In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Amino Acid Sequence Retrieval
2.2. T Cell Epitope Prediction
2.3. Immunogenicity Prediction
2.4. Conservancy and Toxicity Analysis
2.5. Population Coverage
2.6. Molecular Docking
2.7. Cell Line, Peptide Synthesis, and MHC-Peptide Complex Stabilization Assay
2.8. Identification of the B Cell Epitope
3. Results
3.1. T Cell Epitope Prediction
3.2. Immunogenicity Prediction
3.3. Conservancy and Toxicity Prediction
3.4. Population Coverage
3.5. Molecular Docking and MHC-Peptide Complex Stabilization Assay
3.6. B-Cell Epitope Identification
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Trépo, C.; Chan, H.L.Y.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [Google Scholar] [CrossRef]
- Kang, L.; Pan, J.; Wu, J.; Hu, J.; Sun, Q.; Tang, J. Anti-HBV drugs: Progress, unmet needs, and new hope. Viruses 2015, 7, 4960–4977. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, M.B.; Lucifora, J.; Mason, W.S.; Sureau, C.; Beck, J.; Levrero, M.; Kann, M.; Knolle, P.A.; Benkirane, M.; Durantel, D.; et al. Towards an HBV cure: State-of-the-art and unresolved questions—Report of the ANRS workshop on HBV cure. Gut 2015, 64, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Gehring, A.; Bertoletti, A.; Tavis, J.E. Host factor-targeted hepatitis B virus therapies. Intervirology 2014, 57, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Ait-Goughoulte, M.; Lucifora, J.; Zoulim, F.; Durantel, D. Innate antiviral immune responses to hepatitis B virus. Viruses 2010, 2, 1394–1410. [Google Scholar] [CrossRef] [PubMed]
- Nassal, M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015, 64, 1972–1984. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.-L.; Deng, Q.; Mancini-Bourgine, M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: Perspectives and challenges. J. Hepatol. 2011, 54, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.J.; Mueller, S.N.; Wherry, E.J.; Barber, D.L.; Aubert, R.D.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 2008, 205, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, P.; Dembek, C.; Kuklick, L.; Jager, C.; Tedjokusumo, R.; von Freyend, M.J.; Drebber, U.; Janowicz, Z.; Melber, K.; Protzer, U. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice. Vaccine 2013, 31, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Vandepapeliere, P.; Lau, G.K.; Leroux-Roels, G.; Horsmans, Y.; Gane, E.; Tawandee, T.; Merican, M.I.; Win, K.M.; Trepo, C.; Cooksley, G.; et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: A randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007, 25, 8585–8597. [Google Scholar] [PubMed]
- Akbar, S.M.; Furukawa, S.; Horiike, N.; Abe, M.; Hiasa, Y.; Onji, M. Safety and immunogenicity of hepatitis B surface antigen-pulsed dendritic cells in patients with chronic hepatitis B. J. Viral Hepat. 2011, 18, 408–414. [Google Scholar] [PubMed]
- Backes, S.; Jager, C.; Dembek, C.J.; Kosinska, A.D.; Bauer, T.; Stephan, A.S.; Dislers, A.; Mutwiri, G.; Busch, D.H.; Babiuk, L.A.; et al. Protein-prime/modified vaccinia virus Ankara vector-boost vaccination overcomes tolerance in high-antigenemic HBV-transgenic mice. Vaccine 2016, 34, 923–932. [Google Scholar] [PubMed]
- Clark, D.N.; Hu, J. Unveiling the roles of HBV polymerase for new antiviral strategies. Future Virol. 2015, 10, 283–295. [Google Scholar] [PubMed]
- Menendez-Arias, L.; Alvarez, M.; Pacheco, B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: Mechanism of action and resistance. Curr. Opin. Virol. 2014, 8, 1–9. [Google Scholar] [PubMed]
- Xia, Y.; Stadler, D.; Lucifora, J.; Reisinger, F.; Webb, D.; Hösel, M.; Michler, T.; Wisskirchen, K.; Cheng, X.; Zhang, K.; et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 2016, 150, 194–205. [Google Scholar] [PubMed]
- Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J. Biomed. Inform. 2015, 53, 405–414. [Google Scholar] [PubMed]
- Kim, Y.; Ponomarenko, J.; Zhu, Z.; Tamang, D.; Wang, P.; Greenbaum, J.; Lundegaard, C.; Sette, A.; Lund, O.; Bourne, P.E.; et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012, 40, W525–W530. [Google Scholar] [PubMed]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemoller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. Publ. Protein Soc. 2003, 12, 1007–1017. [Google Scholar]
- Lundegaard, C.; Lamberth, K.; Harndahl, M.; Buus, S.; Lund, O.; Nielsen, M. NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 2008, 36, W509–W512. [Google Scholar] [PubMed]
- Peters, B.; Sette, A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinform. 2005, 6, 132. [Google Scholar] [CrossRef] [PubMed]
- Sidney, J.; Assarsson, E.; Moore, C.; Ngo, S.; Pinilla, C.; Sette, A.; Peters, B. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Giguere, S.; Drouin, A.; Lacoste, A.; Marchand, M.; Corbeil, J.; Laviolette, F. MHC-NP: Predicting peptides naturally processed by the MHC. J. Immunol. Methods 2013, 400–401, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Stranzl, T.; Larsen, M.V.; Lundegaard, C.; Nielsen, M. NetCTLpan: Pan-specific MHC class I pathway epitope predictions. Immunogenetics 2010, 62, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004, 56, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Reche, P.A.; Reinherz, E.L. Prediction of peptide-MHC binding using profiles. Methods Mol. Biol. 2007, 409, 185–200. [Google Scholar] [PubMed]
- Reche, P.A.; Glutting, J.-P.; Reinherz, E.L. Prediction of MHC class I binding peptides using profile motifs. Hum. Immunol. 2002, 63, 701–709. [Google Scholar] [CrossRef]
- Nielsen, M.; Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Hoof, I.; Peters, B.; Sidney, J.; Pedersen, L.E.; Sette, A.; Lund, O.; Buus, S.; Nielsen, M. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 2009, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Calis, J.J.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; de Silva, A.D.; Sette, A.; Kesmir, C.; Peters, B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 2007, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Open SOURCE DRUG DISCOVERY CONSORTIUM. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinform. 2016, 32, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Carballo, M.; Feld, J.J.; Janssen, H.L. Immigration and viral hepatitis. J. Hepatol. 2015, 63, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis B virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012, 30, 2212–2219. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Maupetit, J.; Derreumaux, P.; Tuffery, P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput. 2014, 10, 4745–4758. [Google Scholar] [CrossRef] [PubMed]
- Thevenet, P.; Shen, Y.; Maupetit, J.; Guyon, F.; Derreumaux, P.; Tuffery, P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012, 40, W288–W293. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.A.; Thong, S.Y.; Yap, J.; van Esch, W.J.; Raida, M.; Meijers, R.; Lescar, J.; Verhelst, S.H.; Grotenbreg, G.M. Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides. Angew. Chem. 2014, 53, 13390–13394. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.L.; Wang, Z.B.; Guo, J.L.; Liu, W.Q.; Hu, J.; Li, J.; Wang, S.N.; Li, Q.; Wen, J.S. Two novel squamous cell carcinoma antigen-derived HLA-A*0201-binding peptides induce in vitro and in vivo CD8+ cytotoxic T lymphocyte responses. Int. J. Oncol. 2013, 42, 1482–1492. [Google Scholar] [PubMed]
- Ponomarenko, J.V.; Bourne, P.E. Antibody-protein interactions: Benchmark datasets and prediction tools evaluation. BMC Struct. Biol. 2007, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Haste Andersen, P.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. Publ. Protein Soc. 2006, 15, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.E.; Lund, O.; Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Chow, PY.; Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 1978, 47, 45–148. [Google Scholar]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [PubMed]
- Karplus, P.A.; Schulz, G.E. Prediction of chain flexibility in proteins. Naturwissenschaften 1985, 72, 212–213. [Google Scholar] [CrossRef]
- Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990, 276, 172–174. [Google Scholar] [CrossRef]
- Parker, J.M.; Guo, D.; Hodges, R.S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 1986, 25, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hossain, M.U.; Rakib-Uz-Zaman, S.M.; Morshed, M.N. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: An immunoinformatics study. Scand. J. Immunol. 2015, 82, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Kao, J.H. Review article: Novel therapies for hepatitis B virus cure—Advances and perspectives. Aliment. Pharmacol. Ther. 2016, 44, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Rai, D.; Zhan, P.; Chen, X.; Jiang, X.; Liu, X. Recent advance of the hepatitis B virus inhibitors: A medicinal chemistry overview. Future Med. Chem. 2015, 7, 587–607. [Google Scholar] [CrossRef] [PubMed]
- Lobaina, Y.; Hardtke, S.; Wedemeyer, H.; Aguilar, J.C.; Schlaphoff, V. In vitro stimulation with HBV therapeutic vaccine candidate Nasvac activates B and T cells from chronic hepatitis B patients and healthy donors. Mol. Immunol. 2015, 63, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Fan, F.; Ding, L.; Liu, J.; Su, S.; Yin, P.; Cao, M.; Zhao, W.; Hu, H.M.; Wang, L. An autophagosome-based therapeutic vaccine for HBV infection: A preclinical evaluation. J. Transl. Med. 2014, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wang, J.; Dou, S.; Yang, X.; Ni, X.; Sun, R.; Tian, Z.; Wei, H. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology 2014, 59, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Chen, M.; Zhao, J.; Hu, H.; Xu, H.; Ling, N.; Peng, M.; Ren, H. Construction of an HBV DNA vaccine by fusion of the GM-CSF gene to the HBV-S gene and examination of its immune effects in normal and HBV-transgenic mice. Vaccine 2010, 28, 4301–4307. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Peng, G.; Jin, X.; Tang, J.; Chen, Z. Vaccination with a fusion DNA vaccine encoding hepatitis B surface antigen fused to the extracellular domain of CTLA4 enhances HBV-specific immune responses in mice: Implication of its potential use as a therapeutic vaccine. Clin. Immunol. 2010, 137, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, X.; Jiang, Y.; Liu, J. A novel HBV DNA vaccine based on T cell epitopes and its potential therapeutic effect in HBV transgenic mice. Int. Immunol. 2005, 17, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Seo, Y.B.; Im, S.J.; Bae, S.H.; Song, M.J.; You, C.R.; Jang, J.W.; Yang, S.H.; Suh, Y.S.; Song, J.S.; et al. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int. 2015, 35, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Cavenaugh, J.S.; Awi, D.; Mendy, M.; Hill, A.V.; Whittle, H.; McConkey, S.J. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS ONE 2011, 6, e14626. [Google Scholar] [CrossRef] [PubMed]
- Shata, M.T.; Pfahler, W.; Brotman, B.; Lee, D.H.; Tricoche, N.; Murthy, K.; Prince, A.M. Attempted therapeutic immunization in a chimpanzee chronic HBV carrier with a high viral load. J. Med. Primatol. 2006, 35, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Usmani, S.S.; Agrawal, P.; Nagpal, G.; Gautam, A.; Raghava, G.P.S. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief. Bioinform. 2017, 18, 467–478. [Google Scholar] [PubMed]
- Luo, H.; Ye, H.; Ng, H.W.; Shi, L.; Tong, W.; Mendrick, D.L.; Hong, H. Machine learning methods for predicting HLA-peptide binding activity. Bioinform. Biol. Insights 2015, 9, 21–29. [Google Scholar] [PubMed]
- Lu, Y.F.; Sheng, H.; Zhang, Y.; Li, Z.Y. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data. J. Zhejiang Univ. Sci. B 2013, 14, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Bulik, S.; Tampe, R.; van Endert, P.M.; Holzhutter, H.G. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 2003, 171, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Oyarzun, P.; Kobe, B. Computer-aided design of T-cell epitope-based vaccines: Addressing population coverage. Int. J. Immunogenet. 2015, 42, 313–321. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhu, J. Computational tools for epitope vaccine design and evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, D.; Xu, T.; Wang, X.; Xu, X.; Tao, L.; Li, Y.X.; Cao, Z.W. SEPPA: A computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res. 2009, 37, W612–W616. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wei, Z.; Li, R.; Wu, D.; Meng, Z. Prediction and preliminary screening of HLA-A*0201-restricted epitope peptides of human GPC3. Int. J. Immunogen. 2016, 43, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhai, M.; Wu, Z.; Qi, Y.; Wu, Y.; Dai, C.; Sun, M.; Li, L.; Gao, Y. Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer. Amino Acids 2012, 42, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhou, W.; Du, J.; He, Y.; Li, Y. Identification of human leukemia antigen A*0201-restricted epitopes derived from epidermal growth factor pathway substrate number 8. Mol. Med. Rep. 2015, 12, 1741–1752. [Google Scholar] [PubMed]
- Tang, X.D.; Guo, S.L.; Wang, G.Z.; Li, N.; Wu, Y.Y.; Fang, D.C.; Fan, Y.H.; Yang, S.M. In vitro and ex vivo evaluation of a multi-epitope heparinase vaccine for various malignancies. Cancer Sci. 2014, 105, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gu, Y.; Bian, L.; Shi, Y.; Cai, Y.; Chen, Y.; Chen, H.; Qian, L.; Wu, X.; Xu, K.; et al. Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes. Vaccine 2016, 34, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.H.; Gao, Y.F.; Chen, F.; Liu, W.; Zhai, M.X.; Zhai, W.J.; Qi, Y.M.; Ye, Y. Identification of novel T cell epitopes from efflux pumps of Mycobacterium tuberculosis. Immunol. Lett. 2011, 140, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Duan, Z.; Jiang, L. Identification of a dengue virus-specific HLA-A*0201-restricted CD8+ T cell epitope. J. Med. Virol. 2010, 82, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Liao, Y.; Fan, J.; Zhang, Y.; Mao, X.; Sun, Y.; Song, C.; Qiu, X.; Meng, C.; Ding, C. Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Vaccine 2016, 34, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.J.; Wahren, B.; Liu, M.A. DNA vaccines: Progress and challenges. J. Immunol. 2005, 175, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qian, Y.; Yan, F.; Tu, J.; Yang, X.; Xing, Y.; Chen, Z. 5′-triphosphate-siRNA activates RIG-I-dependent type I interferon production and enhances inhibition of hepatitis B virus replication in HepG2.2.15 cells. Eur. J. Pharmacol. 2013, 721, 86–95. [Google Scholar] [CrossRef] [PubMed]
Number | Sequence | IEDB Recommend (Total Score) | NetCTLpan1.1 (%Rank) | MHC-NP (Prob Score) 1 | RANKPEP (Score) | NetMHCpan3.0 (Score) |
---|---|---|---|---|---|---|
1 | FLLSLGIHL | 1.23 | 0.3 | 0.703 | 74 | 0.8088 |
2 | GLSRYVARL | −0.11 | 0.8 | 0.501 | 93 | 0.5567 |
3 | HLYSHPIIL | 0.24 | 1.5 | 0.3578 | 72 | 0.6134 |
4 | GLYRPLLRL | −0.46 | 1.5 | 0.6303 | 81 | 0.555 |
5 | FLLAQFTSA | −0.2 | 0.8 | 0.1685 | 67 | 0.8417 |
6 | YMDDVVLGA | 0.08 | 0.2 | 0.273 | 52 | 0.8052 |
7 | RVTGGVFLV | −0.52 | 0.8 | 0.1529 | 76 | 0.6582 |
8 | NLQSLTNLL | −0.74 | 2 | 0.2187 | 79 | 0.4628 |
9 | LLDDEAGPL | −0.62 | 1.5 | 0.1576 | 53 | 0.515 |
10 | NLGNLNVSI | −1.32 | 4 | 0.4817 | 80 | 0.4545 |
11 | AVTHFLLSL | −0.65 | 3 | 0.1494 | 75 | 0.4462 |
12 | RLGLYRPLL | −0.63 | 4 | 0.2311 | 50 | 0.483 |
13 | SLYAAVTHF | −0.63 | 3 | 0.0983 | 81 | 0.393 |
14 | SLYADSPSV | 0.49 | 0.1 | - | 85 | 0.8179 |
15 | ALMPLYACI | 0.25 | 0.3 | - | 85 | 0.7411 |
16 | LLSSDLSWL | 0.59 | 0.4 | - | 80 | 0.6853 |
17 | FLNKQYLNL | 0.52 | 0.4 | - | 76 | 0.7243 |
18 | LLAQFTSAI | −0.33 | 0.8 | - | 93 | 0.6915 |
19 | NLYVSLMLL | 0.02 | 1 | - | 93 | 0.6407 |
20 | KLHLYSHPI | −0.39 | 0.8 | - | 59 | 0.6864 |
21 | WILRGTSFV | −0.44 | 1.5 | - | 65 | 0.7009 |
22 | HLPDRVHFA | −0.79 | 1.5 | 0.3226 | - | 0.5857 |
23 | CLFHIVNLI | −0.53 | 1.5 | - | 75 | 0.5069 |
24 | FTSAICSVV | −0.63 | 1 | - | 52 | 0.6207 |
25 | SLNFMGYVI | −0.92 | 3 | - | 59 | 0.5115 |
26 | NLIGTDNSV | −1.02 | 2 | - | 71 | 0.4586 |
27 | HLLVGSSGL | −0.95 | 3 | - | 60 | 0.4516 |
28 | FAVPNLQSL | −0.85 | 4 | 0.4014 | - | 0.3776 |
29 | TLPQEHIVL | −1.18 | 5 | 0.2925 | 61 | - |
30 | VSIPWTHKV | −1.45 | 3 | 0.2161 | - | 0.3956 |
Number | Epitope 1 | Immunogenicity Score | Conservancy (%) |
---|---|---|---|
1 | CLFHIVNLI | 0.22707 | 0.00 |
2 | RVTGGVFLV | 0.21088 | 100.00 |
3 | HLPDRVHFA | 0.20368 | 66.67 |
4 | LLDDEAGPL | 0.18597 | 41.67 |
5 | VSIPWTHKV | 0.18558 | 83.33 |
6 | SLYAAVTHF | 0.16679 | 0.00 |
7 | TLPQEHIVL | 0.14423 | 8.33 |
8 | YMDDVVLGA | 0.11902 | 75.00 |
9 | GLSRYVARL | 0.0969 | 75.00 |
10 | GLYRPLLRL | 0.05052 | 25.00 |
11 | WILRGTSFV | 0.0468 | 100.00 |
12 | HLYSHPIIL | 0.04347 | 75.00 |
13 | AVTHFLLSL | 0.04269 | 0.00 |
14 | NLIGTDNSV | 0.03386 | 8.33 |
15 | RLGLYRPLL | 0.02912 | 33.33 |
Number | Sequence | Interacting MHC-I alleles and Binding Rank (%) | Toxicity |
---|---|---|---|
1 | RVTGGVFLV | HLA-A*0201(0.60) 1,HLA-A*0202(1.60),HLA-A*0203(1.70),HLA-A*0205(1.80) HLA-A*0206(0.12),HLA-A*0207(2.00),HLA-A*0211(0.80),HLA-A*0212(1.30) HLA-A*0216(1.00),HLA-A*0219(0.30),HLA-A*0250(0.50),HLA-A*3001(1.90) HLA-A*3201(1.20),HLA-A*3207(0.20),HLA-A*6601(1.20),HLA-A*6802(1.40) HLA-A*6901(1.60),HLA-A*8001(0.80),HLA-B*1517(1.90),HLA-B*4013(0.40) HLA-B*4801(2.00),HLA-C*1203(1.10),HLA-C*1502(0.70) | Non-Toxin |
2 | VSIPWTHKV | HLA-A*0211(1.00),HLA-A*0212(1.50),HLA-A*0216(2.00),HLA-A*0217(2.00) HLA-A*0250(2.00),HLA-A*2301(1.80),HLA-A*3002(1.90),HLA-A*3207(0.70) HLA-A*3215(0.50),HLA-A*6601(0.50),HLA-A*6802(0.90),HLA-A*6823(0.90) HLA-A*6901(0.09),HLA-B*1517(0.80),HLA-B*5101(1.90),HLA-B*5701(1.40) HLA-B*5801(0.70),HLA-C*0602(1.30),HLA-C*0701(0.70),HLA-C*1203(0.20) HLA-C*1502(0.01) | Non-Toxin |
3 | YMDDVVLGA | HLA-A*0101(0.12),HLA-A*0201(0.02),HLA-A*0202(0.50),HLA-A*0203(0.30) HLA-A*0206(0.17),HLA-A*0207(0.25),HLA-A*0211(0.02),HLA-A*0212(0.05) HLA-A*0216(0.01),HLA-A*0219(0.06),HLA-A*0250(0.07),HLA-A*6901(0.80) HLA-B*0803(0.90),HLA-C*0401(1.70),HLA-C*0501(0.10),HLA-C*0802(1.60) HLA-C*1203(1.30) | Non-Toxin |
4 | GLSRYVARL | HLA-A*0201(1.00),HLA-A*0202(0.20),HLA-A*0203(0.50),HLA-A*0205(0.40) HLA-A*0211(1.10),HLA-A*0212(0.60),HLA-A*0216(1.00),HLA-A*0217(1.50) HLA-A*0219(0.80),HLA-A*0250(0.90),HLA-B*0802(0.40) | Non-Toxin |
5 | WILRGTSFV | HLA-A*0201(0.70),HLA-A*0203(0.50),HLA-A*0205(0.20),HLA-A*0206(0.30) HLA-A*0211(0.70),HLA-A*0212(0.50),HLA-A*0216(0.25),HLA-A*0217(1.20) HLA-A*0219(0.08),HLA-A*0250(0.30),HLA-A*3215(2.00),HLA-A*6802(1.40) HLA-A*6823(1.30),HLA-A*6901(0.07),HLA-A*8001(1.90),HLA-C*0401(0.90) HLA-C*0501(1.20),HLA-C*1203(1.70) | Non-Toxin |
6 | HLYSHPIIL | HLA-A*0201(0.80),HLA-A*0202(0.70),HLA-A*0203(0.40),HLA-A*0211(0.80) HLA-A*0212(1.30),HLA-A*0216(1.40),HLA-A*0217(1.30),HLA-A*0219(1.90) HLA-A*3201(1.00),HLA-A*3207(1.40),HLA-A*3215(1.10),HLA-A*6823(2.00) HLA-A*6901(1.40),HLA-B*0801(1.00),HLA-B*0802(0.80),HLA-B*0803(1.10) HLA-B*1502(0.80),HLA-B*1503(0.70),HLA-B*1509(0.09),HLA-B*3901(0.09) HLA-B*4013(0.17),HLA-B*4801(0.10),HLA-C*0303(0.80),HLA-C*0401(0.25) HLA-C*0602(0.80),HLA-C*0701(0.80),HLA-C*0702(0.12),HLA-C*1203(0.50) HLA-C*1402(1.50),HLA-C*1502(1.40),HLA-E*0101(1.10) | Non-Toxin |
Number | Sequence | East Asia | Southeast Asia | West Africa | Central Africa | East Africa | South Africa | Average |
---|---|---|---|---|---|---|---|---|
1 | RVTGGVFLV | 49.22% 1 | 52.89% | 57.67% | 51.07% | 62.62% | 62.87% | 56.05% |
2 | VSIPWTHKV | 35.60% | 34.45% | 73.47% | 73.59% | 76.95% | 86.35% | 63.40% |
3 | YMDDVVLGA | 50.96% | 52.64% | 65.85% | 58.72% | 56.68% | 36.45% | 53.55% |
4 | GLSRYVARL | 24.26% | 25.49% | 32.03% | 34.10% | 32.15% | 25.07% | 28.85% |
5 | WILRGTSFV | 44.40% | 39.88% | 59.94% | 50.82% | 55.19% | 40.40% | 48.44% |
6 | HLYSHPIIL | 94.14% | 93.16% | 85.10% | 85.40% | 82.18% | 91.75% | 88.62% |
Number | Epitopes | Binding Energy | Fis 1 |
---|---|---|---|
1 | RVTGGVFLV | 0.28 | 1.09 |
2 | VSIPWTHKV | −5.33 | 1.50 |
3 | YMDDVVLGA | −3.26 | 0.53 |
4 | HLYSHPIIL | 3.75 | 0.64 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Lin, X.; Wang, X.; Zheng, L.; Lan, S.; Jin, S.; Ou, Z.; Wu, J. In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses 2017, 9, 112. https://doi.org/10.3390/v9050112
Zheng J, Lin X, Wang X, Zheng L, Lan S, Jin S, Ou Z, Wu J. In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses. 2017; 9(5):112. https://doi.org/10.3390/v9050112
Chicago/Turabian StyleZheng, Juzeng, Xianfan Lin, Xiuyan Wang, Liyu Zheng, Songsong Lan, Sisi Jin, Zhanfan Ou, and Jinming Wu. 2017. "In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein" Viruses 9, no. 5: 112. https://doi.org/10.3390/v9050112