Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats
Abstract
:1. Introduction
2. Cytokines
3. Impact of Viral Infections on Expression of Cytokine Genes
4. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interests
References
- Minardi da Cruz, J.C.; Singh, D.K.; Lamara, A.; Chebloune, Y. Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 2013, 5, 1867–1884. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G. Caprine arthritis encephalitis complex. In Recent Advances in Goat Diseases; Tempesta, M., Ed.; International Veterinary Information Service: Ithaca, NY, USA, 2007. [Google Scholar]
- Ravazzolo, A.P.; Nenci, C.; Vogt, H.R.; Waldvogel, A.; Obexer-Ruff, G.; Peterhans, E.; Bertoni, G. Viral load, organ distribution, histopathological lesions, and cytokine mRNA expression in goats infected with a molecular clone of the caprine arthritis encephalitis virus. Virology 2006, 350, 116–127. [Google Scholar] [CrossRef] [PubMed]
- White, S.N.; Knowles, D.P. Expanding possibilities for intervention against small ruminant lentiviruses through genetic marker-assisted selective breeding. Viruses 2013, 5, 1466–1499. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, A.; Bernales, I.; Luján, L.; de Andrés, D.; Amorena, B.; Jugo, B.M. Expression analysis of 13 ovine immune response candidate genes in Visna/Maedi disease progression. Comp. Immunol. Microb. 2013, 36, 405–413. [Google Scholar] [CrossRef] [PubMed]
- White, S.N.; Mousel, M.R.; Reynolds, J.O.; Lewis, G.S.; Herrmann-Hoesing, L.M. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus. Anim. Genet. 2009, 40, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Fluri, A.; Nenci, C.; Zahno, M.; Vogt, H.; Charan, S.; Busato, A.; Pancino, G.; Peterhans, E.; Obexer-Ruff, G.; Bertoni, G. The MHC-haplotype influence primary, but not memory, immune responses to an immunodominant peptide containing T- and B-cell epitopes of the caprine arthritis encephalitis virus gag protein. Vaccine 2006, 24, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Heaton, M.P.; Clawson, M.L.; Chitko-McKown, C.G.; Leymaster, K.A.; Smith, T.P.L.; Harhay, G.P.; White, S.N.; Herrmann-Hoesing, L.M.; Mousel, M.R.; Lewis, G.S.; et al. Reduced lentivirus susceptibility in sheep with TEMEM154 mutations. PLoS Genet. 2012, 8, e1002467. [Google Scholar] [CrossRef] [PubMed]
- Mikula, I.; Bhide, M.; Pastorekova, S.; Mikula, I. Characterization of ovine TLR7 and TLR8 protein coding regions, detection of mutations and Maedi Visna virus infection. Vet. Immunol. Immunopathol. 2010, 138, 51–59. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Mousel, M.; Herrmann-Hoesing, L.; Reynolds, J.; Leymaster, K.; Neibergs, H.; Lewis, G.; Knowles, D. Genome-wide association identifies multiple genomic regions associated with susceptibility to and the control of ovine lentivirus. PLoS ONE 2012, 7, e47829. [Google Scholar] [CrossRef] [PubMed]
- Kaba, J.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Bagnicka, E. Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J. Dairy Sci. 2012, 95, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Coico, R.; Sunshine, G. Cytokines. In Immunology: A Short Course, 7th ed.; Wiley Blackwell: Hoboken, NJ, USA, 2015; pp. 176–193. [Google Scholar]
- Gołąb, J.; Jakóbisiak, M.; Lasek, W.; Stokłosa, T. Cytokines. In Immunology; WydawnictwoNaukowe PWN: Warszawa, Poland, 2014; pp. 157–197. [Google Scholar]
- Koyama, S.; Ishii, K.J.; Coban, C.; Akira, S. Innate immune response to viral infection. Cytokine 2008, 43, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Genin, P.; Vaccaro, A.; Civas, A. The role of differential expression of human interferon-A genes in antiviral immunity. Cytokine Growth Factor Rev. 2009, 20, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; et al. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721. [Google Scholar] [CrossRef] [PubMed]
- Ware, C.F.; Santee, S.; Glass, A. Tumor necrosis factor-related ligands andreceptors. In The Cytokine Handbook, 3rd ed.; Thomson, A.W., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 549–592. [Google Scholar]
- De Veer, M.J.; Holko, M.; Frevel, M.; Walker, E.; Der, S.; Paranjape, J.M.; Silverman, R.H.; Williams, B.R.G. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 2001, 69, 912–920. [Google Scholar] [PubMed]
- Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [PubMed]
- Biron, C.A. Role of early cytokines, including alpha and beta interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol. 1998, 10, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Vilcek, J.; Sen, G.C. Interferons and other cytokines. In Fundamental Virology, 3rd ed.; Bernard, N.F., David, M.K., Peter, M.H., Eds.; Raven Press: Philadelphia, PA, USA, 1996; pp. 341–365. [Google Scholar]
- Liles, W.C.; van Voorhis, W.C. Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J. Infect. Dis. 1995, 172, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Clavel, G.; Thiolat, A.; Boissier, M-C. Interleukin newcomers creating new numbers in rheumatology: IL-34 to IL-38. Jt. Bone Spine 2013, 80, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef]
- Borghetti, P.; Morganti, M.; Saleri, R.; Ferrari, L.; de Angelis, E.; Cavalli, V.; Cacchioli, A.; Corradi, A.; Martelli, P. Innate pro-inflammatory and adaptive immune cytokines in PBMC of vaccinated and unvaccinated pigs naturally exposed to porcine circovirus type 2 (PCV2) infection vary with the occurrence of the disease and the viral burden. Vet. Microbiol. 2013, 163, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Ramshaw, I.A.; Ramsay, A.J.; Karupiah, G.; Rolph, M.S.; Mahalingam, S.; Ruby, J.C. Cytokines and immunity to viral infections. Immunol. Rev. 1997, 159, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Haeberle, H.A.; Kuziel, W.A.; Dieterich, H-J.; Casola, A.; Gatalica, Z.; Garofalo, R.P. Inducible expression of inflammatory chemokines in respiratory syncytial virus-infected mice: Role of MIP-1a in lung pathology. J. Virol. 2001, 75, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.X.; Sahu, G.K.; Braciale, V.L.; Cloyd, M.W. HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway. Int. Immunol. 2005, 17, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Nfon, C.K.; Marszal, P.; Zhang, S.; Weingartl, H.M. Innate immune response to Rift valley fever virus in goats. PLoS Negl. Trop. Dis. 2012, 6, e1623. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Rajak, K.K.; Balamurugan, V.; Sen, A.; Sudhakar, S.B.; Bhanuprakash, V.; Singh, R.K.; Pandey, A.B. Cytokines expression profile and kinetics of Peste des petits ruminants virus antigen and antibody in infected and vaccinated goats. Virol. Sin. 2012, 27, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Peluso, R.; Haase, A.; Stowring, L.; Edwards, M.; Ventura, P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 1985, 147, 231–236. [Google Scholar] [CrossRef]
- Bae, S.; Kang, D.; Hong, J.; Chung, B.; Choi, J.; Jhun, H.; Hong, K.; Kim, E.; Jo, S.; Lee, S.; et al. Characterizing antiviral mechanism of interleukin-32 and a circulating soluble isoform in viral infection. Cytokine 2012, 58, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of Visna-Maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microb. 2012, 35, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Conant, K.; Chen, P.; Scott, C.; Major, E.O. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J. Biol. Chem. 1999, 274, 17098–17102. [Google Scholar] [CrossRef] [PubMed]
- Imamichi, T.; Yang, J.; Huang, D.W.; Brann, T.W.; Fullmer, B.A.; Adelsberger, J.W.; Lempicki, R.A.; Baseler, M.W.; Lane, H.C. IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS 2008, 22, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Grundy, J.E.; Lawson, K.M.; MacCormac, L.P.; Fletcher, J.M.; Yong, K.L. Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C-X-C chemokines and transmit virus by direct neutrophil-endothelial cell contact and during neutrophil transendothelial migration. J. Infect. Dis. 1998, 177, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Cocchi, F.; DeVico, A.L.; Garzino-Demo, A.; Arya, S.K.; Gallo, R.C.; Lusso, P. Identification of RANTES, MIP-1a, and MIP-1b as the major HIV-suppressive factors produced by CD81 T cells. Science 1995, 270, 1811–1815. [Google Scholar] [CrossRef] [PubMed]
- Saltarelli, M.; Querat, G.; Konings, D.A.M.; Vigne, R.; Clements, J.E. Nucleotide-sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 1990, 179, 347–364. [Google Scholar] [CrossRef]
- Matikainen, S.; Pirhonen, J.; Miettinen, M.; Lehtonen, A.; Govenius-Vintola, C.; Sareneva, T.; Julkunen, I. Influenza A and Sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages. Virology 2000, 276, 138–347. [Google Scholar] [CrossRef] [PubMed]
- Julkunen, I.; Sareneva, T.; Pirhonen, J.; Ronni, T.; Melén, K.; Matikainen, S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev. 2001, 12, 171–180. [Google Scholar] [CrossRef]
- Parienti, J.J. Cytokine therapy or structured treatment interruptions in HIV infection: Which is best? Expert Opin. Pharmacother. 2002, 3, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Connolly, N.C.; Riddler, S.A.; Rinaldo, C.R. Proinflammatory cytokines in HIV disease—A review and rationale for new therapeutic approaches. AIDS Rev. 2005, 7, 168–180. [Google Scholar] [PubMed]
- Vandergeeten, C.; Fromentin, R.; Chomont, N. The role of cytokines in the establishment, persistence and eradication of the HIV reservoir. Cytokine Growth Factor Rev. 2012, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- De Valle, T.Z.; Billecocq, A.; Guillemot, L.; Alberts, R.; Gommet, C.; Geffers, R.; Calabrese, K.; Schughart, K.; Bouloy, M.; Montagutelli, X.; et al. A new mouse model reveals a critical role for host innate immunity in resistance to Rift valley fever. J. Immunol. 2010, 185, 6146–6156. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Czarniecki, C.W.; Peters, C.J. Recombinant human interferon-γ modulates Rift-valley fever virus-infection in the Rhesus-monkey. J. Interferon Res. 1991, 11, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Morrill, J.C.; Jennings, G.B.; Johnson, A.J.; Cosgriff, T.M.; Gibbs, P.H.; Peters, C.J. Pathogenesis of Rift-valley fever in Rhesus-monkeys—Role of interferon response. Arch. Virol. 1990, 110, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Blacklaws, B.A. Small ruminant lentiviruses and cross species transmission. In Lentivirus and Macrophages: Molecular and Cellular Interactions; Desport, M., Ed.; Caister Academic Press: Norfolk, UK, 2010; pp. 277–306. [Google Scholar]
- Zink, M.C.; Narayan, O. Lentivirus-induced interferon inhibits maturation and proliferation of monocytes and restricts the replication of caprine arthritis-encephalitis virus. J. Virol. 1989, 63, 2578–2584. [Google Scholar] [PubMed]
- Jarczak, J. Expression of Selected Genes of Goat Immune System in Response to the Presence of Caprine Arthritis Encephalitis Virus (CAEV). Ph.D. Thesis, Institute of Genetics and Animal Breeding PAS, Jastrzębiec, Poland, 2014. [Google Scholar]
- Pyrah, I.; Watt, N. Immunohistological study of the depressed cutaneous DTH response in sheep naturally infected with an ovine lentivirus (Maedi-Visna virus). Clin. Exp. Immunol. 1996, 104, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Torsteinsdottir, S.; Andresdottir, V.; Arnarson, H.; Petursson, G. Immune response to Maedi-Visna virus. Front. Biosci. 2007, 12, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Lechner, R.F.; Machado, J.; Bertoni, G.; Seow, H.F.; Dobbelaere, D.A.E.; Peterhans, E. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages. J. Virol. 1997, 71, 7488–7474. [Google Scholar] [PubMed]
- Lechner, F.; Vogt, H.R.; Seow, H.F.; Bertoni, G.; Cheevers, W.P.; von Bodungen, U.; Zurbriggen, A.; Peterhans, E. Expression of cytokine mRNA in lentivirus-induced arthritis. Am. J. Pathol. 1997, 151, 1053–1065. [Google Scholar] [PubMed]
- Nimmanapalli, R.; Sharmila, C.; Reddy, P.G. Immunomodulation of caprine lentiviral infection by interleukin-16. Comp. Immunol. Microb. 2010, 33, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, C.; Williams, J.W.; Reddy, P.G. Effect of caprine arthritis-encephalitis virus infection on expression of interleukin-16 in goats. Am. J. Vet. Res. 2002, 63, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Ma, F.; Quinn, M.; Xiang, S.H. Genome-wide search for host association factors during ovine progressive pneumonia virus infection. PLoS ONE 2016, 11, e0150344. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.G.; Hotzel, I.; Jasmer, D.P.; Davis, W.C.; Knowles, D. TNFα and GM-CSF-induced activation of the CAEV promoter is independent of AP-1. Virology 2006, 352, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; Russell, H.I.; Du, C.W. Effect of selected cytokines on the replication of Corynebacterium pseudotuberculosis and ovine lentivirus in pulmonary macrophages. Vet. Immunol. Immunopathol. 1994, 40, 31–47. [Google Scholar] [CrossRef]
- Tong-Starksen, S.E.; Sepp, T.; Pagtakhan, A.S. Activation of caprine arthritis-encephalitis virus long terminal repeat by gamma interferon. J. Virol. 1996, 70, 595–599. [Google Scholar] [PubMed]
- Hoshino, Y.; Nakata, K.; Hoshino, S.; Honda, Y.; Tse, D.B.; Shioda, T.; Rom, W.N.; Weiden, M. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J. Exp. Med. 2002, 195, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Takakura, H.; Mori, Y.; Tatsumi, M. Molecular cloning of caprine IL-6 cDNA and its expression in insect cells. Int. Arch. Allergy Immunol. 1997, 113, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Cheevers, W.P.; Beyer, J.C.; Knowles, D.P. Type 1 and type 2 cytokine gene expression by viral gp135 surface protein-activated T lymphocytes in caprine arthritis-encephalitis lentivirus infection. J. Virol. 1997, 71, 6259–6263. [Google Scholar] [PubMed]
- Snekvik, K.R.; Beyer, J.C.; Bertoni, G.; von Beust, B.R.; Baszler, T.V.; Palmer, G.H.; McElwain, T.F.; Cheevers, W.P. Characterization of caprine interleukin-4. Vet. Immunol. Immunop. 2001, 78, 219–229. [Google Scholar] [CrossRef]
- Hope, J.C.; Sopp, P.; Wattegedera, S.; Entrican, G. Tools and reagents for caprine immunology. Small Rumin. Res. 2012, 103, 23–27. [Google Scholar] [CrossRef]
- Beyer, J.C.; Stich, R.W.; Hoover, D.S.; Brown, W.C.; Cheevers, W.P. Cloning and expression of caprine interferon-gamma. Gene 1998, 210, 103–108. [Google Scholar] [CrossRef]
- Lerondelle, C.; Godet, M.; Mornex, J.F. Infection of primary cultures of mammary epithelial cells by small ruminant lentiviruses. Vet. Res. 1999, 30, 467–474. [Google Scholar] [PubMed]
- Georgsson, G.; Houwers, D.J.; Palsson, P.A.; Petursson, G. Expression of viral-antigens in the central nervous-system of visna-infected sheep—An immunohistochemical study on experimental visna induced by virus-strains of increased neurovirulence. Acta Neuropathol. 1989, 77, 299–306. [Google Scholar]
- Stowring, L.; Haase, A.T.; Petursson, G.; Georgsson, G.; Palsson, P.; Lutley, R.; Roos, R.; Szuchet, S. Detection of visna virus-antigens and RNA in glial-cells in foci of demyelination. Virology 1985, 141, 311–318. [Google Scholar] [CrossRef]
Gene Name/Gene Symbol | GenBank/UniProt Accession | Main Functions | Known Connection with CAEV | Source |
---|---|---|---|---|
Interleukin 1 alpha/IL-1α | D63350/P79161 | Produced by activated macrophages. Stimulates thymocyte proliferation by inducing IL-2 release. Stimulates B-cell maturation and proliferation. Stimulates fibroblast growth factor activity and release prostaglandin and collagenase from synovial cells. | Elevated expression in the blood of infected goats and the lungs of infected sheep | [49,51,61] |
Interleukin 1 beta/IL-1β | D63351.1/P79162 | As above. | Effect on VMV replication; elevated expression in the blood of infected goats on mRNA and protein levels, promote virus replication | [49,58,61] |
Interleukin 2/IL-2 | -/P36835 | Immune response, growth factor, for lymphocytes, stimulates proliferation and differentiation of NK cells, used in treatment in cancer and AIDS | Not responsive to CAEV gp135 surface protein (SU) stimulation of PBMC derived from either asymptomatic or arthritic goats, elevated expression in the lungs of infected sheep. | [16,51,62,63] |
Interleukin 4/IL-4 | -/P79155 | Participates in several B-cell activation processes. Co-stimulates DNA-synthesis. Induces the expression of class II MHC molecules on resting B-cells. Enhances the secretion and cell surface expression of IgE and IgG1. Regulates the expression of the low affinity Fc receptor for IgE (CD23) on lymphocytes and monocytes. | Varied expression between the goats, but does not correlate with viral load, increased expression in the lungs of infected sheep. | [3,51,64] |
Interleukin 5/IL-5 | -/B5LVN9 | Immune response, acts on proliferation, activation, differentiation, survival and adhesion of eosinophils. | - | [16,64] |
Interleukin 6/IL-6 | D86569.1/Q28319 | Potent induction of the acute phase response. Final differentiation of B-cells into Ig-secreting cells involved in lymphocyte and monocyte differentiation. Induces myeloma and plasmacytoma growth and nerve cell differentiation. Acts on B-cells, T-cells, hepatocytes, hematopoietic progenitor cells and cells of the CNS, as a myokine discharged into the bloodstream after muscle contraction, and increases the breakdown of fats and improves insulin resistance. | Elevated expression in the blood and synovial membranes of infected goats and in the microglia of infected sheep. | [49,51,52,61] |
Interleukin 8/IL-8 | -/- | Immune response, activates neutrophils, NK cells, T cells, basophils, GM-CSF. | Increased expression in macrophages infected with CAEV. | [16,52] |
Interleukin 10/IL-10 | DQ837159.1/Q8HY37 | Immune response, immunosuppressive effect, affects monocyte/macrophage functions, inhibits expressions of IL-1α, IL-1β, IL-6, IL-10, IL-12, IL-18, GM-CSF, G-CSF, TNF-α, MCP-1α, MCP-5, MIP-1α, MIP1-β, RANTES, IL-8, chemokine receptors. | Increased expression (2 to 11 fold) in goats with the highest proviral and viral RNA loads, increased expression in the lungs of infected sheep. | [3,16,51,64] |
Interleukin 12p35 subunit alpha precursor/IL-12p35 (IL-12A) | AF003542.1/O02814 | Acts as a growth factor for activated T and NK cells. Enhances the lytic activity of NK/lymphokine-activated killer cells. Stimulates the production of IFN-gamma by resting PBMC. | - | [64] |
Interleukin 12p40 subunit beta precursor/IL-12p40 (IL-12B) | AF007576.1/P68221 | Acts as a growth factor for activated T and NK cells. Enhances the lytic activity of NK/lymphokine-activated killer cells. Stimulates the production of IFN-gamma by resting PBMC. Associates with IL23A to form the IL-23 interleukin (acting with IL-17 in an acute response to infection in peripheral tissues). Activates the JAK-STAT signalling cascade (by binding to a heterodimeric receptor complex composed of IL12RB1 and IL23R). Possibly liable for autoimmune inflammatory diseases and tumor genesis. | Increased expression (2 to 11 fold) in goats with the highest proviral and viral RNA load. | [3,64] |
Interleukin 16/IL-16 | AF481158.1/D2SZG5 | Immune response, inhibits proliferation of T-cells, activates the release of TNF-α, IL1-β, and IL-15, inhibits IL-4 and IL-5 expression. | Increased expression (mRNA and protein level) in CAEV-infected goat blood and synovial membranes. May inhibit viral integration | [3,16,54,55,56,64] |
Interleukin 17A/IL-17A | -/D2XZ62 | Inflammatory response, upregulates the expression of pro-inflammatory cytokines, chemokines, and metalloproteases. | - | [64] |
Interleukin 18/IL-18 | AY605263.1/Q3ZT29 | Interferon-gamma-inducing factor, Increases natural killer cell activity in spleen cells that stimulate interferon gamma production in T-helper type I cells. | - | [64] |
Interferon alpha/IFN-α | FJ959074.1/C5IU72 | Defense response to virus. | Increased expression (2 to 11 fold) in goats with the highest proviral and viral RNA loads | [3,64] |
Interferon beta/IFN-β | -/K4JGW6 | Antiviral defence. | Similar level of transcript and protein level in the blood on infected and healthy goats | [64] |
Interferon gamma/IFN-γ | AY304501.1/P79154 | Produced by lymphocytes. Antiviral activity. Important immunoregulatory functions. Activates macrophages. Anti-proliferative effects on transformed cells. Increases the antiviral and antitumor effects of type I interferons. Increases CAEV LTR activity. | Elevated expression in the lungs of infected sheep, promotes virus replication in goats | [51,65] |
Tumour necrosis factor alpha/TNF-α | X14828.1/P13296 | Mainly secreted by macrophages. Binds to the major receptors for tumor necrosis factor (TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR). Possibly induces cell death of certain tumor cell lines. Causes fever by direct action or by stimulating interleukin-1 secretion. Induces cachexia. Possibly stimulates cell proliferation and induction of cell differentiation. Increases CAEV LTR activity | Elevated expression in the synovial membranes of infected goats and infected sheep microglia; promotes virus replication in goat, stimulates the monocytes in early response to infection | [51,52,57,61] |
Monocyte chemoattractant protein-1/MCP-1/CCL2 | XM_005693218.2/XP_005693275.1 | The key chemokines that regulate migration and infiltration of monocytes/macrophages | Elevated expression in infected culture of macrophages | [62] |
Granulocyte-Macrophage Colony Stimulating Factor/GM-CSF | DQ010419.1/AAY16326.1 | Controls the production, differentiation, and function of granulocytes and macrophages | Promotes virus replication | [57] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarczak, J.; Kaba, J.; Reczyńska, D.; Bagnicka, E. Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats. Viruses 2016, 8, 186. https://doi.org/10.3390/v8070186
Jarczak J, Kaba J, Reczyńska D, Bagnicka E. Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats. Viruses. 2016; 8(7):186. https://doi.org/10.3390/v8070186
Chicago/Turabian StyleJarczak, Justyna, Jarosław Kaba, Daria Reczyńska, and Emilia Bagnicka. 2016. "Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats" Viruses 8, no. 7: 186. https://doi.org/10.3390/v8070186
APA StyleJarczak, J., Kaba, J., Reczyńska, D., & Bagnicka, E. (2016). Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats. Viruses, 8(7), 186. https://doi.org/10.3390/v8070186