Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections
Abstract
:1. Introduction
2. Post-exposure Vaccination
2.1. Studies of Post-exposure Vaccination of Humans with Conventional Replication Competent Smallpox Vaccines like Dryvax® or Lister
2.2. Animal Studies of Post-exposure Vaccination with Replication Competent VACV Vaccines
2.3. Animal Studies of Post-exposure Vaccination with Replication Incompetent VACV Vaccines like Modified Vaccinia Ankara (MVA)
2.4. Conclusions
3. Vaccinia Immune Globulin (VIG)
3.1. Prevention and Treatment of Eczema Vaccinatum with VIG in Humans
3.2. Use of VIG in Humans with Progressive Vaccinia and in Immunocompromised Animal Models
3.3. Use of VIG in Humans after Exposure to Variola Virus
3.4. Use of VIG in Animal Models to Treat Orthopoxvirus Infections
3.5. Conclusions
4. Anti-poxvirus Monoclonal Antibodies as Future Therapeutics
5. Conclusions
Acknowledgments
References and Notes
- Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I.D. Smallpox and Its Eradication, 1st ed.; World Health Organization: Geneva, Switzerland, 1988; Preface, ix–xii; Chapter 27; pp. 1227–1262. [Google Scholar]
- Atlas, R.M. The threat of bioterrorism returns the fear of smallpox. Curr. Opin. Microbiol. 1998, 1, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.A. The looming threat of bioterrorism. Science 1999, 283, 1279–1282. [Google Scholar] [CrossRef] [PubMed]
- Hammarlund, E.; Lewis, M.W.; Hansen, S.G.; Strelow, L.I.; Nelson, J.A.; Sexton, G.J.; Hanifin, J.M.; Slifka, M.K. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 2003, 9, 1131–1137. [Google Scholar] [CrossRef]
- Crotty, S.; Felgner, P.; Davies, H.; Glidewell, J.; Villarreal, L.; Ahmed, R. Cutting edge: Long-term B cell memory in humans after smallpox vaccination. J. Immunol. 2003, 171, 4969–4973. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Van der Most, R.G.; Akondy, R.S.; Glidewell, J.T.; Albott, S.; Masopust, D.; Murali-Krishna, K.; Mahar, P.L.; Edupuganti, S.; Lalor, S.; Germon, S.; Del Rio, C.; Mulligan, M.J.; Staprans, S.I.; Altman, J.D.; Feinberg, M.B.; Ahmed, R. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 2008, 28, 710–722. [Google Scholar] [CrossRef]
- Fulginiti, V.A.; Papier, A.; Lane, J.M.; Neff, J.M.; Henderson, D.A. Smallpox vaccination: A review, part II. Adverse events. Clin. Infect. Dis. 2003, 37, 251–271. [Google Scholar] [CrossRef]
- Lutwick, L.I. Postexposure prophylaxis. Infect. Dis. Clin. North Am. 1996, 10, 899–915. [Google Scholar] [CrossRef]
- Dixon, C.W. Smallpox; Churchill: London, UK, 1962; Chapter 14; pp. 296–360. [Google Scholar]
- Hanna, W.; Baxby, D. Studies in smallpox and vaccination. 1913. Rev. Med. Virol. 2002, 12, 201–209. [Google Scholar]
- Rao, A.R. Smallpox; Korhari Book Depot: Bombay, India, 1972; Chapter 17; pp. 130–150. [Google Scholar]
- Heiner, G.G.; Fatima, N.; McCrumb, F.R., Jr. A study of intrafamilial transmission of smallpox. Am. J. Epidemiol. 1971, 94, 316–326. [Google Scholar] [CrossRef]
- Mack, T.M.; Thomas, D.B.; Ali, A.; Muzaffar Khan, M. Epidemiology of smallpox in West Pakistan. I. Acquired immunity and the distribution of disease. Am. J. Epidemiol. 1972, 95, 157–168. [Google Scholar] [CrossRef]
- Mortimer, P.P. Can postexposure vaccination against smallpox succeed? Clin. Infect. Dis. 2003, 36, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Staib, C.; Suezer, Y.; Kisling, S.; Kalinke, U.; Sutter, G. Short-term, but not post-exposure, protection against lethal orthopoxvirus challenge after immunization with modified vaccinia virus Ankara. J. Gen. Virol. 2006, 87, 2917–2921. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Neyts, J.; Naesens, L.; van Amerongen, G.; Van Lavieren, R.F.; Holy, A.; De Clercq, E.; Niesters, H.G.; Fries, E.; Maas, C.; Mulder, P.G.; Van der Zeijst, B.A.; Osterhaus, A.D. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature 2006, 439, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Paran, N.; Suezer, Y.; Lustig, S.; Israely, T.; Schwantes, A.; Melamed, S.; Katz, L.; Preuss, T.; Hanschmann, K.M.; Kalinke, U.; Erez, N.; Levin, R.; Velan, B.; Lower, J.; Shafferman, A.; Sutter, G. Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J. Infect. Dis. 2009, 199, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.S.; Greenberg, R.N. IMVAMUNE: Modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev. Vaccines 2009, 8, 13–24. [Google Scholar] [CrossRef]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Espenshade, O.; Bassler, J.; Gong, K.; Lin, S.; Peters, E.; Rhodes, L., Jr.; Spano, Y.E.; Silvera, P.M.; Moss, B. Rapid protection in a monkeypox model by a single injection of a replication-deficient vaccinia virus. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10889–10894. [Google Scholar] [CrossRef]
- Samuelsson, C.; Hausmann, J.; Lauterbach, H.; Schmidt, M.; Akira, S.; Wagner, H.; Chaplin, P.; Suter, M.; O’Keeffe, M.; Hochrein, H. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J. Clin. Invest. 2008, 118, 1776–1784. [Google Scholar] [CrossRef]
- Lauterbach, H.; Kassub, R.; Patzold, J.; Korner, J.; Bruckel, M.; Verschoor, A.; Chaplin, P.; Suter, M.; Hochrein, H. Immune requirements of post-exposure immunization with modified vaccinia Ankara of lethally infected mice. PLoS ONE 2010, 5, e9659. [Google Scholar] [CrossRef]
- Panchanathan, V.; Chaudhri, G.; Karupiah, G. Interferon function is not required for recovery from a secondary poxvirus infection. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12921–12926. [Google Scholar] [CrossRef]
- Panchanathan, V.; Chaudhri, G.; Karupiah, G. Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J. Virol. 2006, 80, 6333–6338. [Google Scholar] [CrossRef]
- Panchanathan, V.; Chaudhri, G.; Karupiah, G. Antiviral protection following immunization correlates with humoral but not cell-mediated immunity. Immun. Cell Biol. 2010, 88, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Wittek, R. Vaccinia immune globulin: Current policies, preparedness, and product safety and efficacy. Int. J. Infect. Dis. 2006, 10, 193–201. [Google Scholar] [PubMed]
- Hopkins, R.J.; Kramer, W.G.; Blackwelder, W.C.; Ashtekar, M.; Hague, L.; Winker-La Roche, S.D.; Berezuk, G.; Smith, D.; Leese, P.T. Safety and pharmacokinetic evaluation of intravenous vaccinia immune globulin in healthy volunteers. Clin. Infect. Dis. 2004, 39, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, P.G.; Ryan, M.A.; Grabenstein, J.D. Pregnancy discovered after smallpox vaccination: Is vaccinia immune globulin appropriate? Am. J. Obstet. Gynecol. 2004, 191, 1863–1867. [Google Scholar]
- Bell, E.; Shamim, M.; Whitbeck, J.C.; Sfyroera, G.; Lambris, J.D.; Isaacs, S.N. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 2004, 325, 425–431. [Google Scholar] [CrossRef]
- Putz, M.M.; Midgley, C.M.; Law, M.; Smith, G.L. Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nat. Med. 2006, 12, 1310–1315. [Google Scholar] [CrossRef]
- Adamo, J.E.; Meseda, C.A.; Weir, J.P.; Merchlinsky, M.J. Smallpox vaccines induce antibodies to the immunomodulatory, secreted vaccinia virus complement control protein. J. Gen. Virol. 2009, 90, 2604–2608. [Google Scholar] [CrossRef]
- Davies, D.H.; Liang, X.; Hernandez, J.E.; Randall, A.; Hirst, S.; Mu, Y.; Romero, K.M.; Nguyen, T.T.; Kalantari-Dehaghi, M.; Crotty, S.; Baldi, P.; Villarreal, L.P.; Felgner, P.L. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 547–552. [Google Scholar] [CrossRef]
- Jones-Trower, A.; Garcia, A.; Meseda, C.A.; He, Y.; Weiss, C.; Kumar, A.; Weir, J.P.; Merchlinsky, M. Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology 2005, 343, 128–140. [Google Scholar] [CrossRef]
- Kempe, C.H. Studies on smallpox and complications of smallpox vaccination. Pediatrics 1960, 26, 176–189. [Google Scholar] [CrossRef]
- Kempe, C.H. Passive immunity to vaccinia in newborns. I. Placental transmission of antibodies. Yale J. Biol. Med. 1952, 24, 328–333. [Google Scholar] [PubMed]
- Bray, M. Henry Kempe and the birth of vaccinia immune globulin. Clin. Infect. Dis. 2004, 39, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Fulginiti, V.A.; Hathaway, W.E.; Pearlman, D.; Sieber, O.; Eller, J.; Joyner, J.; Robinson, A. Progressive vaccinia in immunologically deficient individuals. Birth Defects 1968, 4, 128–151. [Google Scholar]
- Kempe, C.H. Acceptance of the Howland award. Pediat. Res. 1980, 14, 1155–1161. [Google Scholar] [CrossRef]
- Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y. Selective killing of vaccinia virus by LL-37: Implications for eczema vaccinatum. J. Immunol. 2004, 172, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Tomimori, Y.; Yumoto, K.; Hasegawa, S.; Ando, T.; Tagaya, Y.; Crotty, S.; Kawakami, T. Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum. J. Exp. Med. 2009, 206, 1219–1225. [Google Scholar] [CrossRef]
- Freyschmidt, E.J.; Mathias, C.B.; Diaz, N.; MacArthur, D.H.; Laouar, A.; Manjunath, N.; Hofer, M.D.; Wurbel, M.A.; Campbell, J.J.; Chatila, T.A.; Oettgen, H.C. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses. J. Immunol. 2010, 185, 1295–1302. [Google Scholar] [CrossRef]
- Kempe, C.H.; Berge, T.O.; England, B. Hyperimmune vaccinal gamma globulin: Source, evaluation, and use in prophylaxis and therapy. Pediatrics 1956, 18, 177–188. [Google Scholar] [CrossRef]
- CDC. Household transmission of vaccinia virus from contact with a military smallpox vaccinee—Illinois and Indiana, 2007. MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 478–481. [Google Scholar]
- Barbero, G.J.; Gray, A.; Scott, T.F.; Kempe, C.H. Vaccinia gangrenosa treated with hyperimmune vaccinal gamma globulin. Pediatrics 1955, 16, 609–618. [Google Scholar]
- Bray, M.; Wright, M.E. Progressive vaccinia. Clin. Infect. Dis. 2003, 36, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Keane, J.T.; James, K.; Blankenship, M.L.; Pearson, R.W. Progressive vaccinia associated with combined variable immunodeficiency. Arch. Dermatol. 1983, 119, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, C.A.; Niezgoda, M.; Shankar, V.; Niu, H.S.; Koprowski, H.; Rupprecht, C.E. A recombinant vaccinia-rabies virus in the immunocompromised host: Oral innocuity, progressive parenteral infection, and therapeutics. Vaccine 1997, 15, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.J.; St. Vincent, L.; Kempe, C.H.; Young, P.A.; Downie, A.W. Prophylaxis of smallpox with methisazone. Am. J. Epidemiol. 1969, 90, 130–145. [Google Scholar] [CrossRef]
- Shearer, J.D.; Siemann, L.; Gerkovich, M.; House, R.V. Biological activity of an intravenous preparation of human vaccinia immune globulin in mouse models of vaccinia virus infection. Antimicrob. Agents Chemother. 2005, 49, 2634–2641. [Google Scholar] [CrossRef]
- Belyakov, I.M.; Earl, P.; Dzutsev, A.; Kuznetsov, V.A.; Lemon, M.; Wyatt, L.S.; Snyder, J.T.; Ahlers, J.D.; Franchini, G.; Moss, B.; Berzofsky, J.A. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9458–9463. [Google Scholar] [CrossRef]
- Xu, R.; Johnson, A.J.; Liggitt, D.; Bevan, M.J. Cellular and humoral immunity against vaccinia virus infection of mice. J. Immunol. 2004, 172, 6265–6271. [Google Scholar] [CrossRef]
- Kempe, C.H.; Bowles, C.; Meiklejohn, G.; Berge, T.O.; St Vincent, L.; Babu, B.V.; Govindarajan, S.; Ratnakannan, N.R.; Downie, A.W.; Murthy, V.R. The use of vaccinia hyperimmune gamma-globulin in the prophylaxis of smallpox. Bull. World Health Organ. 1961, 25, 41–48. [Google Scholar]
- Hobday, T.L. Antivaccinial gamma-globulin in the control of smallpox. Lancet 1962, 1, 907–908. [Google Scholar] [CrossRef]
- Hogben, G.H.; Mc, K.G.; Nicol, C.G. Smallpox in Tottenham; 1957. Lancet 1958, 1, 1061–1064. [Google Scholar] [CrossRef]
- Peirce, E.R.; Melville, F.S.; Downie, A.W.; Duckworth, M.J. Anti-vaccinial gamma-globulin in smallpox prophylaxis. Lancet 1958, 2, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Semple, A.B.; Parry, W.H.; Hobday, T.L. Antivaccinial gamma-globulin; a further report on smallpox prophylaxis. Lancet 1959, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Marennikova, S.S. The use of hyperimmune antivaccinia gamma-globulin for the prevention and treatment of smallpox. Bull. World Health Organ. 1962, 27, 325–330. [Google Scholar] [PubMed]
- Law, M.; Putz, M.M.; Smith, G.L. An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. J. Gen. Virol. 2005, 86, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Lustig, S.; Maik-Rachline, G.; Paran, N.; Melamed, S.; Israely, T.; Erez, N.; Orr, N.; Reuveny, S.; Ordentlich, A.; Laub, O.; Shafferman, A.; Velan, B. Effective post-exposure protection against lethal orthopoxviruses infection by vaccinia immune globulin involves induction of adaptive immune response. Vaccine 2009, 27, 1691–1699. [Google Scholar] [CrossRef]
- CDC. Progressive vaccinia in a military smallpox vaccinee—United States, 2009. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 532–536. [Google Scholar]
- Smith, G.L.; Vanderplasschen, A.; Law, M. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 2002, 83, 2915–2931. [Google Scholar] [CrossRef]
- Condit, R.C.; Moussatche, N.; Traktman, P. In a nutshell: Structure and assembly of the vaccinia virion. Adv. Virus Res. 2006, 66, 31–124. [Google Scholar]
- Moss, B. Poxvirus entry and membrane fusion. Virology 2006, 344, 48–54. [Google Scholar] [CrossRef]
- Rodriguez, J.F.; Janeczko, R.; Esteban, M. Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. J. Virol. 1985, 56, 482–488. [Google Scholar] [CrossRef]
- Nelson, G.E.; Sisler, J.R.; Chandran, D.; Moss, B. Vaccinia virus entry/fusion complex subunit A28 is a target of neutralizing and protective antibodies. Virology 2008, 380, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, J.C.; Chung, C.S.; Chang, W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 1999, 73, 8750–8761. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.H.; McCausland, M.M.; Valdez, C.; Huynh, D.; Hernandez, J.E.; Mu, Y.; Hirst, S.; Villarreal, L.; Felgner, P.L.; Crotty, S. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol. 2005, 79, 11724–11733. [Google Scholar] [CrossRef] [PubMed]
- Wolffe, E.J.; Vijaya, S.; Moss, B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 1995, 211, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Ichihashi, Y.; Oie, M. Neutralizing epitope on penetration protein of vaccinia virus. Virology 1996, 220, 491–494. [Google Scholar] [CrossRef]
- Galmiche, M.C.; Goenaga, J.; Wittek, R.; Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 1999, 254, 71–80. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Tapia, E.; Esteban, M. Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication efficiently under prophylactic and therapeutic conditions. J. Gen. Virol. 2002, 83, 1059–1067. [Google Scholar] [CrossRef]
- Lustig, S.; Fogg, C.; Whitbeck, J.C.; Eisenberg, R.J.; Cohen, G.H.; Moss, B. Combinations of Polyclonal or Monoclonal Antibodies to Proteins of the Outer Membranes of the Two Infectious Forms of Vaccinia Virus Protect Mice against a Lethal Respiratory Challenge. J. Virol. 2005, 79, 13454–13462. [Google Scholar] [CrossRef]
- Xiao, Y.; Isaacs, S.N. University of Pennsylvania, Philadelphia, PA. Unpublished work. 2005. [Google Scholar]
- Chen, Z.; Earl, P.; Americo, J.; Damon, I.; Smith, S.K.; Zhou, Y.H.; Yu, F.; Sebrell, A.; Emerson, S.; Cohen, G.; Eisenberg, R.J.; Svitel, J.; Schuck, P.; Satterfield, W.; Moss, B.; Purcell, R. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1882–1887. [Google Scholar] [CrossRef]
- Chen, Z.; Earl, P.; Americo, J.; Damon, I.; Smith, S.K.; Yu, F.; Sebrell, A.; Emerson, S.; Cohen, G.; Eisenberg, R.J.; Gorshkova, I.; Schuck, P.; Satterfield, W.; Moss, B.; Purcell, R. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J. Virol. 2007, 81, 8989–8995. [Google Scholar] [CrossRef]
- Lustig, S.; Fogg, C.; Whitbeck, J.C.; Moss, B. Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology 2004, 328, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Benhnia, M.R.; McCausland, M.M.; Moyron, J.; Laudenslager, J.; Granger, S.; Rickert, S.; Koriazova, L.; Kubo, R.; Kato, S.; Crotty, S. Vaccinia virus extracellular enveloped virion neutralization in vitro and protection in vivo depend on complement. J. Virol. 2009, 83, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Benhnia, M.R.; McCausland, M.M.; Laudenslager, J.; Granger, S.W.; Rickert, S.; Koriazova, L.; Tahara, T.; Kubo, R.T.; Kato, S.; Crotty, S. Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J. Virol. 2009, 83, 12355–12367. [Google Scholar] [CrossRef] [PubMed]
- Seet, B.T.; Johnston, J.B.; Brunetti, C.R.; Barrett, J.W.; Everett, H.; Cameron, C.; Sypula, J.; Nazarian, S.H.; Lucas, A.; McFadden, G. Poxviruses and immune evasion. Annu. Rev. Immunol. 2003, 21, 377–423. [Google Scholar] [CrossRef]
- Xu, R.H.; Cohen, M.; Tang, Y.; Lazear, E.; Whitbeck, J.C.; Eisenberg, R.J.; Cohen, G.H.; Sigal, L.J. The orthopoxvirus type I IFN binding protein is essential for virulence and an effective target for vaccination. J. Exp. Med. 2008, 205, 981–992. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xiao, Y.; Isaacs, S.N. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections. Viruses 2010, 2, 2381-2403. https://doi.org/10.3390/v2102381
Xiao Y, Isaacs SN. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections. Viruses. 2010; 2(10):2381-2403. https://doi.org/10.3390/v2102381
Chicago/Turabian StyleXiao, Yuhong, and Stuart N. Isaacs. 2010. "Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections" Viruses 2, no. 10: 2381-2403. https://doi.org/10.3390/v2102381