Natural Hepacivirus Infection in Tree Shrews: A Call for Routine Screening in Hepatitis Virus Research
Abstract
1. Introduction
2. Detection of Hepaciviruses in Tree Shrews and Other Animals
3. Necessity of Routine Hepacivirus Screening in Tree Shrews for Hepatitis Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Martinis, C.; Cardillo, L.; Esposito, C.; Viscardi, M.; Barca, L.; Cavallo, S.; D’Alessio, N.; Martella, V.; Fusco, G. First identification of bovine hepacivirus in wild boars. Sci. Rep. 2022, 12, 11678. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Sanada, T.; Kohara, M.; Tsukiyama-Kohara, K. Tree Shrew as an Emerging Small Animal Model for Human Viral Infection: A Recent Overview. Viruses 2021, 13, 1641. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Huang, Z.Y.; Cao, C.C.; Chen, C.S.; Chen, Y.X.; Fan, D.D.; He, J.; Hou, H.L.; Hu, L.; Hu, X.T.; et al. Genome of the Chinese tree shrew. Nat. Commun. 2013, 4, 1426. [Google Scholar] [CrossRef] [PubMed]
- Sanada, T.; Tsukiyama-Kohara, K.; Shin, I.T.; Yamamoto, N.; Kayesh, M.E.H.; Yamane, D.; Takano, J.I.; Shiogama, Y.; Yasutomi, Y.; Ikeo, K.; et al. Construction of complete Tupaia belangeri transcriptome database by whole-genome and comprehensive RNA sequencing. Sci. Rep. 2019, 9, 12372. [Google Scholar] [CrossRef] [PubMed]
- Tsukiyama-Kohara, K.; Kohara, M. Tupaia belangeri as an experimental animal model for viral infection. Exp. Anim. 2014, 63, 367–374. [Google Scholar] [CrossRef]
- Yao, Y.G.; Lu, L.; Ni, R.J.; Bi, R.; Chen, C.; Chen, J.Q.; Fuchs, E.; Gorbatyuk, M.; Lei, H.; Li, H.; et al. Study of tree shrew biology and models: A booming and prosperous field for biomedical research. Zool. Res. 2024, 45, 877–909. [Google Scholar] [CrossRef]
- Li, R.; Zanin, M.; Xia, X.; Yang, Z. The tree shrew as a model for infectious diseases research. J. Thorac. Dis. 2018, 10, S2272–S2279. [Google Scholar] [CrossRef]
- Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H.; et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012, 1, e00049. [Google Scholar] [CrossRef]
- Sanada, T.; Tsukiyama-Kohara, K.; Yamamoto, N.; Ezzikouri, S.; Benjelloun, S.; Murakami, S.; Tanaka, Y.; Tateno, C.; Kohara, M. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes. Biochem. Biophys. Res. Commun. 2016, 469, 229–235. [Google Scholar] [CrossRef]
- Brown, A.J.; Won, J.J.; Wolfisberg, R.; Fahnoe, U.; Catanzaro, N.; West, A.; Moreira, F.R.; Nogueira Batista, M.; Ferris, M.T.; Linnertz, C.L.; et al. Host genetic variation guides hepacivirus clearance, chronicity, and liver fibrosis in mice. Hepatology 2024, 79, 183–197. [Google Scholar] [CrossRef]
- Brown, R.J.P.; Tegtmeyer, B.; Sheldon, J.; Khera, T.; Anggakusuma; Todt, D.; Vieyres, G.; Weller, R.; Joecks, S.; Zhang, Y.; et al. Liver-expressed Cd302 and Cr1l limit hepatitis C virus cross-species transmission to mice. Sci. Adv. 2020, 6, eabd3233. [Google Scholar] [CrossRef]
- Lu, C.; Feng, Y.; Sun, X.; Li, N.; Kuang, D.; Wang, W.; Tong, P.; Han, Y.; Xia, X.; Dai, J. Tree shrew bone marrow-derived mesenchymal stem cells express CD81, OCLN, and miR-122, facilitating the entire hepatitis C virus life cycle. J. Med. Virol. 2020, 92, 3465–3474. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Kui, X.; Wang, W.; Li, N.; Tong, P.; Sun, X.; Lu, C.; Dai, J. Identification of SEC14 like lipid binding 2(SEC14L2) sequence and expression profiles in the Chinese tree shrew (Tupaia belangeri chinensis). Mol. Biol. Rep. 2022, 49, 7307–7314. [Google Scholar] [CrossRef] [PubMed]
- Kui, X.; Qiu, D.; Wang, W.; Li, N.; Tong, P.; Sun, X.; Jin, L.; Deng, W.; Dai, J.; Lu, C. Molecular cloning and characterization of NPC1L1 in the Chinese tree shrew (Tupaia belangeri chinensis). Mol. Biol. Rep. 2021, 48, 7975–7984. [Google Scholar] [CrossRef] [PubMed]
- Wieland, S.F.; Chisari, F.V. Stealth and cunning: Hepatitis B and hepatitis C viruses. J. Virol. 2005, 79, 9369–9380. [Google Scholar] [CrossRef]
- Li, J.; Shi, T.D.; Han, J.F.; Zeng, X.G.; Fan, C.L.; Han, C.; Liu, H.L.; Wu, Y.Z. A systematic study of Tupaia as a model for human acute hepatitis B infection. J. Vet. Med. Sci. 2021, 83, 1004–1011. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Hashem, M.A.; Sanada, T.; Kitab, B.; Rashid, M.H.O.; Akter, L.; Ezzikouri, S.; Murakami, S.; Ogawa, S.; Tanaka, Y.; et al. Characterization of innate immune response to hepatitis B virus genotype F acute infection in tree shrew (Tupaia belangeri) model. Front. Virol. 2022, 2, 926831. [Google Scholar] [CrossRef]
- Yang, C.; Ruan, P.; Ou, C.; Su, J.; Cao, J.; Luo, C.; Tang, Y.; Wang, Q.; Qin, H.; Sun, W.; et al. Chronic hepatitis B virus infection and occurrence of hepatocellular carcinoma in tree shrews (Tupaia belangeri chinensis). Virol. J. 2015, 12, 26. [Google Scholar] [CrossRef]
- Yan, R.Q.; Su, J.J.; Huang, D.R.; Gan, Y.C.; Yang, C.; Huang, G.H. Human hepatitis B virus and hepatocellular carcinoma. I. Experimental infection of tree shrews with hepatitis B virus. J. Cancer Res. Clin. Oncol. 1996, 122, 283–288. [Google Scholar] [CrossRef]
- Lebosse, F.; Testoni, B.; Fresquet, J.; Facchetti, F.; Galmozzi, E.; Fournier, M.; Hervieu, V.; Berthillon, P.; Berby, F.; Bordes, I.; et al. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J. Hepatol. 2017, 66, 897–909. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Ezzikouri, S.; Chi, H.; Sanada, T.; Yamamoto, N.; Kitab, B.; Haraguchi, T.; Matsuyama, R.; Nkogue, C.N.; Hatai, H.; et al. Interferon-beta response is impaired by hepatitis B virus infection in Tupaia belangeri. Virus Res. 2017, 237, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Amako, Y.; Tsukiyama-Kohara, K.; Katsume, A.; Hirata, Y.; Sekiguchi, S.; Tobita, Y.; Hayashi, Y.; Hishima, T.; Funata, N.; Yonekawa, H.; et al. Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J. Virol. 2010, 84, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Kayesh, M.E.H.; Ezzikouri, S.; Sanada, T.; Chi, H.; Hayashi, Y.; Rebbani, K.; Kitab, B.; Matsuu, A.; Miyoshi, N.; Hishima, T.; et al. Oxidative Stress and Immune Responses During Hepatitis C Virus Infection in Tupaia belangeri. Sci. Rep. 2017, 7, 9848. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.C.; Riezu-Boj, J.I.; Lasarte, J.J.; Guillen, J.; Su, J.H.; Civeira, M.P.; Prieto, J. Transmission of hepatitis C virus infection to tree shrews. Virology 1998, 244, 513–520. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, Y.M.; Lu, C.; Han, Y.; Liu, L.; Sun, X.; Dai, J.; Xia, X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J. Gen. Virol. 2017, 98, 2069–2078. [Google Scholar] [CrossRef]
- Ruan, P.; Yang, C.; Su, J.; Cao, J.; Ou, C.; Luo, C.; Tang, Y.; Wang, Q.; Yang, F.; Shi, J.; et al. Histopathological changes in the liver of tree shrew (Tupaia belangeri chinensis) persistently infected with hepatitis B virus. Virol. J. 2013, 10, 333. [Google Scholar] [CrossRef]
- Yi, J.; Lei, X.; Guo, F.; Chen, Q.; Chen, X.; Zhao, K.; Zhu, C.; Cheng, X.; Lin, J.; Yin, H.; et al. Co-delivery of Cas9 mRNA and guide RNAs edits hepatitis B virus episomal and integration DNA in mouse and tree shrew models. Antivir. Res. 2023, 215, 105618. [Google Scholar] [CrossRef]
- Rashid, M.H.O.; Kayesh, M.E.H.; Hashem, M.A.; Hifumi, T.; Ogawa, S.; Miyoshi, N.; Tanaka, Y.; Kohara, M.; Tsukiyama-Kohara, K. Adeno-associated virus 2 CRISPR/Cas9-mediated targeting of hepatitis B virus in tree shrews. Virus Res. 2025, 354, 199550. [Google Scholar] [CrossRef]
- Sanada, T.; Yamamoto, N.; Kayesh, M.E.H.; Tsukiyama-Kohara, K.; Hasegawa, H.; Miyazaki, T.; Takano, J.I.; Shiogama, Y.; Yasutomi, Y.; Goh, Y.; et al. Intranasal vaccination with HBs and HBc protein combined with carboxyl vinyl polymer induces strong neutralizing antibody, anti-HBs IgA, and IFNG response. Biochem. Biophys. Res. Commun. 2019, 520, 86–92. [Google Scholar] [CrossRef]
- Labrique, A.B.; Zaman, K.; Hossain, Z.; Saha, P.; Yunus, M.; Hossain, A.; Ticehurst, J.R.; Nelson, K.E. Epidemiology and risk factors of incident hepatitis E virus infections in rural Bangladesh. Am. J. Epidemiol. 2010, 172, 952–961. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Epidemiology and Risk Factors for Acute Viral Hepatitis in Bangladesh: An Overview. Microorganisms 2022, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yang, C.; Bi, Y.; Long, F.; Li, Y.; Wang, J.; Huang, F. Characterization of hepatitis E virus infection in tree shrew (Tupaia belangeri chinensis). BMC Infect. Dis. 2016, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Wang, G.; Punyapornwithaya, V.; Jainonthee, C.; Tian, J.; Liu, Y.; Suksawat, F.; Angkititrakul, S.; Nan, Y.; Li, Z.; et al. Pathological Characteristics of Pregnant Tree Shrews Infected by Zoonotic Hepatitis E Virus Genotype and the Effect of Estrogen on Virus Replication. Vet. Sci. 2025, 12, 483. [Google Scholar] [CrossRef] [PubMed]
- Theze, J.; Lowes, S.; Parker, J.; Pybus, O.G. Evolutionary and Phylogenetic Analysis of the Hepaciviruses and Pegiviruses. Genome Biol. Evol. 2015, 7, 2996–3008. [Google Scholar] [CrossRef]
- Yuan, S.; Yao, X.Y.; Lian, C.Y.; Kong, S.; Shao, J.W.; Zhang, X.L. Molecular detection and genetic characterization of bovine hepacivirus identified in ticks collected from cattle in Harbin, northeastern China. Front. Vet. Sci. 2023, 10, 1093898. [Google Scholar] [CrossRef]
- Sanada, T.; Tsukiyama-Kohara, K.; Kohara, M. Genomic characterization of hepaciviruses and pegivirus in the northern tree shrew (Tupaia belangeri). Infect. Genet. Evol. 2025, 132, 105778. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Fernbach, S.; Scheel, T.K.H. Animal hepacivirus models for hepatitis C virus immune responses and pathology. J. Hepatol. 2024, 81, 184–186. [Google Scholar] [CrossRef]
- El-Attar, L.M.R.; Mitchell, J.A.; Brooks Brownlie, H.; Priestnall, S.L.; Brownlie, J. Detection of non-primate hepaciviruses in UK dogs. Virology 2015, 484, 93–102. [Google Scholar] [CrossRef]
- Scheel, T.K.; Kapoor, A.; Nishiuchi, E.; Brock, K.V.; Yu, Y.; Andrus, L.; Gu, M.; Renshaw, R.W.; Dubovi, E.J.; McDonough, S.P.; et al. Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc. Natl. Acad. Sci. USA 2015, 112, 2192–2197. [Google Scholar] [CrossRef]
- Kapoor, A.; Simmonds, P.; Gerold, G.; Qaisar, N.; Jain, K.; Henriquez, J.A.; Firth, C.; Hirschberg, D.L.; Rice, C.M.; Shields, S.; et al. Characterization of a canine homolog of hepatitis C virus. Proc. Natl. Acad. Sci. USA 2011, 108, 11608–11613. [Google Scholar] [CrossRef]
- Tegtmeyer, B.; Echelmeyer, J.; Pfankuche, V.M.; Puff, C.; Todt, D.; Fischer, N.; Durham, A.; Feige, K.; Baumgartner, W.; Steinmann, E.; et al. Chronic equine hepacivirus infection in an adult gelding with severe hepatopathy. Vet. Med. Sci. 2019, 5, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.D.; Evanoff, R.; Wilkinson, T.E., Jr.; Divers, T.J.; Knowles, D.P.; Mealey, R.H. Experimental transmission of equine hepacivirus in horses as a model for hepatitis C virus. Hepatology 2015, 61, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Pacchiarotti, G.; Nardini, R.; Scicluna, M.T. Equine Hepacivirus: A Systematic Review and a Meta-Analysis of Serological and Biomolecular Prevalence and a Phylogenetic Update. Animals 2022, 12, 2486. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.E.; Wolfisberg, R.; Fahnoe, U.; Patel, R.S.; Trivedi, S.; Kumar, A.; Sharma, H.; Nielsen, L.; McDonough, S.P.; Bukh, J.; et al. Pathogenesis, MicroRNA-122 Gene-Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology 2021, 74, 1148–1163. [Google Scholar] [CrossRef]
- Gather, T.; Walter, S.; Pfaender, S.; Todt, D.; Feige, K.; Steinmann, E.; Cavalleri, J.M. Acute and chronic infections with nonprimate hepacivirus in young horses. Vet. Res. 2016, 47, 97. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Dubovi, E.J.; Simmonds, P.; Medina, J.L.; Henriquez, J.A.; Mishra, N.; Wagner, J.; Tokarz, R.; Cullen, J.M.; Iadarola, M.J.; et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J. Virol. 2012, 86, 6171–6178. [Google Scholar] [CrossRef]
- Gomer, A.; Puff, C.; Reinecke, B.; Bracht, S.; Conze, M.; Baumgartner, W.; Steinmann, J.; Feige, K.; Cavalleri, J.M.V.; Steinmann, E.; et al. Experimental cross-species infection of donkeys with equine hepacivirus and analysis of host immune signatures. One Health Outlook 2022, 4, 9. [Google Scholar] [CrossRef]
- Bletsa, M.; Vrancken, B.; Gryseels, S.; Boonen, I.; Fikatas, A.; Li, Y.; Laudisoit, A.; Lequime, S.; Bryja, J.; Makundi, R.; et al. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol. 2021, 7, veab036. [Google Scholar] [CrossRef]
- Parera, M.; Martrus, G.; Franco, S.; Clotet, B.; Martinez, M.A. Canine hepacivirus NS3 serine protease can cleave the human adaptor proteins MAVS and TRIF. PLoS ONE 2012, 7, e42481. [Google Scholar] [CrossRef]
- Bexfield, N.H.; Watson, P.J.; Heaney, J.; Heeney, J.L.; Tiley, L. Canine hepacivirus is not associated with chronic liver disease in dogs. J. Viral Hepat. 2014, 21, 223–228. [Google Scholar] [CrossRef]
- van der Laan, L.J.; de Ruiter, P.E.; van Gils, I.M.; Fieten, H.; Spee, B.; Pan, Q.; Rothuizen, J.; Penning, L.C. Canine hepacivirus and idiopathic hepatitis in dogs from a Dutch cohort. J. Viral Hepat. 2014, 21, 894–896. [Google Scholar] [CrossRef]
- Mifsud, J.C.O.; Costa, V.A.; Petrone, M.E.; Marzinelli, E.M.; Holmes, E.C.; Harvey, E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol. 2023, 9, veac124. [Google Scholar] [CrossRef]
- Lian, Z.H.; You, Z.; Han, P.Y.; Qiu, Y.; Zhang, Y.Z.; Ge, X.Y. Decoding the virome reveals diverse novel viruses in tree shrews (Tupaia belangeri) in Yunnan Province. Virol Sin. 2025, 40, 314–323. [Google Scholar] [CrossRef]
- Zhou, H.; Tian, R.R.; Wang, X.R.; Yang, J.X.; Wang, Y.X.; Zhao, M.L.; Zhang, X.D.; Ma, Y.H.; Lv, L.B.; Holmes, E.C.; et al. Identification of novel mammalian viruses in tree shrews (Tupaia belangeri chinensis). Zool. Res. 2024, 45, 429–438. [Google Scholar] [CrossRef]
- Feng, Y.; Kuang, G.; Pan, Y.; Wang, J.; Yang, W.; Wu, W.C.; Pan, H.; Wang, J.; Han, X.; Yang, L.; et al. Small mammals in a biodiversity hotspot harbor viruses of emergence risk. Natl. Sci. Rev. 2025, 12, nwae463. [Google Scholar] [CrossRef]
- Li, Y.; Wan, D.F.; Su, J.J.; Cao, J.; Ou, C.; Qiu, X.K.; Ban, K.C.; Yang, C.; Qin, L.L.; Luo, D.; et al. Differential expression of genes during aflatoxin B(1)-induced hepatocarcinogenesis in tree shrews. World J. Gastroenterol. 2004, 10, 497–504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Enamul Hoque Kayesh, M.; Sanada, T.; Kohara, M.; Tsukiyama-Kohara, K. Natural Hepacivirus Infection in Tree Shrews: A Call for Routine Screening in Hepatitis Virus Research. Viruses 2026, 18, 27. https://doi.org/10.3390/v18010027
Enamul Hoque Kayesh M, Sanada T, Kohara M, Tsukiyama-Kohara K. Natural Hepacivirus Infection in Tree Shrews: A Call for Routine Screening in Hepatitis Virus Research. Viruses. 2026; 18(1):27. https://doi.org/10.3390/v18010027
Chicago/Turabian StyleEnamul Hoque Kayesh, Mohammad, Takahiro Sanada, Michinori Kohara, and Kyoko Tsukiyama-Kohara. 2026. "Natural Hepacivirus Infection in Tree Shrews: A Call for Routine Screening in Hepatitis Virus Research" Viruses 18, no. 1: 27. https://doi.org/10.3390/v18010027
APA StyleEnamul Hoque Kayesh, M., Sanada, T., Kohara, M., & Tsukiyama-Kohara, K. (2026). Natural Hepacivirus Infection in Tree Shrews: A Call for Routine Screening in Hepatitis Virus Research. Viruses, 18(1), 27. https://doi.org/10.3390/v18010027

