Non-Retroviral Fossils in Vertebrate Genomes
Abstract
:1. Molecular Fossils of Ancient Viruses
2. Discovery of Non-Retroviral Virus-like Elements
2.1. Endogenous RNA Virus-like Elements
2.2. Endogenous DNA Virus-like Elements
2.3. Endogenous RT-DNA Virus-like Elements
3. Non-Retroviral Integration
3.1. Integration of Extant RNA Viruses
3.2. Integration of Ancient RNA Viruses
3.3. Integration of Extant DNA Viruses
3.4. Integration of Ancient DNA Viruses
3.5. Integration of Extant RT-DNA Viruses
3.6. Integration of Ancient RT-DNA Viruses
4. Perspective
Acknowledgments
Conflict of Interest
References and Notes
- Jern, P.; Coffin, J.M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 2008, 42, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [PubMed]
- Mouse Genome Sequencing Consortium; Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef]
- Stoye, J.P. Fv1, the mouse retrovirus resistance gene. Rev. Sci. Tech. 1998, 17, 269–277. [Google Scholar] [CrossRef]
- Mi, S.; Lee, X.; Li, X.; Veldman, G.M.; Finnerty, H.; Racie, L.; LaVallie, E.; Tang, X.Y.; Edouard, P.; Howes, S.; Keith, J.C., Jr.; McCoy, J.M. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000, 403, 785–789. [Google Scholar] [CrossRef]
- Blaise, S.; de Parseval, N.; Benit, L.; Heidmann, T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13013–13018. [Google Scholar] [CrossRef]
- Dupressoir, A.; Marceau, G.; Vernochet, C.; Benit, L.; Kanellopoulos, C.; Sapin, V.; Heidmann, T. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 725–730. [Google Scholar] [CrossRef]
- Dupressoir, A.; Vernochet, C.; Bawa, O.; Harper, F.; Pierron, G.; Opolon, P.; Heidmann, T. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 12127–12132. [Google Scholar] [CrossRef]
- Zhdanov, V.M. Integration of viral genomes. Nature 1975, 256, 471–473. [Google Scholar] [CrossRef]
- Klenerman, P.; Hengartner, H.; Zinkernagel, R.M. A non-retroviral RNA virus persists in DNA form. Nature 1997, 390, 298–301. [Google Scholar] [CrossRef]
- Geuking, M.B.; Weber, J.; Dewannieux, M.; Gorelik, E.; Heidmann, T.; Hengartner, H.; Zinkernagel, R.M.; Hangartner, L. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science 2009, 323, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Horie, M.; Honda, T.; Suzuki, Y.; Kobayashi, Y.; Daito, T.; Oshida, T.; Ikuta, K.; Jern, P.; Gojobori, T.; Coffin, J.M.; Tomonaga, K. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 2010, 463, 84–87. [Google Scholar] [CrossRef]
- Belyi, V.A.; Levine, A.J.; Skalka, A.M. Unexpected inheritance: Multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 2010, 6, e1001030. [Google Scholar] [CrossRef] [PubMed]
- Katzourakis, A.; Gifford, R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010, 6, e1001191. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, K.; Kobayashi, T.; Ikuta, K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 2002, 4, 491–500. [Google Scholar] [CrossRef]
- Gonzalez-Dunia, D.; Cubitt, B.; de la Torre, J.C. Mechanism of Borna disease virus entry into cells. J. Virol. 1998, 72, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Horie, M.; Daito, T.; Ikuta, K.; Tomonaga, K. Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J. Virol. 2009, 83, 12622–12625. [Google Scholar] [CrossRef]
- Clemente, R.; Sisman, E.; Aza-Blanc, P.; de la Torre, J.C. Identification of host factors involved in borna disease virus cell entry through a small interfering RNA functional genetic screen. J. Virol. 2010, 84, 3562–3575. [Google Scholar] [CrossRef]
- Taylor, D.J.; Leach, R.W.; Bruenn, J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 2010, 10, 193. [Google Scholar] [CrossRef]
- Watanabe, S.; Noda, T.; Kawaoka, Y. Functional mapping of the nucleoprotein of Ebola virus. J. Virol. 2006, 80, 3743–3751. [Google Scholar] [CrossRef]
- Shi, W.; Huang, Y.; Sutton-Smith, M.; Tissot, B.; Panico, M.; Morris, H.R.; Dell, A.; Haslam, S.M.; Boyington, J.; Graham, B.S.; Yang, Z.Y.; Nabel, G.J. A filovirus-unique region of Ebola virus nucleoprotein confers aberrant migration and mediates its incorporation into virions. J. Virol. 2008, 82, 6190–6199. [Google Scholar] [CrossRef] [PubMed]
- Mihindukulasuriya, K.A.; Nguyen, N.L.; Wu, G.; Huang, H.V.; da Rosa, A.P.; Popov, V.L.; Tesh, R.B.; Wang, D. Nyamanini and midway viruses define a novel taxon of RNA viruses in the order Mononegavirales. J. Virol. 2009, 83, 5109–5116. [Google Scholar] [CrossRef] [PubMed]
- de Lamballerie, X.; Crochu, S.; Billoir, F.; Neyts, J.; de Micco, P.; Holmes, E.C.; Gould, E.A. Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. J. Gen. Virol. 2002, 83, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Horie, M.; Tomonaga, K.; Suzuki, Y. No evidence for natural selection on endogenous Borna-like nucleoprotein elements after divergence of Old World and New World monkeys. PLoS One 2011, 6, e24403. [Google Scholar] [CrossRef] [PubMed]
- Geib, T.; Sauder, C.; Venturelli, S.; Hassler, C.; Staeheli, P.; Schwemmle, M. Selective virus resistance conferred by expression of Borna disease virus nucleocapsid components. J. Virol. 2003, 77, 4283–4290. [Google Scholar] [CrossRef]
- Rauer, M.; Gotz, J.; Schuppli, D.; Staeheli, P.; Hausmann, J. Transgenic mice expressing the nucleoprotein of Borna disease virus in either neurons or astrocytes: Decreased susceptibility to homotypic infection and disease. J. Virol. 2004, 78, 3621–3632. [Google Scholar] [CrossRef]
- Ewing, R.M.; Chu, P.; Elisma, F.; Li, H.; Taylor, P.; Climie, S.; McBroom-Cerajewski, L.; Robinson, M.D.; O’Connor, L.; Li, M.; et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 2007, 3, 89. [Google Scholar] [CrossRef]
- Belyi, V.A.; Levine, A.J.; Skalka, A.M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: The parvoviridae and circoviridae are more than 40 to 50 million years old. J. Virol. 2010, 84, 12458–12462. [Google Scholar] [CrossRef]
- Kapoor, A.; Simmonds, P.; Lipkin, W.I. Discovery and characterization of mammalian endogenous parvoviruses. J. Virol. 2010, 84, 12628–12635. [Google Scholar] [CrossRef]
- Gilbert, C.; Feschotte, C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol. 2010, 8, e1000495. [Google Scholar] [CrossRef]
- Maestre, J.; Tchenio, T.; Dhellin, O.; Heidmann, T. mRNA retroposition in human cells: Processed pseudogene formation. EMBO J. 1995, 14, 6333–6338. [Google Scholar] [CrossRef]
- Esnault, C.; Maestre, J.; Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 2000, 24, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Feschotte, C. Virology: Bornavirus enters the genome. Nature 2010, 463, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Tomonaga, K. Living fossil or evolving virus? EMBO Rep. 2010, 11, 327. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Hattori, M.; Yada, T.; Gojobori, T.; Sakaki, Y.; Okada, N. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol. 2003, 4, R74. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.H. Adeno-associated virus integration: Virus versus vector. Gene Ther. 2008, 15, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.G.; Petek, L.M.; Russell, D.W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 2004, 36, 767–773. [Google Scholar] [CrossRef]
- Mehrle, S.; Rohde, V.; Schlehofer, J.R. Evidence of chromosomal integration of AAV DNA in human testis tissue. Virus Genes 2004, 28, 61–69. [Google Scholar] [CrossRef]
- Hendrie, P.C.; Hirata, R.K.; Russell, D.W. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J. Virol. 2003, 77, 13136–13145. [Google Scholar] [CrossRef]
- Arbuckle, J.H.; Medveczky, M.M.; Luka, J.; Hadley, S.H.; Luegmayr, A.; Ablashi, D.; Lund, T.C.; Tolar, J.; De Meirleir, K.; Montoya, J.G.; Komaroff, A.L.; Ambros, P.F.; Medveczky, P.G. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5563–5568. [Google Scholar] [CrossRef]
- Daibata, M.; Taguchi, T.; Nemoto, Y.; Taguchi, H.; Miyoshi, I. Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 1999, 94, 1545–1549. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Tanaka-Taya, K.; Satoh, H.; Aisa, Y.; Yamazaki, R.; Kato, J.; Ikeda, Y.; Okamoto, S. Transmission of chromosomally integrated human herpesvirsus 6 (HHV-6) variant A from a parent to children leading to misdiagnosis of active HHV-6 infection. Transpl. Infect. Dis. 2009, 11, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Bill, C.A.; Summers, J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11135–11140. [Google Scholar] [CrossRef]
- Huang, J.M.; Huang, T.H.; Qiu, H.Y.; Fang, X.W.; Zhuang, T.G.; Liu, H.X.; Wang, Y.H.; Deng, L.Z.; Qiu, J.W. Effects of hepatitis B virus infection on human sperm chromosomes. World J. Gastroenterol. 2003, 9, 736–740. [Google Scholar] [CrossRef]
- Koonin, E.V. Taming of the shrewd: Novel eukaryotic genes from RNA viruses. BMC Biol. 2010, 8, 2. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Jiang, D.; Li, G.; Xie, J.; Cheng, J.; Peng, Y.; Ghabrial, S.A.; Yi, X. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 2010, 84, 11876–11887. [Google Scholar] [CrossRef]
(+) ssRNA | (−) ssRNA | ||||||||||||
TBV | Bornavirus | Filovirus | NV | ||||||||||
NS3 | N | M | G | L | NP | VP35 | G | L | L | ||||
Anthropoid | + | +/− | |||||||||||
Tarsier | + | + | + | ||||||||||
Lemur | + | + | |||||||||||
Bush baby | + | ||||||||||||
Mouse | + | + | |||||||||||
Rat | + | + | |||||||||||
Kangaroo rat | +/− | +/− | |||||||||||
Squirrel | + | ||||||||||||
Guinea pig | + | +/− | |||||||||||
Cow | +/− | ||||||||||||
Horse | +/− | ||||||||||||
Microbat | + | + | + | + | |||||||||
Shrew | + | +/− | +/− | ||||||||||
Elephant | + | ||||||||||||
Hyrax | + | ||||||||||||
Tenrec | +/− | ||||||||||||
Opossum | + | + | + | ||||||||||
Wallaby | +/− | + | + | + | |||||||||
Tetraodon | +/− | ||||||||||||
Takifugu | + | ||||||||||||
Fugu | +/− | ||||||||||||
Medaka | +/− | +/− | + | ||||||||||
Zebrafish | +/− | + | |||||||||||
Stickleback | +/− | ||||||||||||
Lamprey | + |
ssDNA | RT-DNA | ||||||||||
ParvoV | DependoV | CircoV | HepadnaV | ||||||||
rep | cap | rep | cap | rep | cap | C | P | ||||
Baboon | + | + | |||||||||
Tarsier | + | ||||||||||
Mouse | + | + | |||||||||
Rat | + | + | + | +/− | |||||||
Kangaroo rat | + | ||||||||||
Squirrel | +/− | ||||||||||
Guinea pig | + | + | + | ||||||||
Rabbit | + | + | |||||||||
Pika | + | ||||||||||
Alpaca | + | ||||||||||
Cow | + | ||||||||||
Pig | + | ||||||||||
Dolphin | + | + | |||||||||
Horse | + | ||||||||||
Cat | +/− | +/− | |||||||||
Dog | +/− | + | + | ||||||||
Panda | +/− | + | |||||||||
Microbat | + | + | |||||||||
Megabat | + | ||||||||||
Armadillo | + | ||||||||||
Elephant | + | ||||||||||
Hyrax | + | + | + | ||||||||
Tenrec | + | ||||||||||
Opossum | + | + | + | + | |||||||
Wallaby | + | + | + | + | |||||||
Platypus | + | +/− | |||||||||
Zebra finch | + | + | + | ||||||||
Frog | + | ||||||||||
Tetraodon | + | + | |||||||||
Fugu | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horie, M.; Tomonaga, K. Non-Retroviral Fossils in Vertebrate Genomes. Viruses 2011, 3, 1836-1848. https://doi.org/10.3390/v3101836
Horie M, Tomonaga K. Non-Retroviral Fossils in Vertebrate Genomes. Viruses. 2011; 3(10):1836-1848. https://doi.org/10.3390/v3101836
Chicago/Turabian StyleHorie, Masayuki, and Keizo Tomonaga. 2011. "Non-Retroviral Fossils in Vertebrate Genomes" Viruses 3, no. 10: 1836-1848. https://doi.org/10.3390/v3101836