8, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Gouliaev, A.; Senning, A. Piracetam and other structurally related nootropics. Brain Res. Rev. 1994, 19, 180–222. [Google Scholar] [CrossRef]
- Malik, R.; Sangwan, A.; Saihgal, R.; Jindal, D.; Piplani, P. Towards better brain management: Nootropics. Curr. Med. Chem. 2007, 14, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Vaglenova, J.; Pandiella, N.; Wijayawardhane, N.; Vaithianathan, T.; Birru, S.; Breese, C.; Suppiramaniam, V.; Randal, C. Aniracetam reversed learning and memory deficits following prenatal ethanol exposure by modulating functions of synaptic AMPA receptors. Neuropsychopharmacology 2008, 33, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Black, M. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. Psychopharmacology 2005, 179, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Clarke, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 2005, 25, 9027–9036. [Google Scholar] [CrossRef] [PubMed]
- Kew, J.; Kemo, J. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005, 179, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Partin, K. AMPA receptor potentiators: From drug design to cognitive enhancement. Curr. Opin. Pharmacol. 2015, 20, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, L.; Casamenti, F.; Pepeu, G. Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions. Pharmacol. Biochem. Behav. 1996, 53, 277–283. [Google Scholar] [CrossRef]
- Cumin, R.; Bandle, E.; Gamzu, E.; Haefely, W. Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents. Psychopharmacology 1982, 78, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Messini, C.; Tsolaki, M. Clinical efficacy of aniracetam, either as monotherapy or combined with cholinesterase inhibitors, in patients with cognitive impairment: A comparative open study. CNS Neurosci. Ther. 2012, 18, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Senin, U.; Abate, G.; Fieschi, C.; Gori, G.; Guala, A.; Marini, G.; Villardita, C.; Parnetti, L. Aniracetam (Ro 13-5057) in the treatment of senile dementia of Alzheimer type (SDAT): Results of a placebo controlled multicentre clinical study. Eur. Neuropsychopharm. 1991, 1, 511–517. [Google Scholar] [CrossRef]
- Elston, T.; Pandian, A.; Smith, G.; Holley, A.; Gao, N.; Lugo, J. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice. PLoS ONE 2014, 9, e104443. [Google Scholar] [CrossRef] [PubMed]
- White, G.; Ruske, A.; Colombo, M. Memory procedures, performance and processes in pigeons. Cogn. Brain Res. 1996, 3, 309–317. [Google Scholar] [CrossRef]
- Mayersohn, M.; Roncari, G.; Wendt, G. Disposition pharmacokinetics and metabolism of aniracetam in animals. Drug Investig. 1993, 5, 73–95. [Google Scholar] [CrossRef]
- Roncari, G. Human pharmacokinetics of aniracetam. Drug Investig. 1993, 5, 68–72. [Google Scholar] [CrossRef]
- Brewster, M.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- McDowell, A.; Fothergill, J.; Khan, A.; Medlicott, N.J. A cyclodextrin formulation to improve use of the anesthetic tribromoethanol (Avertin®). J. Pharm. Bioallied Sci. 2014, 6, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005, 6, E329–E357. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.; Loftsson, T. The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie 2002, 57, 94–101. [Google Scholar] [PubMed]
- Arima, H.; Yunomae, K.; Miyake, K.; Irie, T.; Hirayama, F.; Uekama, K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 2001, 90, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.; Scott, R. 2-Hydroxypropyl-beta-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol. 2005, 43, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, D.; Sun, Y. Content determination of aniracetam in aniracetam inclusion complex by HPLC. Artif. Cells Blood Substit. Immobil. Biotechnol. 2009, 37, 1532–4184. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. In Advances in Analytic Chemistry and Instrumentation; Reily, C.A., Ed.; Wiley-Interscience: New York, NJ, USA, 1965; pp. 117–212. [Google Scholar]
- Ogiso, T.; Iwaki, M.; Tanino, T.; Ikeda, K.; Paku, T.; Horibe, Y.; Suzuki, H. Pharmacokinetics of aniracetam and its metabolites in rats. J. Pharm. Sci. 1998, 87, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. NBS A Phys. Chem. 1977, 81A, 89–96. [Google Scholar] [CrossRef]
- Mangolim, C.; Moriwaki, C.; Nogueira, A.; Sato, F.; Baesso, M.; Neto, A.; Matiolo, G. Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.; Estes, K.; Bodor, N. An intravenous toxicity study of 2-hydroxyproply-β-cyclodextrin, a useful drug solubilizer, in rats and monkeys. Int. J. Pharm. 1990, 59, 231–243. [Google Scholar] [CrossRef]
- Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 1998, 98, 2045–2076. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaem, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; Rao, V.M.; Zannou, E.A.; Zia, V. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 1999, 36, 3–16. [Google Scholar] [CrossRef]
- Patel, K.; Patel, U.; Patel, A.; Parmar, P. A degradation study of Aniracetam into its precursor including degradation pathway and identification with RP-HPLC method validation and LC/MS. Int. J. Adv. Pharm. Biol. Chem. 2016, 5, 396–3407. [Google Scholar]
- Suenaga, A.; Bekers, O.; Beijnen, J.; Underberg, W.; Tanimoto, T.; Koizumi, K.; Otagiri, M. Stabilization of daunorubicin and 4-demethoxydaunorubicin on complexation with octakis(2,6-di-O-methyl)-γ-cyclodextrin in acidic aqueous solution. Int. J. Pharm. 1992, 82, 29–37. [Google Scholar] [CrossRef]
- Gibaud, S.; Zirar, S.; Mutzenhardt, P.; Fries, I.; Astier, A. Melarsoprol–cyclodextrins inclusion complexes. Int. J. Pharm. 2005, 206, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Paramera, E.; Konteles, S.; Papadakis, S.; Karathanos, V. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem. 2011, 125, 913–922. [Google Scholar] [CrossRef]
- Sambasevam, K.; Mohamad, S.; Sarih, N.; Ismail, N. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethin. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, H.; Abderrahim, R.; Meganem, F. Spectroscopic studies of inclusion complex of beta-cyclodextrin and benzidine diammonium dipicrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 75, 32–36. [Google Scholar] [CrossRef] [PubMed]
Name | Units | Type | Settings | Precision |
---|---|---|---|---|
Temperature | °C | Quantitative | 0 to 50 | 1.25 |
Humidity | % | Quantitative | 0 to 75 | 1.88 |
Time | Week | Quantitative | 0 to 12 | 0.275 |
CD Content | mg | Quantitative | 500 to 1000 | 12.5 |
Functional Group | Wavenumber (cm−1) | Change Δδ | |
---|---|---|---|
HP-β-CD | Inclusion Complex | ||
v[OH] symmetric and antisymmetric | 3399.59 | 3407.45 | +7.86 |
v[C–H2] | 2929.92 | 2926.11 | −3.81 |
v[C–C] | 1156.32 | 1155.38 | −0.94 |
v[O–H] bending vibration | 1031.97 | 1070.10 | +38.13 |
Functional Group | Wavenumber (cm−1) | Change Δδ | |
---|---|---|---|
Aniracetam | Inclusion Complex | ||
v[=C-H] | 681.39 | 769.55 | +88.16 |
v[C=O] (aryl) | 1727.87 | 1761.22 | +33.35 |
v[C=O] | 1682.90 | 1682.82 | −0.08 |
v[C-N] | 1249.56 | 1245.37 | −3.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldsmith, S.D.; McDowell, A. Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration. Pharmaceutics 2018, 10, 240. https://doi.org/10.3390/pharmaceutics10040240
Goldsmith SD, McDowell A. Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration. Pharmaceutics. 2018; 10(4):240. https://doi.org/10.3390/pharmaceutics10040240
Chicago/Turabian StyleGoldsmith, Sebastian D., and Arlene McDowell. 2018. "Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration" Pharmaceutics 10, no. 4: 240. https://doi.org/10.3390/pharmaceutics10040240
APA StyleGoldsmith, S. D., & McDowell, A. (2018). Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration. Pharmaceutics, 10(4), 240. https://doi.org/10.3390/pharmaceutics10040240