Universal Influenza Vaccines, a Dream to Be Realized Soon
Abstract
:1. Introduction
2. Conserved Antigens with Potential as Universal Influenza Vaccines
2.1. M2e: The Ectodomain of M2
Virus | Subtype | M2e sequence |
---|---|---|
Human virus M2e consensus | N/A | MSLLTEVETPIRNEWGCRCND |
A/Philippines/2/82 | H3N2 | MSLLTEVETPIRNEWGCRCND |
A/Puerto Rico/8/34 | H1N1 | MSLLTEVETPIRNEWGCRCNG |
A/California/04/09 | H1N1 | MSLLTEVETPTRSEWECRCSD |
A/Vietnam/1203/04 | H5N1 | MSLLTEVETPTRNEWECRCSD |
Year [ref] | Immunogen | Platform/Adjuvant | Animal model | Protection against viral challenge |
---|---|---|---|---|
1999 [42] | M2e-HBc VLPs | VLPs | Mouse | Partial protection with sickness |
2002 [41] | M2e-HBc VLPs or DNA/HBc VLPs | VLPs or DNA/VLPs | Pig | No protection |
2003 [48] | M2e | BSA | Rabbit | In vitro viral replication-inhibition observed |
2003 [30] | M2e-MAPs | MAP | Mouse | Weak protection |
2004 [14] | M2 peptide conjugate vaccine | KLH or OMPC | Mouse, ferret, and rhesus monkey | Protection in mouse and ferret challenges |
2004 [45] | M2e coupled to HBc | Protein with no adjuvant | Mouse | Weak protection, failed to protect mice from weight loss |
2004 [33] | Multiple M2e copies | GST | Mouse, Rabbit | Protected against lethal viral challenge |
2006 [43] | M2e-HBc | VLPs/CTA1-DD | Mouse | Protected against lethal challenge |
2006 [49] | M2eA | Liposomes | Mouse | Protected against lethal challenge |
2008 [44] | PapMV-CP-M2e | VLPs | Mouse | Protected against 4× LD50 WSN/33 strain |
2008 [34,35] | STF2.4×M2e | Flagellin fusion | Mouse, Phase I Clinical trial | Mice protected Safe and immunogenic in human use |
2008[50] | M2 | M2 coupled to RNA phage QβVLP, adjuvanted with CpG | Mouse | Protected against 4× LD50 PR8 strain |
2009 [51] | M2e-CD154 | Salmonella Enteritidis strains | Chicken | Protected against low pathogenic avian influenza (H7N2) but not high pathogenic avian influenza (H5N1) |
2010 [52] | M2e-core antigen (woodchuck hepatitis virus) | Salmonella Enteritidis strains | Mouse | Against low dose viral challenge with A/WSN/33 |
2010 [53] | Pam2Cys | Lipopeptide | Mouse | Weak protection |
2011[40] | Tetra-M2e | Nanoparticles | Chicken | Protection against low pathogenic avian influenza H5N2 |
2012 [54] | M2e-viral capsid protein fusion | VLPs | Mouse | Protected against 4× LD50 PR8 strain |
2012 [20,36] | 4.M2e-tFliC | VLPs | Mouse | Heterosubtypic protection |
2012 [37] | 4× M2e.HSP70c | 4× M2e.HSP70c | Mouse | Broad protection against H1, H3, H9 viruses |
2013 [38,39] | M2e × 5 | VLPs | Mouse | Broad protection |
2013 [22] | M2e-AuNP | Nanoparticles/CpG | Mouse | Heterosubtypic protection |
2013 [20] | Tetrameric M2e | VLPs | Mouse | Heterosubtypic protection |
2013 [21] | Tetrameric M2e | Nanoparticles | Mouse | Heterosubtypic protection |
2014 [16] | 4.M2e-tFliC | Microneedles | Mouse | Heterosubtypic protection |
2.2. HA Stalk Domain
3. Integrated Adjuvant/Delivery Platforms and Controlled Release Technology Can Contribute to the Development of Universal Influenza Vaccines
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Poland, G.A.; Jacobson, R.M.; Targonski, P.V. Avian and pandemic influenza: An overview. Vaccine 2007, 25, 3057–3061. [Google Scholar] [CrossRef]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality associated with influenza and respiratory syncytial virus in the united states. JAMA 2003, 289, 179–186. [Google Scholar] [CrossRef]
- Schwartz, B.; Hinman, A.; Abramson, J.; Strikas, R.A.; Allred, N.; Uyeki, T.; Orenstein, W. Universal influenza vaccination in the united states: Are we ready? Report of a meeting. J. Infect. Dis. 2006, 194, S147–S154. [Google Scholar] [CrossRef]
- Medina, R.A.; Garcia-Sastre, A. Influenza a viruses: New research developments. Nat. Rev. Microbiol. 2011, 9, 590–603. [Google Scholar] [CrossRef]
- Huber, V.C. Influenza vaccines: From whole virus preparations to recombinant protein technology. Expert Rev. Vaccine. 2013, 13, 31–42. [Google Scholar] [CrossRef]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; et al. New world bats harbor diverse influenza a viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef]
- Pica, N.; Palese, P. Toward a universal influenza virus vaccine: Prospects and challenges. Ann. Rev. Med. 2013, 64, 189–202. [Google Scholar] [CrossRef]
- Kasowski, E.J.; Garten, R.J.; Bridges, C.B. Influenza pandemic epidemiologic and virologic diversity: Reminding ourselves of the possibilities. Clin. Infect. Dis. 2011, 52, S44–S49. [Google Scholar] [CrossRef]
- Noah, D.L.; Noah, J.W. Adapting global influenza management strategies to address emerging viruses. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 305, L108–L117. [Google Scholar] [CrossRef]
- Carrat, F.; Flahault, A. Influenza vaccine: The challenge of antigenic drift. Vaccine 2007, 25, 6852–6862. [Google Scholar] [CrossRef]
- Shapshak, P.; Chiappelli, F.; Somboonwit, C.; Sinnott, J. The influenza pandemic of 2009: Lessons and implications. Mol. Diagn. Ther. 2011, 15, 63–81. [Google Scholar] [CrossRef]
- Mei, L.; Song, P.P.; Tang, Q.; Shan, K.; Tobe, R.G.; Selotlegeng, L.; Ali, A.H.; Cheng, Y.Y.; Xu, L.Z. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza a h5n1, h1n1, and h7n9 among humans. Biosci. Trends 2013, 7, 64–76. [Google Scholar]
- Gao, R.; Cao, B.; Hu, Y.; Feng, Z.; Wang, D.; Hu, W.; Chen, J.; Jie, Z.; Qiu, H.; Xu, K.; et al. Human infection with a novel avian-origin influenza a (h7n9) virus. N. Engl. J. Med. 2013, 368, 1888–1897. [Google Scholar] [CrossRef]
- Fan, J.; Liang, X.; Horton, M.S.; Perry, H.C.; Citron, M.P.; Heidecker, G.J.; Fu, T.M.; Joyce, J.; Przysiecki, C.T.; Keller, P.M.; et al. Preclinical study of influenza virus a m2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 2004, 22, 2993–3003. [Google Scholar] [CrossRef]
- Gerhard, W.; Mozdzanowska, K.; Zharikova, D. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis. 2006, 12, 569–574. [Google Scholar] [CrossRef]
- Wang, B.Z.; Gill, H.S.; He, C.; Ou, C.; Wang, L.; Wang, Y.C.; Feng, H.; Zhang, H.; Prausnitz, M.R.; Compans, R.W. Microneedle delivery of an m2e-tlr5 ligand fusion protein to skin confers broadly cross-protective influenza immunity. J. Contr. Release 2014, 178C, 1–7. [Google Scholar]
- Hefferon, K.L. Broadly neutralizing antibodies and the promise of universal vaccines: Where are we now? Immunotherapy 2014, 6, 51–57. [Google Scholar] [CrossRef]
- Wong, S.S.; Webby, R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev. 2013, 26, 476–492. [Google Scholar]
- Oxford, J.S. Towards a universal influenza vaccine: Volunteer virus challenge studies in quarantine to speed the development and subsequent licensing. Br. J. Clin. Pharmacol. 2013, 76, 210–216. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.C.; Feng, H.; Ahmed, T.; Compans, R.W.; Wang, B.Z. Virus-like particles containing the tetrameric ectodomain of influenza matrix protein 2 and flagellin induce heterosubtypic protection in mice. BioMed Res. Inter. 2013, 2013, 686549. [Google Scholar]
- Wang, L.; Hess, A.; Chang, T.Z.; Wang, Y.C.; Champion, J.A.; Compans, R.W.; Wang, B.Z. Nanoclusters self-assembled from conformation-stabilized influenza m2e as broadly cross-protective influenza vaccines. Nanomedicine 2013, 10, 473–482. [Google Scholar]
- Tao, W.; Ziemer, K.S.; Gill, H.S. Gold nanoparticle-m2e conjugate coformulated with cpg induces protective immunity against influenza a virus. Nanomedicine (Lond.) 2013, 9, 237–251. [Google Scholar]
- Petukhova, N.V.; Gasanova, T.V.; Stepanova, L.A.; Rusova, O.A.; Potapchuk, M.V.; Korotkov, A.V.; Skurat, E.V.; Tsybalova, L.M.; Kiselev, O.I.; Ivanov, P.A.; et al. Immunogenicity and protective efficacy of candidate universal influenza a nanovaccines produced in plants by tobacco mosaic virus-based vectors. Curr. Pharm. Des. 2013, 19, 5587–5600. [Google Scholar] [CrossRef]
- Ma, J.H.; Yang, F.R.; Yu, H.; Zhou, Y.J.; Li, G.X.; Huang, M.; Wen, F.; Tong, G. An m2e-based synthetic peptide vaccine for influenza a virus confers heterosubtypic protection from lethal virus challenge. Virol. J. 2013, 10, 227. [Google Scholar] [CrossRef]
- Leclerc, D.; Rivest, M.; Babin, C.; Lopez-Macias, C.; Savard, P. A novel m2e based flu vaccine formulation for dogs. PLoS One 2013, 8, e77084. [Google Scholar]
- Holsinger, L.J.; Lamb, R.A. Influenza virus m2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 1991, 183, 32–43. [Google Scholar] [CrossRef]
- Holsinger, L.J.; Nichani, D.; Pinto, L.H.; Lamb, R.A. Influenza a virus m2 ion channel protein: A structure-function analysis. J. Virol. 1994, 68, 1551–1563. [Google Scholar]
- Takeuchi, K.; Lamb, R.A. Influenza virus m2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J. Virol. 1994, 68, 911–919. [Google Scholar]
- Zebedee, S.L.; Richardson, C.D.; Lamb, R.A. Characterization of the influenza virus m2 integral membrane protein and expression at the infected-cell surface from cloned cdna. J. Virol. 1985, 56, 502–511. [Google Scholar]
- Mozdzanowska, K.; Feng, J.; Eid, M.; Kragol, G.; Cudic, M.; Otvos, L., Jr.; Gerhard, W. Induction of influenza type a virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003, 21, 2616–2626. [Google Scholar] [CrossRef]
- Schotsaert, M.; De Filette, M.; Fiers, W.; Saelens, X. Universal m2 ectodomain-based influenza a vaccines: Preclinical and clinical developments. Expert Rev. Vaccine. 2009, 8, 499–508. [Google Scholar] [CrossRef]
- Ito, T.; Gorman, O.T.; Kawaoka, Y.; Bean, W.J.; Webster, R.G. Evolutionary analysis of the influenza a virus m gene with comparison of the m1 and m2 proteins. J. Virol. 1991, 65, 5491–5498. [Google Scholar]
- Liu, W.; Peng, Z.; Liu, Z.; Lu, Y.; Ding, J.; Chen, Y.H. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza a virus m2 protein significantly enhances protective immunity. Vaccine 2004, 23, 366–371. [Google Scholar] [CrossRef]
- Huleatt, J.W.; Nakaar, V.; Desai, P.; Huang, Y.; Hewitt, D.; Jacobs, A.; Tang, J.; McDonald, W.; Song, L.; Evans, R.K.; et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza m2e to the tlr5 ligand flagellin. Vaccine 2008, 26, 201–214. [Google Scholar] [CrossRef]
- Turley, C.B.; Rupp, R.E.; Johnson, C.; Taylor, D.N.; Wolfson, J.; Tussey, L.; Kavita, U.; Stanberry, L.; Shaw, A. Safety and immunogenicity of a recombinant m2e-flagellin influenza vaccine (stf2.4xm2e) in healthy adults. Vaccine 2011, 29, 5145–5152. [Google Scholar] [CrossRef]
- Wang, B.Z.; Gill, H.S.; Kang, S.M.; Wang, L.; Wang, Y.C.; Vassilieva, E.V.; Compans, R.W. Enhanced influenza virus-like particle vaccines containing the extracellular domain of matrix protein 2 and a toll-like receptor ligand. Clin. Vaccine Immunol. 2012, 19, 1119–1125. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Dabaghian, M.; Tebianian, M.; Jazi, M.H. In contrast to conventional inactivated influenza vaccines, 4xm2e.Hsp70c fusion protein fully protected mice against lethal dose of h1, h3 and h9 influenza a isolates circulating in iran. Virology 2012, 430, 63–72. [Google Scholar] [CrossRef]
- Kim, M.C.; Song, J.M.; O, E.; Kwon, Y.M.; Lee, Y.J.; Compans, R.W.; Kang, S.M. Virus-like particles containing multiple m2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol. Ther. 2013, 21, 485–492. [Google Scholar] [CrossRef]
- Kim, M.C.; Lee, J.S.; Kwon, Y.M.; O, E.; Lee, Y.J.; Choi, J.G.; Wang, B.Z.; Compans, R.W.; Kang, S.M. Multiple heterologous m2 extracellular domains presented on virus-like particles confer broader and stronger m2 immunity than live influenza a virus infection. Antivir. Res. 2013, 99, 328–335. [Google Scholar] [CrossRef]
- Babapoor, S.; Neef, T.; Mittelholzer, C.; Girshick, T.; Garmendia, A.; Shang, H.; Khan, M.I.; Burkhard, P. A novel vaccine using nanoparticle platform to present immunogenic m2e against avian influenza infection. Influenza Res. Treat. 2011, 2011, 126794. [Google Scholar]
- Heinen, P.P.; Rijsewijk, F.A.; de Boer-Luijtze, E.A.; Bianchi, A.T. Vaccination of pigs with a DNA construct expressing an influenza virus m2-nucleoprotein fusion protein exacerbates disease after challenge with influenza a virus. J. Gen. Virol. 2002, 83, 1851–1859. [Google Scholar]
- Neirynck, S.; Deroo, T.; Saelens, X.; Vanlandschoot, P.; Jou, W.M.; Fiers, W. A universal influenza a vaccine based on the extracellular domain of the m2 protein. Nat. Med. 1999, 5, 1157–1163. [Google Scholar] [CrossRef]
- De Filette, M.; Fiers, W.; Martens, W.; Birkett, A.; Ramne, A.; Lowenadler, B.; Lycke, N.; Jou, W.M.; Saelens, X. Improved design and intranasal delivery of an m2e-based human influenza a vaccine. Vaccine 2006, 24, 6597–6601. [Google Scholar] [CrossRef]
- Denis, J.; Acosta-Ramirez, E.; Zhao, Y.; Hamelin, M.E.; Koukavica, I.; Baz, M.; Abed, Y.; Savard, C.; Pare, C.; Lopez Macias, C.; et al. Development of a universal influenza a vaccine based on the m2e peptide fused to the papaya mosaic virus (papmv) vaccine platform. Vaccine 2008, 26, 3395–3403. [Google Scholar] [CrossRef]
- Jegerlehner, A.; Schmitz, N.; Storni, T.; Bachmann, M.F. Influenza a vaccine based on the extracellular domain of m2: Weak protection mediated via antibody-dependent nk cell activity. J. Immunol. 2004, 172, 5598–5605. [Google Scholar] [CrossRef]
- Talbot, H.K.; Rock, M.T.; Johnson, C.; Tussey, L.; Kavita, U.; Shanker, A.; Shaw, A.R.; Taylor, D.N. Immunopotentiation of trivalent influenza vaccine when given with vax102, a recombinant influenza m2e vaccine fused to the tlr5 ligand flagellin. PLoS One 2010, 5, e14442. [Google Scholar]
- Hikono, H.; Miyazaki, A.; Mase, M.; Inoue, M.; Hasegawa, M.; Saito, T. Induction of a cross-reactive antibody response to influenza virus m2 antigen in pigs by using a sendai virus vector. Vet. Immunol. Immunopathol. 2012, 146, 92–96. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Chen, Y.H. N-terminus of m2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol. Med. Microbiol. 2003, 35, 141–146. [Google Scholar] [CrossRef]
- Ernst, W.A.; Kim, H.J.; Tumpey, T.M.; Jansen, A.D.; Tai, W.; Cramer, D.V.; Adler-Moore, J.P.; Fujii, G. Protection against h1, h5, h6 and h9 influenza a infection with liposomal matrix 2 epitope vaccines. Vaccine 2006, 24, 5158–5168. [Google Scholar] [CrossRef]
- Bessa, J.; Schmitz, N.; Hinton, H.J.; Schwarz, K.; Jegerlehner, A.; Bachmann, M.F. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: Implications for vaccine design. Euro. J. Immunol. 2008, 38, 114–126. [Google Scholar]
- Layton, S.L.; Kapczynski, D.R.; Higgins, S.; Higgins, J.; Wolfenden, A.D.; Liljebjelke, K.A.; Bottje, W.G.; Swayne, D.; Berghman, L.R.; Kwon, Y.M.; et al. Vaccination of chickens with recombinant salmonella expressing m2e and cd154 epitopes increases protection and decreases viral shedding after low pathogenic avian influenza challenge. Poult. Sci. 2009, 88, 2244–2252. [Google Scholar] [CrossRef]
- Ameiss, K.; Ashraf, S.; Kong, W.; Pekosz, A.; Wu, W.H.; Milich, D.; Billaud, J.N.; Curtiss, R., 3rd. Delivery of woodchuck hepatitis virus-like particle presented influenza m2e by recombinant attenuated salmonella displaying a delayed lysis phenotype. Vaccine 2010, 28, 6704–6713. [Google Scholar] [CrossRef]
- Pejoski, D.; Zeng, W.; Rockman, S.; Brown, L.E.; Jackson, D.C. A lipopeptide based on the m2 and ha proteins of influenza a viruses induces protective antibody. Immunol. Cell Biol. 2010, 88, 605–611. [Google Scholar] [CrossRef]
- Schmitz, N.; Beerli, R.R.; Bauer, M.; Jegerlehner, A.; Dietmeier, K.; Maudrich, M.; Pumpens, P.; Saudan, P.; Bachmann, M.F. Universal vaccine against influenza virus: Linking tlr signaling to anti-viral protection. Euro. J. Immunol. 2012, 42, 863–869. [Google Scholar] [CrossRef]
- Krystal, M.; Elliott, R.M.; Benz, E.W., Jr.; Young, J.F.; Palese, P. Evolution of influenza a and b viruses: Conservation of structural features in the hemagglutinin genes. Proc. Natl. Acad. Sci. USA 1982, 79, 4800–4804. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Bhabha, G.; Elsliger, M.A.; Friesen, R.H.; Jongeneelen, M.; Throsby, M.; Goudsmit, J.; Wilson, I.A. Antibody recognition of a highly conserved influenza virus epitope. Science 2009, 324, 246–251. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Friesen, R.H.; Bhabha, G.; Kwaks, T.; Jongeneelen, M.; Yu, W.; Ophorst, C.; Cox, F.; Korse, H.J.; Brandenburg, B.; et al. A highly conserved neutralizing epitope on group 2 influenza a viruses. Science 2011, 333, 843–850. [Google Scholar] [CrossRef]
- Corti, D.; Voss, J.; Gamblin, S.J.; Codoni, G.; Macagno, A.; Jarrossay, D.; Vachieri, S.G.; Pinna, D.; Minola, A.; Vanzetta, F.; et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza a hemagglutinins. Science 2011, 333, 850–856. [Google Scholar] [CrossRef]
- Russell, C.J. Stalking influenza diversity with a universal antibody. N. Engl. J. Med. 2011, 365, 1541–1542. [Google Scholar] [CrossRef]
- Pica, N.; Hai, R.; Krammer, F.; Wang, T.T.; Maamary, J.; Eggink, D.; Tan, G.S.; Krause, J.C.; Moran, T.; Stein, C.R.; et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal h1n1 viruses. Proc. Natl. Acad. Sci. USA 2012, 109, 2573–2578. [Google Scholar] [CrossRef]
- Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Gall, J.G.; Whittle, J.R.; Boyington, J.C.; Nabel, G.J. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci. Transl. Med. 2012, 4, 147ra114. [Google Scholar]
- Corti, D.; Suguitan, A.L., Jr.; Pinna, D.; Silacci, C.; Fernandez-Rodriguez, B.M.; Vanzetta, F.; Santos, C.; Luke, C.J.; Torres-Velez, F.J.; Temperton, N.J.; et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 2010, 120, 1663–1673. [Google Scholar] [CrossRef] [Green Version]
- Sui, J.; Hwang, W.C.; Perez, S.; Wei, G.; Aird, D.; Chen, L.M.; Santelli, E.; Stec, B.; Cadwell, G.; Ali, M.; et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza a viruses. Nat. Struct. Mol. Biol. 2009, 16, 265–273. [Google Scholar] [CrossRef]
- Wang, T.T.; Tan, G.S.; Hai, R.; Pica, N.; Ngai, L.; Ekiert, D.C.; Wilson, I.A.; Garcia-Sastre, A.; Moran, T.M.; Palese, P. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 2010, 107, 18979–18984. [Google Scholar] [CrossRef]
- Limberis, M.P.; Adam, V.S.; Wong, G.; Gren, J.; Kobasa, D.; Ross, T.M.; Kobinger, G.P.; Tretiakova, A.; Wilson, J.M. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci. Transl. Med. 2013, 5, 187ra172. [Google Scholar]
- Steel, J.; Lowen, A.C.; Wang, T.T.; Yondola, M.; Gao, Q.; et al. An influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 2010, 1, e00018–00010. [Google Scholar]
- Bommakanti, G.; Citron, M.P.; Hepler, R.W.; Callahan, C.; Heidecker, G.J.; Najar, T.A.; Lu, X.; Joyce, J.G.; Shiver, J.W.; Casimiro, D.R.; et al. Design of an ha2-based escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl. Acad. Sci. USA 2010, 107, 13701–13706. [Google Scholar] [CrossRef]
- Krammer, F.; Pica, N.; Hai, R.; Margine, I.; Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 2013, 87, 6542–6550. [Google Scholar] [CrossRef]
- Hai, R.; Krammer, F.; Tan, G.S.; Pica, N.; Eggink, D.; Maamary, J.; Margine, I.; Albrecht, R.A.; Palese, P. Influenza viruses expressing chimeric hemagglutinins: Globular head and stalk domains derived from different subtypes. J. Virol. 2012, 86, 5774–5781. [Google Scholar] [CrossRef]
- Krammer, F.; Margine, I.; Hai, R.; Flood, A.; Hirsh, A.; Tsvetnitsky, V.; Chen, D.; Palese, P. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from h7n9 challenge. J. Virol. 2013, 88, 2340–2343. [Google Scholar]
- Margine, I.; Krammer, F.; Hai, R.; Heaton, N.S.; Tan, G.S.; Andrews, S.A.; Runstadler, J.A.; Wilson, P.C.; Albrecht, R.A.; Garcia-Sastre, A.; et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza a viruses. J. Virol. 2013, 87, 10435–10446. [Google Scholar] [CrossRef]
- Wei, C.J.; Boyington, J.C.; McTamney, P.M.; Kong, W.P.; Pearce, M.B.; Xu, L.; Andersen, H.; Rao, S.; Tumpey, T.M.; Yang, Z.Y.; et al. Induction of broadly neutralizing h1n1 influenza antibodies by vaccination. Science 2010, 329, 1060–1064. [Google Scholar] [CrossRef]
- Eggink, D.; Goff, P.H.; Palese, P. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyper-glycosylation of the globular head domain. J. Virol. 2013, 88, 699–704. [Google Scholar] [CrossRef]
- Chen, J.R.; Yu, Y.H.; Tseng, Y.C.; Chiang, W.L.; Chiang, M.F.; Ko, Y.A.; Chiu, Y.K.; Ma, H.H.; Wu, C.Y.; Jan, J.T.; et al. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc. Natl. Acad. Sci. USA 2014, 111, 2476–2481. [Google Scholar] [CrossRef]
- To, K.K.; Zhang, A.J.; Hung, I.F.; Xu, T.; Ip, W.C.; Wong, R.T.; Ng, J.C.; Chan, J.F.; Chan, K.H.; Yuen, K.Y. High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. Clin. Vaccine immunol. 2012, 19, 1012–1018. [Google Scholar] [CrossRef]
- Jolly, P.E.; Huso, D.; Hart, G.; Narayan, O. Modulation of lentivirus replication by antibodies. Non-neutralizing antibodies to caprine arthritis-encephalitis virus enhance early stages of infection in macrophages, but do not cause increased production of virions. J. Gen. Virol. 1989, 70, 2221–2226. [Google Scholar] [CrossRef]
- Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 2010, 328, 745–748. [Google Scholar] [CrossRef]
- Halstead, S.B.; Mahalingam, S.; Marovich, M.A.; Ubol, S.; Mosser, D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: Disease regulation by immune complexes. Lancet Infect. Dis. 2010, 10, 712–722. [Google Scholar] [CrossRef]
- Iankov, I.D.; Penheiter, A.R.; Griesmann, G.E.; Carlson, S.K.; Federspiel, M.J.; Galanis, E. Neutralization capacity of measles virus h protein specific igg determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res. 2013, 172, 15–23. [Google Scholar] [CrossRef]
- Khurana, S.; Loving, C.L.; Manischewitz, J.; King, L.R.; Gauger, P.C.; Henningson, J.; Vincent, A.L.; Golding, H. Vaccine-induced anti-ha2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci. Transl. Med. 2013, 5, 200ra114. [Google Scholar]
- Fiers, W.; De Filette, M.; El Bakkouri, K.; Schepens, B.; Roose, K.; Schotsaert, M.; Birkett, A.; Saelens, X. M2e-based universal influenza a vaccine. Vaccine 2009, 27, 6280–6283. [Google Scholar] [CrossRef]
- Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.J.; Lalvani, A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 2013, 19, 1305–1312. [Google Scholar] [CrossRef]
- Atsmon, J.; Kate-Ilovitz, E.; Shaikevich, D.; Singer, Y.; Volokhov, I.; Haim, K.Y.; Ben-Yedidia, T. Safety and immunogenicity of multimeric-001--a novel universal influenza vaccine. J. Clin. Immunol. 2012, 32, 595–603. [Google Scholar] [CrossRef]
- Schneemann, A.; Speir, J.A.; Tan, G.S.; Khayat, R.; Ekiert, D.C.; Matsuoka, Y.; Wilson, I.A. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J. Virol. 2012, 86, 11686–11697. [Google Scholar] [CrossRef]
- Pushko, P.; Pearce, M.B.; Ahmad, A.; Tretyakova, I.; Smith, G.; Belser, J.A.; Tumpey, T.M. Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine 2011, 29, 5911–5918. [Google Scholar] [CrossRef]
- Haynes, J.R.; Dokken, L.; Wiley, J.A.; Cawthon, A.G.; Bigger, J.; Harmsen, A.G.; Richardson, C. Influenza-pseudotyped gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine 2009, 27, 530–541. [Google Scholar] [CrossRef]
- Kingsman, S.M.; Kingsman, A.J. Polyvalent recombinant antigens: A new vaccine strategy. Vaccine 1988, 6, 304–306. [Google Scholar] [CrossRef]
- Roldao, A.; Mellado, M.C.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccine. 2010, 9, 1149–1176. [Google Scholar] [CrossRef]
- Jegerlehner, A.; Zabel, F.; Langer, A.; Dietmeier, K.; Jennings, G.T.; Saudan, P.; Bachmann, M.F. Bacterially produced recombinant influenza vaccines based on virus-like particles. PLoS One 2013, 8, e78947. [Google Scholar]
- Skibinski, D.A.; Hanson, B.J.; Lin, Y.; von Messling, V.; Jegerlehner, A.; Tee, J.B.; Chye de, H.; Wong, S.K.; Ng, A.A.; Lee, H.Y.; et al. Enhanced neutralizing antibody titers and th1 polarization from a novel escherichia coli derived pandemic influenza vaccine. PLoS One 2013, 8, e76571. [Google Scholar] [CrossRef]
- Buonaguro, L.; Tornesello, M.L.; Buonaguro, F.M. Virus-like particles as particulate vaccines. Curr. HIV Res. 2010, 8, 299–309. [Google Scholar] [CrossRef]
- Grgacic, E.V.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef]
- Young, K.R.; McBurney, S.P.; Karkhanis, L.U.; Ross, T.M. Virus-like particles: Designing an effective aids vaccine. Methods 2006, 40, 98–117. [Google Scholar] [CrossRef]
- Wang, B.Z.; Quan, F.S.; Kang, S.M.; Bozja, J.; Skountzou, I.; Compans, R.W. Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of immune responses. J. Virol. 2008, 82, 11813–11823. [Google Scholar] [CrossRef]
- Wang, B.Z.; Liu, W.; Kang, S.M.; Alam, M.; Huang, C.; Ye, L.; Sun, Y.; Li, Y.; Kothe, D.L.; Pushko, P.; et al. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J. Virol. 2007, 81, 10869–10878. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Lutz, M.B.; Layton, G.T.; Harris, S.J.; Fehr, T.; Rescigno, M.; Ricciardi-Castagnoli, P. Dendritic cells process exogenous viral proteins and virus-like particles for class i presentation to cd8+ cytotoxic t lymphocytes. Eur. J. Immunol. 1996, 26, 2595–2600. [Google Scholar] [CrossRef]
- Ruedl, C.; Storni, T.; Lechner, F.; Bachi, T.; Bachmann, M.F. Cross-presentation of virus-like particles by skin-derived cd8(-) dendritic cells: A dispensable role for tap. Eur. J. Immunol. 2002, 32, 818–825. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, R.; He, Y. A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies. Eur. J. Pharm. Biopharm. 2010, 76, 336–341. [Google Scholar] [CrossRef]
- Jin, T.; Zhu, J.; Wu, F.; Yuan, W.; Geng, L.L.; Zhu, H. Preparing polymer-based sustained-release systems without exposing proteins to water-oil or water-air interfaces and cross-linking reagents. J. Contr. Release 2008, 128, 50–59. [Google Scholar] [CrossRef]
- O'Hagan, D.T.; Valiante, N.M. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2003, 2, 727–735. [Google Scholar] [CrossRef]
- Galloway, A.L.; Murphy, A.; DeSimone, J.M.; Di, J.; Herrmann, J.P.; Hunter, M.E.; Kindig, J.P.; Malinoski, F.J.; Rumley, M.A.; Stoltz, D.M.; et al. Development of a nanoparticle-based influenza vaccine using the print technology. Nanomedicine 2013, 9, 523–531. [Google Scholar] [CrossRef]
- Tan, M.; Jiang, X. Norovirus p particle: A subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond.) 2012, 7, 889–897. [Google Scholar] [CrossRef]
- Langer, K.; Anhorn, M.G.; Steinhauser, I.; Dreis, S.; Celebi, D.; Schrickel, N.; Faust, S.; Vogel, V. Human serum albumin (hsa) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 2008, 347, 109–117. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing h1n1 antibodies. Nature 2013, 499, 102–106. [Google Scholar] [CrossRef]
- Yamashita, I.; Iwahori, K.; Kumagai, S. Ferritin in the field of nanodevices. Biochim. Biophys. Acta 2010, 1800, 846–857. [Google Scholar] [CrossRef]
- Alarcon, J.B.; Hartley, A.W.; Harvey, N.G.; Mikszta, J.A. Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol. 2007, 14, 375–381. [Google Scholar] [CrossRef]
- Ansaldi, F.; Canepa, P.; Ceravolo, A.; Valle, L.; de Florentiis, D.; Oomen, R.; Vogel, F.R.; Denis, M.; Samson, S.I.; Icardi, G. Intanza((r)) 15 mcg intradermal influenza vaccine elicits cross-reactive antibody responses against heterologous a(h3n2) influenza viruses. Vaccine 2012, 30, 2908–2913. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef]
- del Pilar Martin, M.; Weldon, W.C.; Zarnitsyn, V.G.; Koutsonanos, D.G.; Akbari, H.; Skountzou, I.; Jacob, J.; Prausnitz, M.R.; Compans, R.W. Local response to microneedle-based influenza immunization in the skin. MBio 2012, 3, e00012–00012. [Google Scholar]
- Kim, Y.C.; Quan, F.S.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J. Contr. Release 2010, 142, 187–195. [Google Scholar] [CrossRef]
- Quan, F.S.; Kim, Y.C.; Vunnava, A.; Yoo, D.G.; Song, J.M.; Prausnitz, M.R.; Compans, R.W.; Kang, S.M. Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J. Virol. 2010, 84, 7760–7769. [Google Scholar] [CrossRef]
- Weldon, W.C.; Martin, M.P.; Zarnitsyn, V.; Wang, B.; Koutsonanos, D.; Skountzou, I.; Prausnitz, M.R.; Compans, R.W. Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin. Vaccine immunol. 2011, 18, 647–654. [Google Scholar] [CrossRef]
- Kim, Y.C.; Yoo, D.G.; Compans, R.W.; Kang, S.M.; Prausnitz, M.R. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J. Contr. Release 2013, 172, 579–588. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, H.; Wang, L.; Compans, R.W.; Wang, B.-Z. Universal Influenza Vaccines, a Dream to Be Realized Soon. Viruses 2014, 6, 1974-1991. https://doi.org/10.3390/v6051974
Zhang H, Wang L, Compans RW, Wang B-Z. Universal Influenza Vaccines, a Dream to Be Realized Soon. Viruses. 2014; 6(5):1974-1991. https://doi.org/10.3390/v6051974
Chicago/Turabian StyleZhang, Han, Li Wang, Richard W. Compans, and Bao-Zhong Wang. 2014. "Universal Influenza Vaccines, a Dream to Be Realized Soon" Viruses 6, no. 5: 1974-1991. https://doi.org/10.3390/v6051974