The Role of Hematophagous Arthropods, Other Than Mosquitoes and Ticks, in Arbovirus Transmission
Abstract
1. Arboviruses
2. Hematophagous Arthropods and Vector Competence
Arthropod | Family | Order |
---|---|---|
Bat flies | Nycteribiidae and Streblidae | Diptera |
Blackflies | Simuliidae | Diptera |
1 Blowflies | Calliphoridae | Diptera |
Cimicids | Cimicidae | Hemiptera |
Culicoides midges | Ceratopogonidae | Diptera |
Fleas | Multiple families | Siphonaptera |
Hippoboscid flies | Hippoboscidae | Diptera |
Lice | Multiple families | Psocodea |
Mites | Multiple families | Acariformes and Parasitiformes |
1 Mosquitoes | Culicidae | Diptera |
Muscid flies | Muscidae | Diptera |
Phlebotomine sandflies | Psychodidae | Diptera |
Tabanids | Tabanidae | Diptera |
1 Ticks | Argasidae, Nuttalliellidae, and Ixodidae | Ixodida |
Triatomines | Reduviidae | Hemiptera |
Tsetse flies | Glossinidae | Diptera |
- Arthropods known or suspected to be epidemiologically important biological vectors of arboviruses, i.e., blackflies, cimicids, Culicoides midges, and phlebotomine sandflies. These arthropods have yielded multiple isolations of the relevant viruses in field studies and have transmitted the virus under experimental conditions, while arthropods from no other groups have been identified as major vectors.
- Arthropods that may play a minor role in the biological transmission of arboviruses, i.e., fleas and mites. These arthropods have also yielded multiple isolations of relevant virus and have transmitted the virus under experimental conditions, but other arthropods have been identified as major vectors.
- Arthropods where there is insufficient evidence to suggest that they are biological vectors of arboviruses, i.e., bat flies, hippoboscid flies, lice, muscid flies, tabanids, triatomines, and tsetse flies. None of these arthropods have been shown to transmit arboviruses under experimental conditions.
3. Bat Flies
3.1. Recognized Arboviruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Bat Fly-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Dengue virus 2 | Orthoflavivirus denguei | DENV2 | Flaviviridae | Yes | 2 - | [53] |
Kaeng Khoi virus | Orthobunyavirus kaengkhoiense | KKV | Perbunyaviridae | Yes | - | [48,51] |
Mahlapitsi virus | Orthoreovirus mahlapitsiense | MAHLV | Sedoreoviridae | - | - | [49] |
Nelson Bay reovirus | Orthoreovirus nelsonense | NBV | Sedoreoviridae | - | - | [52,56] |
Wolkberg virus | Orthobunyavirus wolkbergense | WBV | Peribunyaviridae | - | - | [50] |
3.2. Other Vertebrate-Infecting Viruses
3.3. Viruses Not Known to Infect Vertebrates
4. Blackflies
4.1. Recognized Arboviruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Blackfly-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Eastern equine encephalitis virus | Alphavirus eastern | EEEV | Togaviridae | Yes | 2 - | [88] |
Hepatitis B virus | Orthohepadnavirus hominoidei | HBV | Hepadnaviridae | - | - | [91] |
Rift Valley fever virus | Phlebovirus riftense | RVFV | Phenuiviridae | Yes | - | [89] |
Venezuelan equine encephalitis virus | Alphavirus venezuelan | VEEV | Togaviridae | Yes | - | [90] |
Vesicular stomatitis Indiana virus | Vesiculovirus indiana | VSIV | Rhabdoviridae | Yes | - | [78] |
Vesicular stomatitis New Jersey virus | Vesiculovirus newjersey | VSNJV | Rhabdoviridae | Yes | Yes (transmission to mice, pigs, and cattle) | [73,75,80,81,82,83] |
4.2. Other Vertebrate-Infecting Viruses
4.3. Viruses Not Known to Infect Vertebrates
5. Cimicids
5.1. Recognized Arboviruses
5.2. Other Vertebrate-Infecting Viruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Efficient Cimicid-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Avian paramyxovirus type 4 | Paraavulavirus hongkongense | APMV-4 | Paramyxoviridae | 2 - | - | [134] |
Buggy Creek virus (a subtype of Fort Morgan virus) | Alphavirus fortmorgan | BCRV | Togaviridae | Yes | - | [104,105,106] |
Fort Morgan virus | Alphavirus fortmorgan | FMV | Togaviridae | Yes | Yes (transmission to birds) | [100,101,103] |
Hepatitis B virus | Orthohepadnavirus hominoidei | HBV | Hepadnaviridae | - | - | [127,129,132] |
Hepatitis C virus | Hepacivirus hominis | HCV | Flaviviridae | - | - | [128] |
Hepatitis E virus | Paslahepevirus balayani | HEV | Hepeviridae | - | - | [133] |
Kaeng Khoi virus | Orthobunyavirus kaengkhoiense | KKV | Perbunyaviridae | Yes | - | [113] |
Tonate virus | Alphavirus tonate | TONV | Togaviridae | Yes | - | [116] |
Usutu virus | Orthoflavivirus usutuense | USUV | Flaviviridae | Yes | - | [122] |
5.3. Viruses Not Known to Infect Vertebrates
6. Culicoides Midges
6.1. Recognized Arboviruses
6.2. Other Vertebrate-Infecting Viruses
6.3. Viruses Not Known to Infect Vertebrates
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 2 Experimental Evidence of Culicoides-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Adelaide River virus | Ephemerovirus adelaide | ARV | Rhabdoviridae | Yes | 3 - | [54] |
African horse sickness virus | Orbivirus alphaequi | AHSV | Sedoreoviridae | Yes | Yes (transmission to embryonated chicken and anecdotal evidence of transmission to a horse) | [54,158,159,160,161,164,165] |
Aino virus | Orthobunyavirus ainoense | AINOV | Peribunyaviridae | Yes | - | [175] |
Akabane virus | Orthobunyavirus akabaneense | AKAV | Peribunyaviridae | Yes | Yes (transmission through a membrane) | [175] |
Banna virus | Seadornavirus bannaense | BAV | Sedoreoviridae | Yes | - | [302] |
Barmah Forest virus | Alphavirus barmah | BFV | Togaviridae | Yes | - | [224] |
Beatrice Hill virus | Tibrovirus beatrice | BHV | Rhabdoviridae | Yes | - | [224] |
Belmont virus | Orthobunyavirus belmontense | BELV | Peribunyaviridae | Yes | - | [224] |
Bivens arm virus (a subtype of Tibrogargan virus) | Tibrovirus tibrogargan | BAV | Rhabdoviridae | Yes | - | [300] |
Bluetongue virus | Orbivirus caerulinguae | BTV | Sedoreoviridae | Yes | Yes (transmission to sheep) | [192,193,194,195,196,197,198,199,200,213,214] |
Bovine ephemeral fever virus | Ephemerovirus febris | BEFV | Rhabdoviridae | Yes | - | [180,219,220] |
Bunyip Creek virus | none | BCV | Sedoreoviridae | Yes | - | [303] |
Buttonwillow virus | Orthobunyavirus buttonwillowense | BUTV | Peribunyaviridae | Yes | - | [285,296] |
Chuzan virus | 4 none | CHUV | Sedoreoviridae | - | - | [298] |
Crimean-Congo hemorrhagic fever virus | Orthonairovirus haemorrhagiae | CCHFV | Nairoviridae | Yes | - | [290] |
Curionopolis virus | Curiovirus curionopolis | CURV | Rhabdoviridae | Yes | - | [301] |
Douglas virus (a subtype of Schmallenberg virus) | Orthobunyavirus schmallenbergense | DOUV | Peribunyaviridae | Yes | - | [280] |
Eastern equine encephalitis virus | Alphavirus eastern | EEEV | Togaviridae | Yes | - | [291] |
Epizootic hemorrhagic disease virus | Orbivirus ruminantium | EHDV | Sedoreoviridae | Yes | Yes (transmission to deer) | [231,239,327,328,329] |
Eubenangee virus | Orbivirus eubenangeense | EUBV | Sedoreoviridae | Yes | - | [224] |
Facey’s Paddock virus | Faceyspaddock orthobunyavirus | FPV | Peribunyaviridae | Yes | - | [224] |
Fowlpox virus | Avipoxvirus fowlpox | FWPV | Poxviridae | - | - | [314] |
Fukuoka virus | Ledantevirus fukuoka | FUKV | Rhabdoviridae | Yes | - | [308] |
Ibaraki virus | none | IBAV | Sedoreoviridae | Yes | - | [175] |
Ingwavuma virus | Orthobunyavirus ingwavumaense | INGV | Peribunyaviridae | Yes | - | [287] |
Iquitos virus (a subtype of Oropouche virus) | Orthobunyavirus oropoucheense | IQTV | Peribunyaviridae | Yes | - | [145] |
Israel turkey meningoencephalitis virus | Orthoflavivirus israelense | ITV | Flaviviridae | Yes | - | [54] |
Itacaiunas virus | Curiovirus itacaiunas | ITAV | Rhabdoviridae | Yes | - | [301] |
Jatobal virus | Orthobunyavirus jatobalense | JATV | Peribunyaviridae | Yes | - | [145] |
Kimberley virus | Ephemerovirus kimberley | KIMV | Rhabdoviridae | Yes | - | [305] |
Kotonkan virus | Ephemerovirus kotonkan | KOTV | Rhabdoviridae | Yes | - | [304] |
Leanyer virus | Orthobunyavirus leanyerense | Peribunyaviridae | Yes | - | [224] | |
Lokern virus (a subtype of Main Drain virus) | Orthobunyavirus kernense | LOKV | Peribunyaviridae | Yes | - | [296] |
Madre de Dios virus (a subtype of Oropouche virus) | Orthobunyavirus oropoucheense | MDDV | Peribunyaviridae | Yes | - | [145] |
Main Drain virus | Orthobunyavirus kernense | MDV | Peribunyaviridae | Yes | Yes (transmission to uninfected blood suspensions) | [296] |
Manzanilla virus | Orthobunyavirus manzanillaense | MANV | Peribunyaviridae | Yes | - | [145] |
Ngaingan virus | Hapavirus ngaingan | NGAV | Rhabdoviridae | Yes | - | [309] |
Oropouche virus | Orthobunyavirus oropoucheense | OROV | Peribunyaviridae | Yes | Yes (transmission to hamsters) | [246,251] |
Palyam virus | Orbivirus palyamense | PALV | Sedoreoviridae | Yes | - | [299] |
Peaton virus | Orthobunyavirus peachesterense | PEAV | Peribunyaviridae | Yes | - | [281,282] |
Pintupo virus (a subtype of Oropouche virus) | Orthobunyavirus oropoucheense | PINTV | Peribunyaviridae | - | - | [251] |
Rift Valley fever virus | Phlebovirus riftense | RVFV | Phenuiviridae | Yes | - | [289] |
Sabo virus | Orthobunyavirus saboense | SABOV | Peribunyaviridae | Yes | - | [290] |
Sango virus | Orthobunyavirus sangoense | SANV | Peribunyaviridae | Yes | - | [290] |
Sathuperi virus (a subtype of Schmallenberg virus) | Orthobunyavirus schmallenbergense | SATV | Peribunyaviridae | Yes | - | [290] |
Schmallenberg virus | Orthobunyavirus schmallenbergense | SBV | Peribunyaviridae | Yes | - | [199,266,267,268,269,270,271,272,273,274,275,276,277] |
Shamonda virus (a subtype of Schmallenberg virus) | Orthobunyavirus schmallenbergense | SHAV | Peribunyaviridae | Yes | - | [290] |
Shuni virus | Orthobunyavirus shuniense | SHUV | Peribunyaviridae | Yes | - | [290] |
Simbu virus | Orthobunyavirus simbuense | SIMV | Peribunyaviridae | Yes | - | [145] |
Sweetwater Branch virus | Tibrovirus sweetwater | SWBV | Rhabdoviridae | Yes | - | [307] |
Thimiri virus | Orthobunyavirus thimiriense | THIV | Peribunyaviridae | Yes | - | [224] |
Tibrogargan virus | Tibrovirus tibrogargan | TIBV | Rhabdoviridae | Yes | - | [306] |
Tinaroo virus (a subtype of Akabane virus) | Orthobunyavirus akabaneense | TINV | Peribunyaviridae | Yes | - | [280] |
Venezuelan equine encephalitis virus | Alphavirus venezuelan | VEEV | Togaviridae | Yes | - | [297] |
Vesicular stomatitis New Jersey virus | Vesiculovirus newjersey | VSNJV | Rhabdoviridae | Yes | - | [296] |
Wallal virus | Orbivirus betamitchellense | WALV | Sedoreoviridae | Yes | - | [224] |
Warrego virus | Orbivirus gammamitchellense | WARV | Sedoreoviridae | Yes | - | [224] |
Weldona virus (a subtype of Tete virus) | Orthobunyavirus teteense | WELV | Peribunyaviridae | Yes | - | [288] |
West Nile virus | Orthoflavivirus nilense | WNV | Flaviviridae | Yes | - | [292] |
Wongorr virus | Orbivirus deltamitchellense | WGRV | Sedoreoviridae | Yes | - | [224] |
7. Fleas
7.1. Recognized Arboviruses
7.2. Other Vertebrate-Infecting Viruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Flea-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Canine distemper virus | Morbillivirus canis | CDV | Paramyxoviridae | 2 - | - | [340] |
Hantaan virus | Orthohantavirus hantanense | HTNV | Hantaviridae | - | - | [339] |
Tick-borne encephalitis virus | Orthoflavivirus encephalitidis | TBEV | Flaviviridae | Yes | Yes (transmission to mice, but it may have been mechanical) | [332,333,336,337] |
7.3. Viruses Not Known to Infect Vertebrates
8. Hippoboscid Flies
8.1. Recognized Arboviruses
8.2. Other Vertebrate-Infecting Viruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Hippoboscid-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Aksy-Durug Melophagus sigmavirus | 2 none | ADMSV | Rhabdoviridae | 3 - | - | [357] |
Bluetongue virus | Orbivirus caerulinguae | BTV | Sedoreoviridae | Yes | - | [354] |
Border disease virus | Pestivirus ovis | BDV | Flaviviridae | - | - | [356] |
Bovine viral diarrhea virus | Pestivirus bovis | BVDV | Flaviviridae | - | - | [354] |
West Nile virus | Orthoflavivirus nilense | WNV | Flaviviridae | Yes | - | [352,353] |
8.3. Viruses Not Known to Infect Vertebrates
9. Lice
9.1. Recognized Arboviruses
9.2. Other Vertebrate-Infecting Viruses
9.3. Viruses Not Known to Infect Vertebrates
10. Mites
10.1. Recognized Arboviruses
10.2. Other Vertebrate-Infecting Viruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Mite-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Cocal virus | Vesiculovirus cocal | COCV | Rhabdoviridae | Yes | 2 - | [390] |
Eastern equine encephalitis virus | Alphavirus eastern | EEEV | Togaviridae | Yes | Yes (transmission to chickens, but highly inefficient) | [383,387] |
Hantaan virus | Orthohantavirus hantanense | HTNV | Hantaviridae | - | Yes (transmission to mice; a minor role in HTNV transmission has been suggested) | [339,395,396,397,398,400,402] |
Junin virus | Mammarenavirus juninense | JUNV | Arenaviridae | - | - | [403] |
Severe fever with thrombocytopenia syndrome virus | Bandavirus dabieense | SFTSV | Phenuiviridae | Yes | - | [393] |
St. Louis encephalitis virus | Orthoflavivirus louisense | SLEV | Flaviviridae | Yes | Conflicting data on whether mites can transmit SLEV to chickens, although they are considered inconsequential vectors | [374,375,376,377,378] |
Western equine encephalitis virus | Alphavirus western | WEEV | Togaviridae | Yes | Yes (transmission to chickens, but highly inefficient) | [379,380,381,382] |
10.3. Viruses Not Known to Infect Vertebrates
11. Muscid Flies
11.1. Recognized Arboviruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 2 Experimental Evidence of Muscid-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
African swine fever virus | Asfivirus haemorrhagiae | ASFV | Asfarviridae | Yes | 3 - | [408] |
Bovine leukosis virus | Deltaretrovirus bovleu | BLV | Retroviridae | - | - | [411] |
West Nile virus | Orthoflavivirus nilense | WNV | Flaviviridae | Yes | - | [407] |
11.2. Other Vertebrate-Infecting Viruses
11.3. Viruses Not Known to Infect Vertebrates
12. Phlebotomine Sandflies
12.1. Recognized Arboviruses
12.2. Other Vertebrate-Infecting Viruses
12.3. Viruses Not Known to Infect Vertebrates
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 2 Experimental Evidence of Sandfly-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Adana virus | Phlebovirus adanaense | ADAV | Phenuiviridae | Yes | 3 - | [500] |
Aguacate virus | Phlebovirus aguacateense | AGUV | Phenuiviridae | Yes | - | [460,501] |
Alcube virus | Phlebovirus alcubeense | ACBV | Phenuiviridae | Yes | - | [502] |
Ambé virus | Phlebovirus ambeense | ABEV | Phenuiviridae | Yes | - | [488,503] |
Arbia virus (a subtype of Salehabad virus) | Phlebovirus salehabadense | ARBV | Phenuiviridae | Yes | - | [54,451] |
Ariquemes virus (a subtype of Candiru virus) | Phlebovirus candiruense | CDUV | Phenuiviridae | Yes | - | [504] |
Arrábida virus (a subtype of Sandfly fever Naples virus) | Phlebovirus napoliense | ARRV | Phenuiviridae | Yes | - | [505] |
Balkan virus (a subtype of Sandfly fever Naples virus) | Phlebovirus napoliense | BALKV | Phenuiviridae | Yes | - | [506,507] |
Bregalaka virus (a subtype of Salehabad virus) | Phlebovirus salehabadense | BREV | Phenuiviridae | Yes | - | [508] |
Buenaventura virus | Phlebovirus buenaventuraense | BUEV | Phenuiviridae | Yes | - | [54,461,509] |
Cacao virus | Phlebovirus cacaoense | CACV | Phenuiviridae | Yes | - | [54,460] |
Caimito virus | Pacuvirus caimitoense | CAIV | Peribunyaviridae | Yes | - | [54] |
Campana virus | Phlebovirus campanaense | CMAV | Phenuiviridae | Yes | - | [460,461] |
Capira virus (a subtype of Punta Toro virus) | Phlebovirus toroense | CAPIV | Phenuiviridae | Yes | - | [461] |
Carajas virus | Vesiculovirus carajas | CJSV | Rhabdoviridae | Yes | - | [481] |
Chagres virus | Phlebovirus chagresense | CHGV | Phenuiviridae | Yes | - | [54,460], |
Chandipura virus | Vesiculovirus chandipura | CHPV | Rhabdoviridae | Yes | Yes (transmission to mice) | [467,468,470,473,474,510] |
Changuinola virus | Orbivirus changuinolaense | CGLV | Sedoreoviridae | Yes | - | [511] |
Charleville virus | Sripuvirus charleville | CHVV | Rhabdoviridae | Yes | - | [483] |
Chilibre virus | Pacuvirus chilibreense | CHIV | Peribunyaviridae | Yes | - | [54] |
Corfou virus | Phlebovirus corfouense | CFUV | Phenuiviridae | Yes | - | [54] |
Dashli virus | Phlebovirus dashliense | DASV | Phenuiviridae | Yes | - | [512] |
Durania virus | Phlebovirus duraniaense | DRNV | Phenuiviridae | Yes | - | [503] |
Fermo virus (a subtype of Sandfly fever Naples virus) | Phlebovirus napoliense | FERV | Phenuiviridae | Yes | - | [451] |
Frijoles virus | Phlebovirus limboense | FRIV | Phenuiviridae | Yes | - | [54,513] |
Granada virus (a subtype of Sandfly fever Naples virus) | Phlebovirus napoliense | GRV; GRAV | Phenuiviridae | Yes | - | [514] |
Guamá virus | Orthobunyavirus guamaense | GMAV | Peribunyaviridae | Yes | - | [54,464,487,515] |
Hedi virus | Phlebovirus hediense | HEDV | Phenuiviridae | - | - | [489] |
Inhangapi virus | Arurhavirus inhangapi | INHV | Rhabdoviridae | Yes | - | [484] |
Iriri virus | Curiovirus iriri | IRIRV | Rhabdoviridae | Yes | - | [307] |
Isfahan virus | Vesiculovirus isfahan | ISFV | Rhabdoviridae | Yes | - | [516,517] |
Ixcanal virus | Phlebovirus ixcanalense | IXCV | Phenuiviridae | Yes | - | [503] |
Joá virus (a subtype of Frijoles virus) | Phlebovirus limboense | JOAV | Phenuiviridae | Yes | - | [488] |
Karimabad virus | Phlebovirus karimabadense | KARV | Phenuiviridae | Yes | - | [54,441,518] |
Koutango virus | Orthoflavivirus koutangoense | KOUV | Flaviviridae | Yes | - | [519] |
Maraba virus | Vesiculovirus maraba | MARV | Rhabdoviridae | Yes | - | [481] |
Medjerda Valley virus | Phlebovirus medjerdaense | MVV | Phenuiviridae | Yes | - | [520] |
Morreton virus | Vesiculovirus morreton | MORV | Rhabdoviridae | Yes | - | [307] |
Munguba virus | Phlebovirus mungubaense | MUNV | Phenuiviridae | Yes | - | [488] |
Nique virus | Phlebovirus niqueense | NIQV | Phenuiviridae | Yes | - | [504] |
Oriximiná virus | Phlebovirus oriximinaense | ORXV | Phenuiviridae | Yes | - | [504] |
Pacui virus | Pacuvirus pacuiense | PACV | Peribunyaviridae | Yes | - | [487] |
Perinet virus | Vesiculovirus perinet | PERV | Rhabdoviridae | Yes | - | [54] |
Punique virus | Phlebovirus puniqueense | PUNV | Phenuiviridae | Yes | - | [439,521,522,523] |
Punta Toro virus | Phlebovirus toroense | PTV | Phenuiviridae | Yes | - | [54,461] |
Radi virus | Vesiculovirus radi | RADV | Rhabdoviridae | Yes | - | [54] |
Rift Valley fever virus | Phlebovirus riftense | RVFV | Phenuiviridae | Yes | Yes (transmission to hamsters) | [456] 4 Genbank Accession No. ON856673 |
Rio Preto da Eva virus | Pacuvirus evaense | RPEV | Peribunyaviridae | Yes | - | [524] |
Saboya virus | Orthoflavivirus saboyaense | SABV | Flaviviridae | - | - | [54,468,490,492] |
Saddaguia virus (a subtype of Sandfly fever Naples virus) | Phlebovirus napoliense | SADV | Phenuiviridae | Yes | - | [462] |
Salehabad virus | Phlebovirus salehabadense | SALV | Phenuiviridae | Yes | - | [525] |
Sandfly fever Naples virus | Phlebovirus napoliense | SFNV | Phenuiviridae | Yes | Possibly (transmission of a virus, likely SFNV or SFSV, to human volunteers) | [54,443,526,527,528,529] |
Sandfly fever Sicilian virus | Phlebovirus siciliaense | SFSV | Phenuiviridae | Yes | Possibly (transmission of a virus, likely SFNV or SFSV, to human volunteers) | [54,422,431,440,441,442,443] |
Sandfly fever Turkey virus | 5 none | SFTV | Phenuiviridae | Yes | - | [417, 428] |
Santa Barbara virus | Arurhavirus santabarbara | SBAV | Rhabdoviridae | - | - | [464] |
Santarém virus | none | STMV | Peribunyaviridae | Yes | - | [54] |
Tapará virus | Phlebovirus taparaense | TPRV | Phenuiviridae | Yes | - | [488] |
Tehran virus | Phlebovirus tehranense | THEV | Phenuiviridae | Yes | - | [54,441,530] |
Toscana virus | Phlebovirus toscanaense | TOSV | Phenuiviridae | Yes | - | [425,428,450,531] |
Turuna virus | Phlebovirus turunaense | TUAV | Phenuiviridae | Yes | - | [504] |
Uriurana virus | Phlebovirus uriuranaense | URIV | Phenuiviridae | Yes | - | [488] |
Vesicular stomatitis Alagoas virus | Vesiculovirus alagoas | VSAV | Rhabdoviridae | Yes | Yes (transmission to mice) | [482] |
Vesicular stomatitis Indiana virus | Vesiculovirus indiana | VSIV | Rhabdoviridae | Yes | Yes (transmission to hamsters) | [54,80,477] |
Vesicular stomatitis New Jersey virus | Vesiculovirus newjersey | VSNJV | Rhabdoviridae | Yes | Yes (transmission to hamsters) | [80,475,476,479] |
Wuxiang virus | none | WUXV | Phenuiviridae | - | - | [493,532] |
Yug Bogdanovac virus | Vesiculovirus bogdanovac | YBV | Rhabdoviridae | Yes | - | [54] |
Zaba virus (a subtype of Salehabad virus) | Phlebovirus salehabadense | ZABAV | Phenuiviridae | Yes | - | [508] |
Zerdali virus | Phlebovirus zerdaliense | ZERV | Phenuiviridae | Yes | - | [533] |
13. Tabanids
13.1. Recognized Arboviruses
Virus | Species Name | Abbreviation | Family | Recognized Arbovirus | 1 Experimental Evidence of Tabanid-Borne Virus Transmission | Citation |
---|---|---|---|---|---|---|
Jamestown Canyon virus | Orthobunyavirus jamestownense | JCV | Peribunyaviridae | Yes | 2 - | [541] |
Kamenushka Hybomitra narna-like virus | 3 none | KHNV | Narnaviridae | - | - | [543] |
Medvezhye Chrysops ifla-like virus | none | MCIV | Iflaviridae | - | - | [543] |
Medvezhye Chrysops narna-like virus 2 | none | MCNV2 | Narnaviridae | - | - | [543] |
Medvezhye pound Haematopota permuto-like virus | none | MHPV | Permutotetraviridae | - | - | [543] |
Medvezhye tabanus Toti-like virus | none | none assigned | Totiviridae | - | - | [543] |
Melisia Chrysops solemo-like virus | none | MCSV | Solemoviridae | - | - | [543] |
Volxa Hybomitra toti-like virus | none | VHTV | Totiviridae | - | - | [543] |
Xanka Hybomitra negev-like virus | none | XHNV | unclassified | - | - | [543] |
13.2. Other Vertebrate-Infecting Viruses
13.3. Viruses Not Known to Infect Vertebrates
14. Triatomines
14.1. Recognized Arboviruses
14.2. Other Vertebrate-Infecting Viruses
14.3. Viruses Not Known to Infect Vertebrates
15. Tsetse Flies
16. Conclusions
Funding
Conflicts of Interest
References
- Huang, Y.; Wang, S.; Liu, H.; Atoni, E.; Wang, F.; Chen, W.; Li, Z.; Rodriguez, S.; Yuan, Z.; Ming, Z.; et al. A global dataset of sequence, diversity and biosafety recommendation of arbovirus and arthropod-specific virus. Sci. Data 2023, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.K.; Rossi, S.L.; Tesh, R.B.; Weaver, S.C. Zoonotic mosquito-borne arboviruses: Spillover, spillback, and realistic mitigation strategies. Sci. Transl. Med. 2023, 15, eadj2166. [Google Scholar] [CrossRef] [PubMed]
- Hunsperger, E.A.; Hughes, H.R.; Ritter, J.M.; Brault, A.C. Arboviruses. ClinMicroNow. In Manual of Clinical Microbiology, 13th ed.; Carroll, K.C., Pfaller, M.A., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 1–23. [Google Scholar]
- Azar, S.R.; Campos, R.K.; Bergren, N.A.; Camargos, V.N.; Rossi, S.L. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020, 8, 1167. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Higgs, S.; Vanlandingham, D.L. Emergence and re-emergence of mosquito-borne arboviruses. Curr. Opin. Virol. 2019, 34, 104–109. [Google Scholar] [CrossRef]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Weaver, S.C.; Charlier, C.; Vasilakis, N.; Lecuit, M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu. Rev. Med. 2018, 69, 395–408. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, e101–e106. [Google Scholar] [CrossRef]
- Lazear, H.M.; Diamond, M.S. Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere. J. Virol. 2016, 90, 4864–4875. [Google Scholar] [CrossRef]
- Brussow, H.; Figuerola, J. The Spread of the Mosquito-Transmitted West Nile Virus in North America and Europe. Microb. Biotechnol. 2025, 18, e70120. [Google Scholar] [CrossRef]
- de Souza, W.M.; Ribeiro, G.S.; de Lima, S.T.S.; de Jesus, R.; Moreira, F.R.R.; Whittaker, C.; Sallum, M.A.M.; Carrington, C.V.; Sabino, E.C.; Kitron, U.; et al. Chikungunya: A decade of burden in the Americas. Lancet Reg. Health Am. 2024, 30, 100673. [Google Scholar] [CrossRef]
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Primers 2016, 2, 16055. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.A.; Barrett, A.D.T. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals 2021, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- van den Hurk, A.F.; Ritchie, S.A.; Mackenzie, J.S. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 2009, 54, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Srilekha, N.; Kandi, V.; Jayashankar, C.A.; Harshitha, A.; Akshay, A.S.; Kapil, C.; Palacholla, P.S. Kyasanur Forest Disease: A Comprehensive Review. Cureus 2024, 16, e65228. [Google Scholar]
- Casel, M.A.; Park, S.J.; Choi, Y.K. Severe fever with thrombocytopenia syndrome virus: Emerging novel phlebovirus and their control strategy. Exp. Mol. Med. 2021, 53, 713–722. [Google Scholar] [CrossRef]
- Hermance, M.E.; Thangamani, S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector Borne Zoonotic Dis. 2017, 17, 453–462. [Google Scholar] [CrossRef]
- Kimble, J.B.; Noronha, L.; Trujillo, J.D.; Mitzel, D.; Richt, J.A.; Wilson, W.C. Rift Valley Fever. Vet. Clin. N. Am. Food Anim. Pract. 2024, 40, 293–304. [Google Scholar] [CrossRef]
- Hawman, D.W.; Feldmann, H. Crimean–Congo haemorrhagic fever virus. Nat. Rev. Microbiol. 2023, 21, 463–477. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef]
- Laroche, M.; Raoult, D.; Parola, P. Insects and the Transmission of Bacterial Agents. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J. Infectious Diseases and Arthropods; Springer Science & Business Media: Cham, Switzerland, 2009. [Google Scholar]
- Juckett, G. Arthropod-Borne Diseases: The Camper’s Uninvited Guests. In Infections of Leisure, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 83–96. [Google Scholar] [CrossRef]
- Barnett, H. (Ed.) The incrimination of arthropods as vectors of disease. In Proceedings of the 11th International Congress of Entomology, Vienna, Austria, 17–25 August 1960. [Google Scholar]
- Casals, J. Arboviruses: Incorporation in a general system of virus classification. In Comparative Virology; Elsevier: Amsterdam, The Netherlands, 1971; pp. 307–333. [Google Scholar]
- Kain, M.P.; Skinner, E.B.; Athni, T.S.; Ramirez, A.L.; Mordecai, E.A.; van den Hurk, A.F. Not all mosquitoes are created equal: A synthesis of vector competence experiments reinforces virus associations of Australian mosquitoes. PLoS Negl. Trop. Dis. 2022, 16, e0010768. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Parida, M.; Dash, P.K. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev. Med. Virol. 2017, 27, e1941. [Google Scholar] [CrossRef] [PubMed]
- Wu, V.Y.; Chen, B.; Christofferson, R.; Ebel, G.; Fagre, A.C.; Gallichotte, E.N.; Sweeny, A.R.; Carlson, C.J.; Ryan, S.J. A minimum data standard for vector competence experiments. Sci. Data 2022, 9, 634. [Google Scholar] [CrossRef]
- Ruckert, C.; Ebel, G.D. How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends Parasitol. 2018, 34, 310–321. [Google Scholar] [CrossRef]
- Franz, A.W.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Conway, M.J.; Colpitts, T.M.; Fikrig, E. Role of the vector in arbovirus transmission. Annu. Rev. Virol. 2014, 1, 71–88. [Google Scholar] [CrossRef]
- Lewis, J.; Gallichotte, E.N.; Randall, J.; Glass, A.; Foy, B.D.; Ebel, G.D.; Kading, R.C. Intrinsic factors driving mosquito vector competence and viral evolution: A review. Front. Cell Infect. Microbiol. 2023, 13, 1330600. [Google Scholar] [CrossRef]
- Nuckols, J.T.; Ziegler, S.A.; Huang, Y.J.; McAuley, A.J.; Vanlandingham, D.L.; Klowden, M.J.; Spratt, H.; Davey, R.A.; Higgs, S. Infection of Aedes albopictus with chikungunya virus rectally administered by enema. Vector Borne Zoonotic Dis. 2013, 13, 103–110. [Google Scholar] [CrossRef]
- Wen, D.; Li, S.; Dong, F.; Zhang, Y.; Lin, Y.; Wang, J.; Zou, Z.; Zheng, A. N-glycosylation of Viral E Protein Is the Determinant for Vector Midgut Invasion by Flaviviruses. mBio 2018, 9, e00046-18. [Google Scholar] [CrossRef]
- Althouse, B.M.; Hanley, K.A. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370, 37020140299. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front. Microbiol. 2019, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.E.; Thangamani, S. Tick-virus interactions: Current understanding and future perspectives. Parasite Immunol. 2021, 43, e12815. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Hu, Z.; Deng, F.; Shen, S. Tick-borne viruses. Virol. Sin. 2018, 33, 21–43. [Google Scholar] [CrossRef]
- Braack, L.; Gouveia de Almeida, A.P.; Cornel, A.J.; Swanepoel, R.; de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites Vectors 2018, 11, 29. [Google Scholar] [CrossRef]
- Sukhralia, S.; Verma, M.; Gopirajan, S.; Dhanaraj, P.S.; Lal, R.; Mehla, N.; Kant, C.R. From dengue to Zika: The wide spread of mosquito-borne arboviruses. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 3–14. [Google Scholar] [CrossRef]
- Nelson, A.N.; Ploss, A. Emerging mosquito-borne flaviviruses. mBio 2024, 15, e0294624. [Google Scholar] [CrossRef]
- Yu, K.M.; Park, S.J. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024, 19, 100903. [Google Scholar] [CrossRef]
- Gomes, L.; Godoy, W.A.; Von Zuben, C.J. A review of postfeeding larval dispersal in blowflies: Implications for forensic entomology. Naturwissenschaften 2006, 93, 207–215. [Google Scholar] [CrossRef]
- Yan, L.; Pape, T.; Meusemann, K.; Kutty, S.N.; Meier, R.; Bayless, K.M.; Zhang, D. Monophyletic blowflies revealed by phylogenomics. BMC Biol. 2021, 19, 230. [Google Scholar] [CrossRef]
- Aguiar, E.R.; Olmo, R.P.; Marques, J.T. Virus-derived small RNAs: Molecular footprints of host-pathogen interactions. Wiley Interdiscip. Rev. RNA 2016, 7, 824–837. [Google Scholar] [CrossRef] [PubMed]
- Szentivanyi, T.; Christe, P.; Glaizot, O. Bat Flies and Their Microparasites: Current Knowledge and Distribution. Front. Vet. Sci. 2019, 6, 115. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, Y.; Fu, S.; Li, X.; Song, J.; Zhang, H.; Yang, W.; Zhang, Y.; Pan, H.; Liang, G. Isolation of Kaeng Khoi virus (KKV) from Eucampsipoda sundaica bat flies in China. Virus Res. 2017, 238, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Jansen van Vuren, P.; Wiley, M.; Palacios, G.; Storm, N.; McCulloch, S.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa. Viruses 2016, 8, 65. [Google Scholar] [CrossRef]
- Jansen van Vuren, P.; Wiley, M.R.; Palacios, G.; Storm, N.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J. Gen. Virol. 2017, 98, 935–945. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, W.; Feng, Y.; Li, Y.; Fu, S.; Li, X.; Song, J.; Zhang, H.; Zhang, Y.; Liu, W.J.; et al. Isolation and Identification of a Highly Divergent Kaeng Khoi Virus from Bat Flies (Eucampsipoda sundaica) in China. Vector Borne Zoonotic Dis. 2019, 19, 73–80. [Google Scholar] [CrossRef]
- Kuang, G.; Xu, Z.; Wang, J.; Gao, Z.; Yang, W.; Wu, W.; Liang, G.; Shi, M.; Feng, Y. Nelson Bay Reovirus Isolated from Bats and Blood-Sucking Arthropods Collected in Yunnan Province, China. Microbiol. Spectr. 2023, 11, e0512222. [Google Scholar] [CrossRef]
- Abundes-Gallegos, J.; Salas-Rojas, M.; Galvez-Romero, G.; Perea-Martínez, L.; Obregón-Morales, C.Y.; Morales-Malacara, J.B.; Chomel, B.B.; Stuckey, M.J.; Moreno-Sandoval, H.; García-Baltazar, A.; et al. Detection of Dengue Virus in Bat Flies (Diptera: Streblidae) of Common Vampire Bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico. Vector Borne Zoonotic Dis. 2018, 18, 70–73. [Google Scholar] [CrossRef]
- ArboCat. Arbovirus Catalog—The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates. Centers for Disease Control and Prevention, Atlanta, GA, USA. Available online: https://wwwn.cdc.gov/arbocat/ (accessed on 1 May 2025).
- Osborne, J.C.; Rupprecht, C.E.; Olson, J.G.; Ksiazek, T.G.; Rollin, P.E.; Niezgoda, M.; Goldsmith, C.S.; An, U.S.; Nichol, S.T. Isolation of Kaeng Khoi virus from dead Chaerephon plicata bats in Cambodia. J. Gen. Virol. 2003, 84 Pt 10, 2685–2689. [Google Scholar] [CrossRef]
- Gard, G.; Compans, R.W. Structure and cytopathic effects of Nelson Bay virus. J. Virol. 1970, 6, 100–106. [Google Scholar] [CrossRef]
- Chua, K.B.; Crameri, G.; Hyatt, A.; Yu, M.; Tompang, M.R.; Rosli, J.; McEachern, J.; Crameri, S.; Kumarasamy, V.; Eaton, B.T.; et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 11424–11429. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.J.; Paskey, A.C.; Kuhn, J.H.; Bishop-Lilly, K.A.; Goldberg, T.L. Diversity, Transmission, and Cophylogeny of Ledanteviruses (Rhabdoviridae: Ledantevirus) and Nycteribiid Bat Flies Parasitizing Angolan Soft-Furred Fruit Bats in Bundibugyo District, Uganda. Microorganisms 2020, 8, 750. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.L.; Bennett, A.J.; Kityo, R.; Kuhn, J.H.; Chapman, C.A. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Sci. Rep. 2017, 7, 5287. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Gonzalez-Miguel, J.; Msheliza, E.G.; Goldberg, T.L. Straw-Colored Fruit Bats (Eidolon helvum) and Their Bat Flies (Cyclopodia greefi) in Nigeria Host Viruses with Multifarious Modes of Transmission. Vector Borne Zoonotic Dis. 2022, 22, 545–552. [Google Scholar] [CrossRef]
- Ramirez-Martinez, M.M.; Bennett, A.J.; Dunn, C.D.; Yuill, T.M.; Goldberg, T.L. Bat Flies of the Family Streblidae (Diptera: Hippoboscoidea) Host Relatives of Medically and Agriculturally Important “Bat-Associated” Viruses. Viruses 2021, 13, 860. [Google Scholar] [CrossRef]
- Tendu, A.; Kane, Y.; Li, R.; Omondi, V.; Chen, X.; Chen, Y.; Mastriani, E.; Lan, J.; Hughes, A.C.; Berthet, N.; et al. Virome characterization and identification of a putative parvovirus and poxvirus in bat ectoparasites of Yunnan Province, China. One Health 2023, 17, 100641. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, Y.; Chen, X.; Shi, M.; Fu, S.; Yang, W.; Liu, W.J.; Gao, G.F.; Liang, G. Virome of Bat-Infesting Arthropods: Highly Divergent Viruses in Different Vectors. J. Virol. 2022, 96, e0146421. [Google Scholar] [CrossRef]
- Aznar-Lopez, C.; Vazquez-Moron, S.; Marston, D.A.; Juste, J.; Ibáñez, C.; Berciano, J.M.; Salsamendi, E.; Aihartza, J.; Banyard, A.C.; McElhinney, L.; et al. Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats. J. Gen. Virol. 2013, 94 Pt 1, 69–75. [Google Scholar] [CrossRef]
- Adler, P.H.; McCreadie, J.W. Black flies (Simuliidae). In Medical and Veterinary Entomology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–259. [Google Scholar]
- Brattig, N.W.; Cheke, R.A.; Garms, R. Onchocerciasis (river blindness)—More than a century of research and control. Acta Trop. 2021, 218, 105677. [Google Scholar] [CrossRef]
- Ta-Tang, T.H.; Crainey, J.L.; Post, R.J.; Luz, S.L.; Rubio, J.M. Mansonellosis: Current perspectives. Res. Rep. Trop. Med. 2018, 9, 9–24. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Iezhova, T.A. Insights into the biology of Leucocytozoon species (Haemosporida, Leucocytozoidae): Why is there slow research progress on agents of leucocytozoonosis? Microorganisms 2023, 11, 1251. [Google Scholar] [CrossRef] [PubMed]
- Rozo-Lopez, P.; Drolet, B.S.; Londono-Renteria, B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects 2018, 9, 190. [Google Scholar] [CrossRef]
- Pelzel-McCluskey, A.M. Vesicular stomatitis virus. Vet. Clin. N. Am. Equine Pract. 2023, 39, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Reis Junior, J.L.; Mead, D.; Rodriguez, L.L.; Brown, C.C. Transmission and pathogenesis of vesicular stomatitis viruses. Braz. J. Vet. Pathol. 2009, 2, 49–58. [Google Scholar]
- Rivera-Martínez, A.; Laredo-Tiscareño, S.V.; Adame-Gallegos, J.R.; Luna-Santillana, E.J.; Rodríguez-Alarcón, C.A.; García-Rejón, J.E.; Casas-Martínez, M.; Garza-Hernández, J.A. Viruses in Simuliidae: An Updated Systematic Review of Arboviral Diversity and Vector Potential. Life 2025, 15, 807. [Google Scholar] [CrossRef]
- Schnitzlein, W.M.; Reichmann, M.E. Characterization of New Jersey vesicular stomatitis virus isolates from horses and black flies during the 1982 outbreak in Colorado. Virology 1985, 142, 426–431. [Google Scholar] [CrossRef]
- Francy, D.B.; Moore, C.G.; Smith, G.C.; Jakob, W.L.; Taylor, S.A.; Calisher, C.H. Epizootic vesicular stomatitis in Colorado, 1982: Isolation of virus from insects collected along the northern Colorado Rocky Mountain Front Range. J. Med. Entomol. 1988, 25, 343–347. [Google Scholar] [CrossRef]
- Scroggs, S.L.P.; Swanson, D.A.; Steele, T.D.; Hudson, A.R.; Reister-Hendricks, L.M.; Gutierrez, J.; Shults, P.; McGregor, B.L.; Taylor, C.E.; Davis, T.M.; et al. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses 2024, 16, 1428. [Google Scholar] [CrossRef]
- Schmidtmann, E.T.; Tabachnick, W.J.; Hunt, G.J.; Thompson, L.H.; Hurd, H.S. 1995 epizootic of vesicular stomatitis (New Jersey serotype) in the western United States: An entomologic perspective. J. Med. Entomol. 1999, 36, 1–7. [Google Scholar] [CrossRef]
- Young, K.I.; Valdez, F.; Vaquera, C.; Campos, C.; Zhou, L.; Vessels, H.K.; Moulton, J.K.; Drolet, B.S.; Rozo-Lopez, P.; Pelzel-McCluskey, A.M.; et al. Surveillance along the Rio Grande during the 2020 Vesicular Stomatitis Outbreak Reveals Spatio-Temporal Dynamics of and Viral RNA Detection in Black Flies. Pathogens 2021, 10, 1264. [Google Scholar] [CrossRef]
- McGregor, B.L.; Rozo-Lopez, P.; Davis, T.M.; Drolet, B.S. Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA. Pathogens 2021, 10, 1126. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.S.; Reeves, W.K.; Bennett, K.E.; Pauszek, S.J.; Bertram, M.R.; Rodriguez, L.L. Identical viral genetic sequence found in black flies (Simulium bivittatum) and the equine index case of the 2006 US vesicular stomatitis outbreak. Pathogens 2021, 10, 929. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.H.; Valdez, F.; Lopez Gonzalez, I.; Freysser Urbina, W.; Ocaña, A.; Tapia, C.; Zambrano, A.; Hernandez Solis, E.; Peters, D.P.C.; Mire, C.E.; et al. Vesicular Stomatitis Virus Transmission Dynamics Within Its Endemic Range in Chiapas, Mexico. Viruses 2024, 16, 1742. [Google Scholar] [CrossRef] [PubMed]
- Mead, D.G.; Mare, C.J.; Ramberg, F.B. Bite transmission of vesicular stomatitis virus (New Jersey serotype) to laboratory mice by Simulium vittatum (Diptera: Simuliidae). J. Med. Entomol. 1999, 36, 410–413. [Google Scholar] [CrossRef]
- Mead, D.G.; Gray, E.W.; Noblet, R.; Murphy, M.D.; Howerth, E.W.; Stallknecht, D.E. Biological transmission of vesicular stomatitis virus (New Jersey serotype) by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). J. Med. Entomol. 2004, 41, 78–82. [Google Scholar] [CrossRef]
- Mead, D.G.; Lovett, K.R.; Murphy, M.D.; Pauszek, S.J.; Smoliga, G.; Gray, E.W.; Noblet, R.; Overmyer, J.; Rodriguez, L.L. Experimental transmission of vesicular stomatitis New Jersey virus from Simulium vittatum to cattle: Clinical outcome is influenced by site of insect feeding. J. Med. Entomol. 2009, 46, 866–872. [Google Scholar] [CrossRef]
- Mead, D.G.; Mare, C.J.; Cupp, E.W. Vector competence of select black fly species for vesicular stomatitis virus (New Jersey serotype). Am. J. Trop. Med. Hyg. 1997, 57, 42–48. [Google Scholar] [CrossRef]
- Cupp, E.W.; Mare, C.J.; Cupp, M.S.; Ramberg, F.B. Biological transmission of vesicular stomatitis virus (New Jersey) by Simulium vittatum (Diptera: Simuliidae). J. Med. Entomol. 1992, 29, 137–140. [Google Scholar] [CrossRef]
- Mead, D.G.; Ramberg, F.B.; Mare, C.J. Laboratory vector competence of black flies (Diptera:Simuliidae) for the Indiana serotype of vesicular stomatitis virus. Ann. N. Y. Acad. Sci. 2000, 916, 437–443. [Google Scholar] [CrossRef]
- Mead, D.G.; Ramberg, F.B.; Besselsen, D.G.; Mare, C.J. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 2000, 287, 485–487. [Google Scholar] [CrossRef]
- Anderson, J.; Lee, V.; Vadlamudi, S.; Hanson, R.; De Foliart, G. Isolation of Eastern Encephalitis Virus from Díptera in Wisconsin. Mosquito News 1961, 21, 244–248. [Google Scholar]
- van Velden, D.J.; Meyer, J.D.; Olivier, J.; Gear, J.H.; McIntosh, B. Rift Valley fever affecting humans in South Africa: A clinicopathological study. S. Afr. Med. J. 1977, 51, 867–871. [Google Scholar] [PubMed]
- Sanmartín, C.; Mackenzie, R.B.; Trapido, H.; Barreto, P.; Mullenax, C.H.; Gutiérrez, E.; Lesmes, C. Encefalitis equina venezolana en Colombia, 1967. Boletín Oficina Sanit. Panam. (OSP) 1973, 74. [Google Scholar]
- Chanteau, S.; Sechan, Y.; Moulia-Pelat, J.P.; Luquiaud, P.; Spiegel, A.; Boutin, J.P.; Roux, J.F. The blackfly Simulium buissoni and infection by hepatitis B virus on a holoendemic island of the Marquesas archipelago in French Polynesia. Am. J. Trop. Med. Hyg. 1993, 48, 763–770. [Google Scholar] [CrossRef]
- Kraberger, S.; Schmidlin, K.; Fontenele, R.S.; Walters, M.; Varsani, A. Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses 2019, 11, 532. [Google Scholar] [CrossRef]
- Piégu, B.; Guizard, S.; Spears, T.; Cruaud, C.; Couloux, A.; Bideshi, D.K.; Federici, B.A.; Bigot, Y. Complete genome sequence of invertebrate iridescent virus 22 isolated from a blackfly larva. J. Gen. Virol. 2013, 94 Pt 9, 2112–2116. [Google Scholar] [CrossRef]
- Piégu, B.; Guizard, S.; Spears, T.; Cruaud, C.; Couloux, A.; Bideshi, D.K.; Federici, B.A.; Bigot, Y. Complete genome sequence of invertebrate iridovirus IIV-25 isolated from a blackfly larva. Arch. Virol. 2014, 159, 1181–1185. [Google Scholar] [CrossRef]
- Akhoundi, M.; Zumelzu, C.; Sereno, D.; Marteau, A.; Brun, S.; Jan, J.; Izri, A. Bed Bugs (Hemiptera, Cimicidae): A Global Challenge for Public Health and Control Management. Diagnostics 2023, 13, 2281. [Google Scholar] [CrossRef]
- Akhoundi, M.; Sereno, D.; Durand, R.; Mirzaei, A.; Bruel, C.; Delaunay, P.; Marty, P.; Izri, A. Bed Bugs (Hemiptera, Cimicidae): Overview of Classification, Evolution and Dispersion. Int. J. Environ. Res. Public Health 2020, 17, 4576. [Google Scholar] [CrossRef]
- Hamlili, F.Z.; Berenger, J.M.; Parola, P. Cimicids of Medical and Veterinary Importance. Insects 2023, 14, 392. [Google Scholar] [CrossRef]
- Adelman, Z.N.; Miller, D.M.; Myles, K.M. Bed bugs and infectious disease: A case for the arboviruses. PLoS Pathog. 2013, 9, e1003462. [Google Scholar] [CrossRef] [PubMed]
- Leasure, D.R.; Kannan, R.; James, D.A. House sparrows associated with reduced cliff swallow nesting success. Wilson J. Ornithol. 2010, 122, 135–138. [Google Scholar] [CrossRef]
- Hayes, R.; Francy, D.B.; LazuickJ, S.; Smith, G.C.; Gibbs, E.P.J. Role of the cliff swallow bug (Oeciacus vicarius) in the natural cycle of a western equine encephalitis-related alphavirus. J. Med. Entomol. 1977, 14, 257–262. [Google Scholar] [CrossRef]
- Calisher, C.H.; Monath, T.P.; Muth, D.J.; Lazuick, J.S.; Trent, D.W.; Francy, D.B.; Kemp, G.E.; Chandler, F.W. Characterization of Fort Morgan virus, an alphavirus of the western equine encephalitis virus complex in an unusual ecosystem. Am. J. Trop. Med. Hyg. 1980, 29, 1428–1440. [Google Scholar] [CrossRef]
- Scott, T.W.; Bowen, G.S.; Monath, T.P. A field study on the effects of Fort Morgan virus, an arbovirus transmitted by swallow bugs, on the reproductive success of cliff swallows and symbiotic house sparrows in Morgan County, Colorado, 1976. Am. J. Trop. Med. Hyg. 1984, 33, 981–991. [Google Scholar] [CrossRef]
- Rush, W.A.; Francy, D.B.; Smith, G.C.; Cropp, C.B. Transmission of an arbovirus by a member of the family Cimicidae. Ann. Entomol. Soc. Am. 1980, 73, 315–318. [Google Scholar] [CrossRef]
- Hopla, C.E.; Francy, D.B.; Calisher, C.H.; Lazuick, J.S. Relationship of cliff swallows, ectoparasites, and an Alphavirus in west-central Oklahoma. J. Med. Entomol. 1993, 30, 267–272. [Google Scholar] [CrossRef]
- Loye, J.E.; Hopla, C. Ectoparasites and micro-organisms associated with the cliff swallow in west-central Oklahoma. II. Life history patterns. Bull. Soc. Vector Ecol. 1983, 8, 79–84. [Google Scholar]
- Brown, C.R.; Moore, A.T.; O’Brien, V.A. Prevalence of Buggy Creek virus (Togaviridae: Alphavirus) in insect vectors increases over time in the presence of an invasive avian host. Vector Borne Zoonotic Dis. 2012, 12, 34–41. [Google Scholar] [CrossRef]
- Brown, C.R.; Moore, A.T.; Young, G.R.; Padhi, A.; Komar, N. Isolation of Buggy Creek virus (Togaviridae: Alphavirus) from field-collected eggs of Oeciacus vicarius (Hemiptera: Cimicidae). J. Med. Entomol. 2009, 46, 375–379. [Google Scholar] [CrossRef]
- Moore, A.T.; Edwards, E.A.; Brown, M.B.; Komar, N.; Brown, C.R. Ecological correlates of buggy creek virus infection in Oeciacus vicarius, southwestern Nebraska, 2004. J. Med. Entomol. 2007, 44, 42–49. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, V.A.; Brown, C.R. Seasonal variation and age-related correlates of Buggy Creek virus (Togaviridae) infection in nestling house sparrows. J. Wildl. Dis. 2012, 48, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; Foster, J.E.; Edwards, E.A.; Brown, M.B.; Komar, N.; Brown, C.R. Phylogenetic analysis of Buggy Creek virus: Evidence for multiple clades in the Western Great Plains, United States of America. Appl. Environ. Microbiol. 2006, 72, 6886–6893. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.R.; Moore, A.T.; Young, G.R.; Komar, N. Persistence of Buggy Creek virus (Togaviridae, Alphavirus) for two years in unfed swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarius). J. Med. Entomol. 2010, 47, 436–441. [Google Scholar] [CrossRef]
- O’Brien, V.A.; Meteyer, C.U.; Ip, H.S.; Long, R.R.; Brown, C.R. Pathology and virus detection in tissues of nestling house sparrows naturally infected with Buggy Creek virus (Togaviridae). J. Wildl. Dis. 2010, 46, 23–32. [Google Scholar] [CrossRef]
- Williams, J.E.; Imlarp, S.; Top, F.H.; Cavanaugh, D.C., Jr.; Russell, P.K. Kaeng Khoi virus from naturally infected bedbugs (cimicidae) and immature free-tailed bats. Bull. World Health Organ. 1976, 53, 365–369. [Google Scholar]
- Neill, W.A.; Kading, R.C. Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand. Microorganisms 2021, 9, 2022. [Google Scholar] [CrossRef]
- Fischer, C.; Pontier, D.; Filippi-Codaccioni, O.; Pons, J.B.; Postigo-Hidalgo, I.; Duhayer, J.; Brünink, S.; Drexler, J.F. Venezuelan Equine Encephalitis Complex Alphavirus in Bats, French Guiana. Emerg. Infect. Dis. 2021, 27, 1141–1145. [Google Scholar] [CrossRef]
- Monath, T.P.; Lazuick, J.S.; Cropp, C.B.; Rush, W.A.; Calisher, C.H.; Kinney, R.M.; Trent, D.W.; Kemp, G.E.; Bowen, G.S.; Francy, D.B. Recovery of Tonate virus (“Bijou Bridge” strain), a member of the Venezuelan equine encephalomyelitis virus complex, from Cliff Swallow nest bugs (Oeciacus vicarius) and nestling birds in North America. Am. J. Trop. Med. Hyg. 1980, 29, 969–983. [Google Scholar] [CrossRef]
- Panday, R.S.; Digoutte, J.P. Tonate and Guama-group viruses isolated from mosquitoes in both a savannah and coastal area in Surinam. Trop. Geogr. Med. 1979, 31, 275–282. [Google Scholar]
- Degallier, N.; Digoutte, J.P.; Pajot, F.X. Épidémiologie de deux arbovirus du complexe VEE en Guyane Francaise: Données préliminaires sur les relations virus-vecteurs. Cah. ORSTOM Série Entomol. Médicale Parasitol. 1978, 16, 209–221. [Google Scholar]
- Hommel, D.; Heraud, J.M.; Hulin, A.; Talarmin, A. Association of Tonate virus (subtype IIIB of the Venezuelan equine encephalitis complex) with encephalitis in a human. Clin. Infect. Dis. 2000, 30, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Lambert, V.; Enfissi, A.; Lefebvre, M.; Pomar, L.; Kedous, S.; Guimiot, F.; Carles, G.; Lavergne, A.; Rousset, D.; Hcini, N. Tonate Virus and Fetal Abnormalities, French Guiana, 2019. Emerg. Infect. Dis. 2022, 28, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Talarmin, A.; Trochu, J.; Gardon, J.; Laventure, S.; Hommel, D.; Lelarge, J.; Labeau, B.; Digoutte, J.P.; Hulin, A.; Sarthou, J.L. Tonate virus infection in French Guiana: Clinical aspects and seroepidemiologic study. Am. J. Trop. Med. Hyg. 2001, 64, 274–279. [Google Scholar] [CrossRef]
- Sikutova, S.; Mendel, J.; Mravcova, K.; Kejikova, R.; Hubalek, Z.; Kampen, H.; Rudolf, I. Detection of Usutu virus in a house martin bug Oeciacus hirundinis (Hemiptera: Cimicidae): Implications for virus overwintering in a temperate zone. Parasitol. Res. 2024, 123, 304. [Google Scholar] [CrossRef]
- Blow, J.A.; Turell, M.J.; Silverman, A.L.; Walker, E.D. Stercorarial shedding and transtadial transmission of hepatitis B virus by common bed bugs (Hemiptera: Cimicidae). J. Med. Entomol. 2001, 38, 694–700. [Google Scholar] [CrossRef]
- Jupp, P.G.; Lyons, S.F. Experimental assessment of bedbugs (Cimex lectularius and Cimex hemipterus) and mosquitoes (Aedes aegypti formosus) as vectors of human immunodeficiency virus. AIDS 1987, 1, 171–174. [Google Scholar]
- Jupp, P.G.; McElligott, S.E. Transmission experiments with hepatitis B surface antigen and the common bedbug (Cimex lectularius L). S. Afr. Med. J. 1979, 56, 54–57. [Google Scholar]
- Jupp, P.G.; McElligott, S.E.; Lecatsas, G. The mechanical transmission of hepatitis B virus by the common bedbug (Cimex lectularius L.) in South Africa. S. Afr. Med. J. 1983, 63, 77–81. [Google Scholar]
- Jupp, P.G.; Prozesky, O.W.; McElligott, S.E.; Van Wyk, L.A. Infection of the common bedbug (Cimex lectularius L) with hepatitis B virus in South Africa. S. Afr. Med. J. 1978, 53, 598–600. [Google Scholar]
- Ling, J.; Persson Vinnersten, T.; Hesson, J.C.; Bohlin, J.; Roligheten, E.; Holmes, E.C.; Pettersson, J.H. Identification of hepatitis C virus in the common bed bug—A potential, but uncommon route for HCV infection? Emerg. Microbes Infect. 2020, 9, 1429–1431. [Google Scholar] [CrossRef] [PubMed]
- Ogston, C.W.; Wittenstein, F.S.; London, W.T.; Millman, I. Persistence of hepatitis B surface antigen in the bedbug Cimex hemipterus (Fabr.). J. Infect. Dis. 1979, 140, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Silverman, A.L.; Qu, L.H.; Blow, J.; Zitron, I.M.; Gordon, S.C.; Walker, E.D. Assessment of hepatitis B virus DNA and hepatitis C virus RNA in the common bedbug (Cimex lectularius L.) and kissing bug (Rodnius prolixus). Am. J. Gastroenterol. 2001, 96, 2194–2198. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.A.; Happ, C.M.; Maupin, G.O.; Johnson, B.J.; Ou, C.Y.; Monath, T.P. Potential for insect transmission of HIV: Experimental exposure of Cimex hemipterus and Toxorhynchites amboinensis to human immunodeficiency virus. J. Infect. Dis. 1989, 160, 970–977. [Google Scholar] [CrossRef]
- Wills, W.; Larouzé, B.; London, W.T.; Millman, I.; Werner, B.G.; Ogston, W.; Pourtaghva, M.; Diallo, S.; Blumberg, B.S. Hepatitis-B virus in bedbugs (Cimex hemipterus) from Senegal. Lancet 1977, 2, 217–219. [Google Scholar] [CrossRef]
- Tomar, B.S. Hepatitis E in India. Zhonghua Min Guo Xiao Ke Yi Xue Hui Za Zhi. 1998, 39, 150–156. [Google Scholar]
- Gresikova, M.; Nosek, J.; Ciampor, F.; Sekeyova, M.; Turek, R. Isolation of paramyxovirus type 4 from Oeciacus hirundinis bugs. Acta Virol. 1980, 24, 222–223. [Google Scholar]
- Howard, C.W.; Clark, P.F. Experiments on Insect Transmission of the Virus of Poliomyelitis. J. Exp. Med. 1912, 16, 850–859. [Google Scholar] [CrossRef]
- Sheele, J.M.; Peta, V.; Miron, A.; Balvin, O.; Cain, D.; Edelheit, S.; McCormick, T.; Pietri, J.E. A metatranscriptomic evaluation of viruses in field-collected bed bugs. Parasitol. Res. 2023, 123, 4. [Google Scholar] [CrossRef]
- Walt, H.K.; King, J.G.; Sheele, J.M.; Meyer, F.; Pietri, J.E.; Hoffmann, F.G. Do bed bugs transmit human viruses, or do humans spread bed bugs and their viruses? A worldwide survey of the bed bug RNA virosphere. Virus Res. 2024, 343, 199349. [Google Scholar] [CrossRef]
- Stanojevic, M.; Li, K.; Stamenkovic, G.; Ilic, B.; Paunovic, M.; Pesic, B.; Maslovara, I.Đ.; Siljic, M.; Cirkovic, V.; Zhang, Y. Depicting the RNA Virome of Hematophagous Arthropods from Belgrade, Serbia. Viruses 2020, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Shi, M.; Tian, J.H.; Lin, X.D.; Kang, Y.J.; Chen, L.J.; Qin, X.C.; Xu, J.; Holmes, E.C.; Zhang, Y.Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015, 4, e05378. [Google Scholar] [CrossRef] [PubMed]
- Eley, S.M.; Gardner, R.; Molyneux, D.H.; Moore, N.F. A reovirus from the bedbug, Cimex lectularius. J. Gen. Virol. 1987, 68 Pt 1, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Borkent, A.; Wirth, W.W. World Species of Biting Midges (Diptera: Ceratopogonidae); American Museum of Natural History: New York, NY, USA, 1997. [Google Scholar]
- Borkent, A. The Subgeneric Classification of Species of Culicoides-Thoughts and a Warning. 2016. Available online: https://wwv.inhs.illinois.edu/files/5014/6532/8290/CulicoidesSubgenera.pdf (accessed on 1 February 2025).
- Kampen, H.; Werner, D. Biting Midges (Diptera: Ceratopogonidae) as vectors of viruses. Microorganisms 2023, 11, 2706. [Google Scholar] [CrossRef]
- Borkent, A. The biting midges, the Ceratopogonidae (Diptera). In Biology of Disease Vectors, 2nd ed.; Marquardt, W.C., Ed.; Elsevier/Academic Press: Cambridge, MA, USA, 2005; pp. 113–126. [Google Scholar]
- Sick, F.; Beer, M.; Kampen, H.; Wernike, K. Culicoides Biting Midges-Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019, 11, 376. [Google Scholar] [CrossRef]
- Carpenter, S.; Mellor, P.S.; Fall, A.G.; Garros, C.; Venter, G.J. African Horse Sickness Virus: History, Transmission, and Current Status. Annu. Rev. Entomol. 2017, 62, 343–358. [Google Scholar] [CrossRef]
- De Regge, N. Akabane, Aino and Schmallenberg virus-where do we stand and what do we know about the role of domestic ruminant hosts and Culicoides vectors in virus transmission and overwintering? Curr. Opin. Virol. 2017, 27, 15–30. [Google Scholar] [CrossRef]
- Dennis, S.J.; Meyers, A.E.; Hitzeroth, I.I.; Rybicki, E.P. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019, 11, 844. [Google Scholar] [CrossRef]
- Subhadra, S.; Sreenivasulu, D.; Pattnaik, R.; Panda, B.K.; Kumar, S. Bluetongue virus: Past, present, and future scope. J. Infect. Dev. Ctries. 2023, 17, 147–156. [Google Scholar] [CrossRef]
- Walker, P.J.; Klement, E. Epidemiology and control of bovine ephemeral fever. Vet. Res. 2015, 46, 124. [Google Scholar] [CrossRef]
- Zientara, S.; Weyer, C.T.; Lecollinet, S. African horse sickness. Rev. Sci. Tech. 2015, 34, 315–327. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Shults, P.T.; McDermott, E.G. A Review of the Vector Status of North American Culicoides (Diptera: Ceratopogonidae) for Bluetongue Virus, Epizootic Hemorrhagic Disease Virus, and Other Arboviruses of Concern. Curr. Trop. Med. Rep. 2022, 9, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Denyoh, P.M.D.; Urquhart, C.; Shrestha, S.; Yee, D.A. A Comprehensive Review of the Neglected and Emerging Oropouche Virus. Viruses 2025, 17, 439. [Google Scholar] [CrossRef] [PubMed]
- Pastula, D.M.; Beckham, J.D.; Tyler, K.L. Oropouche Virus: An Emerging Neuroinvasive Arbovirus. Ann. Neurol. 2024, 97, 28–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wu, Z.; Feng, S.; Lu, K.; Zhu, W.; Sun, H.; Niu, G. Oropouche virus: A neglected global arboviral threat. Virus Res. 2024, 341, 199318. [Google Scholar] [CrossRef]
- Emmons, R.W.; Woodie, J.D.; Laub, R.L.; Oshiro, L.S. Main Drain virus as a cause of equine encephalomyelitis. J. Am. Vet. Med. Assoc. 1983, 183, 555–558. [Google Scholar] [CrossRef]
- Jimenez-Cabello, L.; Utrilla-Trigo, S.; Lorenzo, G.; Ortego, J.; Calvo-Pinilla, E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023, 11, 1339. [Google Scholar] [CrossRef]
- Mellor, P.S.; Boned, J.; Hamblin, C.; Graham, S. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 1990, 105, 447–454. [Google Scholar] [CrossRef]
- Nevill, E.; Erasmus, B.J.; Venter, G. A six-year survey of viruses associated with Culicoides biting midges throughout South Africa (Diptera: Ceratopogonidae). In Proceedings of the Second International Symposium on Bluetongue, African Horse Sickness, and related Orbiviruses, Paris, France, 17–21 June 1991. [Google Scholar]
- Scheffer, E.G.; Venter, G.J.; Labuschagne, K.; Page, P.C.; Mullens, B.A.; MacLachlan, N.J.; Osterrieder, N.; Guthrie, A.J. Comparison of two trapping methods for Culicoides biting midges and determination of African horse sickness virus prevalence in midge populations at Onderstepoort, South Africa. Vet. Parasitol. 2012, 185, 265–273. [Google Scholar] [CrossRef]
- Meiswinkel, R.; Paweska, J.T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 2003, 60, 243–253. [Google Scholar] [CrossRef]
- Venter, G.J.; Graham, S.D.; Hamblin, C. African horse sickness epidemiology: Vector competence of south african Culicoides species for virus serotypes 3, 5 and 8. Med. Vet. Entomol. 2000, 14, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Prinsloo, S.; Venter, G.J. Oral susceptibility of South African Culicoides species to live-attenuated serotype-specific vaccine strains of African horse sickness virus (AHSV). Med. Vet. Entomol. 2003, 17, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Boorman, J.; Mellor, P.S.; Penn, M.; Jennings, M. The growth of African horse-sickness virus in embryonated hen eggs and the transmission of virus by Culicoides variipennis Coquillett (Diptera, Ceratopogonidae). Arch. Virol. 1975, 47, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, H.; Nevill, E.; Erasmus, B. Studies on the transmission of African horsesickness. Onderstepoort J. Vet. Res. 1970, 37, 165–168. [Google Scholar]
- St George, T.D.; Standfast, H.A.; Cybinski, D.H. Isolations of akabane virus from sentinel cattle and Culicoides brevitarsis. Aust. Vet. J. 1978, 54, 558–561. [Google Scholar] [CrossRef]
- Murray, M.D. Akabane epizootics in New South Wales: Evidence for long-distance dispersal of the biting midge Culicoides brevitarsis. Aust. Vet. J. 1987, 64, 305–308. [Google Scholar] [CrossRef]
- Cybinski, D.H.; St George, T.D.; Paull, N.I. Antibodies to Akabane virus in Australia. Aust. Vet. J. 1978, 54, 1–3. [Google Scholar] [CrossRef]
- Della-Porta, A.J.; Murray, M.D.; Cybinski, D.H. Congenital bovine epizootic arthrogryposis and hydranencephaly in Australia. Distribution of antibodies to Akabane virus in Australian Cattle after the 1974 epizootic. Aust. Vet. J. 1976, 52, 496–501. [Google Scholar] [CrossRef]
- St George, T.; Kirkland, P. Diseases caused by Akabane and related Simbu-group viruses. In Infectious Diseases of Livestock, 2nd ed.; Coetzer, J.A.W., Tustin, R.C., Eds.; Oxford University Press: Oxford, UK, 2004; Volume 2, pp. 1029–1036. [Google Scholar]
- Dyce, A.; Standfast, H.; Kay, B. Collection and preparation of biting midges (Fam. Ceratopogonidae) and other small Diptera for virus isolation. Aust. J. Entomol. 1972, 11, 91–96. [Google Scholar] [CrossRef]
- St George, T.D.; Standfast, H.A. Diseases caused by Akabane and related Simbu-group viruses. In Infectious Diseases of Livestock with Special Reference to Southern Africa; Coetzer, J.A.W., Thomson, G.R., Tustin, R.C., Eds.; Oxford University Press: Cape Town, South Africa, 1994; pp. 681–687. [Google Scholar]
- Kato, T.; Shirafuji, H.; Tanaka, S.; Sato, M.; Yamakawa, M.; Tsuda, T.; Yanase, T. Bovine Arboviruses in Culicoides Biting Midges and Sentinel Cattle in Southern Japan from 2003 to 2013. Transbound. Emerg. Dis. 2016, 63, e160–e172. [Google Scholar] [CrossRef]
- Kurogi, H.; Akiba, K.; Inaba, Y.; Matumoto, M. Isolation of Akabane virus from the biting midge Culicoides oxystoma in Japan. Vet. Microbiol. 1987, 15, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Yanase, T.; Kato, T.; Kubo, T.; Yoshida, K.; Ohashi, S.; Yamakawa, M.; Miura, Y.; Tsuda, T. Isolation of bovine arboviruses from Culicoides biting midges (Diptera: Ceratopogonidae) in southern Japan: 1985–2002. J. Med. Entomol. 2005, 42, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Yanase, T.; Kato, T.; Hayama, Y.; Shirafuji, H.; Yamakawa, M.; Tanaka, S. Oral Susceptibility of Japanese Culicoides (Diptera: Ceratopogonidae) Species to Akabane Virus. J. Med. Entomol. 2019, 56, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; He, Y.; Li, N.; Yang, Z.; Fu, S.; Wang, D.; Xin, A.; Wang, J.; Liang, G. Akabane virus isolated from biting midges and its infection in local domestic animal, Yunnan, China: A field and laboratory investigation. Front. Cell Infect. Microbiol. 2024, 14, 1434045. [Google Scholar] [CrossRef]
- al-Busaidy, S.M.; Mellor, P.S. Isolation and identification of arboviruses from the Sultanate of Oman. Epidemiol. Infect. 1991, 106, 403–413. [Google Scholar] [CrossRef]
- Stram, Y.; Brenner, J.; Braverman, Y.; Banet-Noach, C.; Kuznetzova, L.; Ginni, M. Akabane virus in Israel: A new virus lineage. Virus Res. 2004, 104, 93–97. [Google Scholar] [CrossRef]
- Blackburn, N.; Searle, L.; Phelps, R. Viruses isolated from Culicoides (Diptera: Ceratopogonidae) caught at the veterinary research farm, Mazowe, Zimbabwe. J. Entomol. Soc. S. Afr. 1985, 48, 331–336. [Google Scholar]
- Theodoridis, A.; Nevill, E.M.; Els, H.J.; Boshoff, S.T. Viruses isolated from Culicoides midges in South Africa during unsuccessful attempts to isolate bovine ephemeral fever virus. Onderstepoort J. Vet. Res. 1979, 46, 191–198. [Google Scholar]
- Jennings, M.; Mellor, P.S. Culicoides: Biological vectors of Akabane virus. Vet. Microbiol. 1989, 21, 125–131. [Google Scholar] [CrossRef]
- Alkhamis, M.A.; Aguilar-Vega, C.; Fountain-Jones, N.M.; Lin, K.; Perez, A.M.; Sanchez-Vizcaino, J.M. Global emergence and evolutionary dynamics of bluetongue virus. Sci. Rep. 2020, 10, 21677. [Google Scholar] [CrossRef]
- Maclachlan, N.J. Bluetongue: History, global epidemiology, and pathogenesis. Prev. Vet. Med. 2011, 102, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Rana, E.A.; Prodhan, M.A.; Akter, S.H.; Gogoi-Tiwari, J.; Sarker, S.; Annandale, H.; Eagles, D.; Abraham, S.; Uddin, J.M. The Global Burden of Emerging and Re-Emerging Orbiviruses in Livestock: An Emphasis on Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. Viruses 2024, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Portela Lobato, Z.I.; Maldonado Coelho Guedes, M.I.; Diniz Matos, A.C. Bluetongue and other orbiviruses in South America: Gaps and challenges. Vet. Ital. 2015, 51, 253–262. [Google Scholar] [PubMed]
- Legisa, D.M.; Gonzalez, F.N.; Dus Santos, M.J. Bluetongue virus in South America, Central America and the Caribbean. Virus Res. 2014, 182, 87–94. [Google Scholar] [CrossRef]
- Kirkland, P.D. Bluetongue viruses, vectors and surveillance in Australia—The current situation and unique features. Vet. Ital. 2004, 40, 47–50. [Google Scholar]
- Coetzee, P.; Stokstad, M.; Venter, E.H.; Myrmel, M.; Van Vuuren, M. Bluetongue: A historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 2012, 9, 198. [Google Scholar] [CrossRef]
- Purse, B.V.; Mellor, P.S.; Rogers, D.J.; Samuel, A.R.; Mertens, P.P.; Baylis, M. Climate change and the recent emergence of bluetongue in Europe. Nat. Rev. Microbiol. 2005, 3, 171–181. [Google Scholar] [CrossRef]
- Daniels, P.W.; Sendow, I.; Pritchard, L.I.; Sukarsih Eaton, B.T. Regional overview of bluetongue viruses in South-East Asia: Viruses, vectors and surveillance. Vet. Ital. 2004, 40, 94–100. [Google Scholar]
- Duan, Y.L.; Bellis, G.; Li, L.; Li, H.C.; Miao, H.S.; Kou, M.L.; Liao, F.; Wang, Z.; Gao, L.; Li, J.Z. Potential vectors of bluetongue virus in high altitude areas of Yunnan Province, China. Parasites Vectors 2019, 12, 464. [Google Scholar] [CrossRef]
- Daif, S.; El Berbri, I.; Fassi Fihri, O. First molecular evidence of potential Culicoides vectors implicated in bluetongue virus transmission in Morocco. Parasites Vectors 2024, 17, 71. [Google Scholar] [CrossRef]
- Zhugunissov, K.; Muzarap, D.; Sarsenkulova, N.; Mambetaliyev, M.; Kilibayev, S.; Azanbekova, M.; Kenzhebayeva, M.; Tabys, S.; Abayeva, M.; Melisbek, A.; et al. Prevalence of Bluetongue and the distribution of Culicoides species in northern and southern regions of Kazakhstan in 2023–2024. Front. Vet. Sci. 2025, 12, 1559636. [Google Scholar] [CrossRef] [PubMed]
- Vanbinst, T.; Vandenbussche, F.; Vandemeulebroucke, E.; De Leeuw, I.; Deblauwe, I.; De Deken, G.; Madder, M.; Haubruge, E.; Losson, B.; De Clercq, K. Bluetongue virus detection by real-time RT-PCR in Culicoides captured during the 2006 epizootic in Belgium and development of an internal control. Transbound. Emerg. Dis. 2009, 56, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Foxi, C.; Meloni, G.; Puggioni, G.; Manunta, D.; Rocchigiani, A.; Vento, L.; Cabras, P.; Satta, G. Bluetongue virus detection in new Culicoides species in Sardinia, Italy. Vet. Rec. 2019, 184, 621. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.E.; Reeves, W.K.; Dejean, S.K.; Emery, M.P.; Ostlund, E.N.; Foil, L.D. Detection of bluetongue virus RNA in field-collected Culicoides spp. (Diptera: Ceratopogonidae) following the discovery of bluetongue virus serotype 1 in white-tailed deer and cattle in Louisiana. J. Med. Entomol. 2010, 47, 269–273. [Google Scholar] [CrossRef]
- Sghaier, S.; Hammami, S.; Goffredo, M.; Hammami, M.; Portanti, O.; Lorusso, A.; Savini, G.; Delécolle, J.C. New species of the genus Culicoides (Diptera Ceratopogonidae) for Tunisia, with detection of Bluetongue viruses in vectors. Vet. Ital. 2017, 53, 357–366. [Google Scholar]
- Voigt, A.; Kampen, H.; Heuser, E.; Zeiske, S.; Hoffmann, B.; Höper, D.; Holsteg, M.; Sick, F.; Ziegler, S.; Wernike, K.; et al. Bluetongue Virus Serotype 3 and Schmallenberg Virus in Culicoides Biting Midges, Western Germany, 2023. Emerg. Infect. Dis. 2024, 30, 1438–1441. [Google Scholar] [CrossRef]
- Steyn, J.; Venter, G.J.; Labuschagne, K.; Majatladi, D.; Boikanyo, S.N.; Lourens, C.; Ebersohn, K.; Venter, E.H. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa. J. S. Afr. Vet. Assoc. 2016, 87, e1–e5. [Google Scholar] [CrossRef]
- Duchemin, J.B.; White, J.R.; Di Rubbo, A.; Shi, S.; Venter, G.J.; Holmes, I.; Walker, P.J. Experimental bluetongue virus infection of Culicoides austropalpalis, collected from a farm environment in Victoria, Australia. Vet. Ital. 2021, 57, 341–345. [Google Scholar]
- Federici, V.; Goffredo, M.; Mancini, G.; Quaglia, M.; Santilli, A.; Di Nicola, F.; De Ascentis, M.; Cabras, P.; Volpicelli, C.; De Liberato, C.; et al. Vector Competence of Italian Populations of Culicoides for Some Bluetongue Virus Strains Responsible for Recent Northern African and European Outbreaks. Viruses 2019, 11, 941. [Google Scholar] [CrossRef]
- Gerry, A.C.; Mullens, B.A.; Maclachlan, N.J.; Mecham, J.O. Seasonal transmission of bluetongue virus by Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern California dairy and evaluation of vectorial capacity as a predictor of bluetongue virus transmission. J. Med. Entomol. 2001, 38, 197–209. [Google Scholar] [CrossRef]
- Mullens, B.A.; Gerry, A.C.; Lysyk, T.J.; Schmidtmann, E.T. Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context. Vet. Ital. 2004, 40, 160–166. [Google Scholar] [PubMed]
- Paslaru, A.I.; Mathis, A.; Torgerson, P.; Veronesi, E. Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8. Parasites Vectors 2018, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Venter, G.J.; Mellor, P.S. Vector competence of South African Culicoides species for bluetongue virus serotype 1 (BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med. Vet. Entomol. 2002, 16, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, W.J. Genetic control of oral susceptibility to infection of Culicoides variipennis with bluetongue virus. Am. J. Trop. Med. Hyg. 1991, 45, 666–671. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Culicoides variipennis and bluetongue-virus epidemiology in the United States. Annu. Rev. Entomol. 1996, 41, 23–43. [Google Scholar] [CrossRef]
- Tanya, V.N.; Greiner, E.C.; Shroyer, D.A.; Gibbs, E.P. Vector competence parameters of Culicoides variipennis (Diptera: Ceratopogonidae) for bluetongue virus serotype 2. J. Med. Entomol. 1993, 30, 204–208. [Google Scholar] [CrossRef]
- Van Gennip, R.G.; Drolet, B.S.; Rozo Lopez, P.; Roost, A.J.; Boonstra, J.; van Rijn, P.A. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasites Vectors 2019, 12, 470. [Google Scholar] [CrossRef]
- Venter, G.J. Culicoides spp. (Diptera: Ceratopogonidae) as vectors of bluetongue virus in South Africa—A review. Vet. Ital. 2015, 51, 325–333. [Google Scholar]
- Venter, G.J.; Mellor, P.S.; Paweska, J.T. Oral susceptibility of South African stock-associated Culicoides species to bluetongue virus. Med. Vet. Entomol. 2006, 20, 329–334. [Google Scholar] [CrossRef]
- Foster, N.; Jones, R.; Luedke, A. Transmission of attenuated and virulent bluetongue virus with Culicoides variipennis infected orally via sheep. Am. J. Vet. Res. 1968, 29, 275–279. [Google Scholar]
- Baylis, M.; O’Connell, L.; Mellor, P. Rates of bluetongue virus transmission between Culicoides sonorensis and sheep. Med. Vet. Entomol. 2008, 22, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.M.; Mellor, P.S. The vector potential of British Culicoides species for bluetongue virus. Vet. Microbiol. 1988, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.J. Transmission and in vitro excretion of bluetongue virus serotype 1 by inoculated Culicoides brevitarsis (Diptera: Ceratopogonidae). J. Med. Entomol. 1987, 24, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Venter, G.J.; Paweska, J.T.; Van Dijk, A.A.; Mellor, P.S.; Tabachnick, W.J. Vector competence of Culicoides bolitinos and C. imicola for South African bluetongue virus serotypes 1, 3 and 4. Med. Vet. Entomol. 1998, 12, 378–385. [Google Scholar] [CrossRef]
- Lavon, Y.; Ezra, E.; Friedgut, O.; Behar, A. Economic Aspects of Bovine Ephemeral Fever (BEF) Outbreaks in Dairy Cattle Herds. Vet. Sci. 2023, 10, 645. [Google Scholar] [CrossRef]
- Cybinski, D.; Muller, M. Isolation of Arboviruses From Cattle and Insects at 2 Sentinel Sites in Queensland, Australia, 1979–1985. Aust. J. Zool. 1990, 38, 25–32. [Google Scholar] [CrossRef]
- Davies, F.G.; Walker, A.R. The isolation of ephemeral fever virus from cattle and Culicoides midges in Kenya. Vet. Rec. 1974, 95, 63–64. [Google Scholar] [CrossRef]
- Lvov, D.K.; Shchelkanov, M.Y.; Alkhovsky, S.V.; Deryabin, P.G. Zoonotic Viruses of Northern Eurasia: Taxonomy and Ecology; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Yang, D.; Yang, M.S.; Rhim, H.; Han, J.I.; Oem, J.K.; Kim, Y.H.; Lee, K.K.; Lim, C.W.; Kim, B. Analysis of Five Arboviruses and Culicoides Distribution on Cattle Farms in Jeollabuk-do, Korea. Korean J. Parasitol. 2018, 56, 477–485. [Google Scholar] [CrossRef]
- St George, T.D.; Standfast, H.A.; Dyce, A.L. Letter: The isolation of ephemeral fever virus from mosquitoes in Australia. Aust. Vet. J. 1976, 52, 242. [Google Scholar] [CrossRef]
- StandJast, H.A.; Dyce, A.L.; St George, T.D.; Muller, M.J.; Doherty, R.L.; Carley, J.G.; Filippich, C. Isolation of Arboviruses from Insects Collected at Beatrice Hill, Northern Territory of Australia, 1974–1976. Aust. J. Biol. Sci. 1984, 37, 351–366. [Google Scholar] [CrossRef]
- Stokes, J.E.; Darpel, K.E.; Gubbins, S.; Carpenter, S.; Fernández de Marco, M.D.M.; Hernández-Triana, L.M.; Fooks, A.R.; Johnson, N.; Sanders, C. Investigation of bovine ephemeral fever virus transmission by putative dipteran vectors under experimental conditions. Parasites Vectors 2020, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Standfast, H. Vectors of ephemeral fever group viruses. In Arbovirus Research in Australia, Proceedings of the Fourth Symposium, Brisbane, Australia, 6–9 May 1986; CSIRO: Melbourne, Australia, 1986. [Google Scholar]
- Kay, B.H.; Carley, J.G.; Filippich, C. The multiplication of Queensland and New Guinean arboviruses in Culex annulirostris Skuse and Aedes vigilax (Skuse) (Diptera: Culicidae). J. Med. Entomol. 1975, 12, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Venter, G.J.; Hamblin, C.; Paweska, J.T. Determination of the oral susceptibility of South African livestock-associated biting midges, Culicoides species, to bovine ephemeral fever virus. Med. Vet. Entomol. 2003, 17, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Ruder, M.G.; Lysyk, T.J.; Stallknecht, D.E.; Foil, L.D.; Johnson, D.J.; Chase, C.C.; Dargatz, D.A.; Gibbs, E.P. Transmission and Epidemiology of Bluetongue and Epizootic Hemorrhagic Disease in North America: Current Perspectives, Research Gaps, and Future Directions. Vector Borne Zoonotic Dis. 2015, 15, 348–363. [Google Scholar] [CrossRef]
- McGregor, B.L.; Reister-Hendricks, L.M.; Nordmeyer, C.; Stapleton, S.; Davis, T.M.; Drolet, B.S. Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens 2023, 12, 140. [Google Scholar] [CrossRef]
- Thabet, S.; Sghaier, S.; Ben Hassine, T.; Slama, D.; Ben Osmane, R.; Ben Omrane, R.; Mouelhi, W.; Spedicato, M.; Leone, A.; Teodori, L.; et al. Characterization of Epizootic Hemorrhagic Disease Virus Serotype 8 in Naturally Infected Barbary Deer (Cervus elaphus barbarus) and Culicoides (Diptera: Ceratopogonidae) in Tunisia. Viruses 2023, 15, 1567. [Google Scholar] [CrossRef]
- Quaglia, M.; Foxi, C.; Satta, G.; Puggioni, G.; Bechere, R.; De Ascentis, M.; D’Alessio, S.G.; Spedicato, M.; Leone, A.; Pisciella, M.; et al. Culicoides species responsible for the transmission of Epizootic Haemorrhagic Disease virus (EHDV) serotype 8 in Italy. Vet. Ital. 2023, 59, 83–89. [Google Scholar]
- Rosenstock, S.S.; Ramberg, F.; Collins, J.K.; Rabe, M.J. Culicoides mohave (Diptera: Ceratopogonidae): New occurrence records and potential role in transmission of hemorrhagic disease. J. Med. Entomol. 2003, 40, 577–579. [Google Scholar] [CrossRef]
- Foster, N.M.; Metcalf, H.E.; Barber, T.L.; Jones, R.H.; Luedke, A.J. Bluetongue and epizootic hemorrhagic disease virus isolation from vertebrate and invertebrate hosts at a common geographic site. J. Am. Vet. Med. Assoc. 1980, 176, 126–129. [Google Scholar] [CrossRef]
- McGregor, B.L.; Erram, D.; Acevedo, C.; Alto, B.W.; Burkett-Cadena, N.D. Vector Competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype 2 Strains from Canada and Florida. Viruses 2019, 11, 367. [Google Scholar] [CrossRef]
- McGregor, B.L.; Erram, D.; Alto, B.W.; Lednicky, J.A.; Wisely, S.M.; Burkett-Cadena, N.D. Vector Competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype-2. Viruses 2021, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Stallknecht, D.E.; Nettles, V.F. Experimental infection of Culicoides lahillei (Diptera: Ceratopogonidae) with epizootic hemorrhagic disease virus serotype 2 (Orbivirus: Reoviridae). J. Med. Entomol. 1996, 33, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.Y.; Ruder, M.G.; Mead, D.G.; Stallknecht, D.E. An Embryonated Egg Transmission Model for Epizootic Hemorrhagic Disease Virus. Vector Borne Zoonotic Dis. 2020, 20, 728–730. [Google Scholar] [CrossRef]
- Foster, N.M.; Breckon, R.D.; Luedke, A.J.; Jones, R.H. Transmission of two strains of epizootic hemorrhagic disease virus in deer by Culicoides variipennis. J. Wildl. Dis. 1977, 13, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, S.Y.; Mills, M.K.; Maki, E.; Drolet, B.S.; Wilson, W.C.; Berghaus, R.; Stallknecht, D.E.; Breitenbach, J.; McVey, D.S.; Ruder, M.G. EHDV-2 Infection Prevalence Varies in Culicoides sonorensis after Feeding on Infected White-Tailed Deer over the Course of Viremia. Viruses 2019, 11, 371. [Google Scholar] [CrossRef]
- Calisher, C.H.; Francy, D.B.; Smith, G.C.; Muth, D.J.; Lazuick, J.S.; Karabatsos, N.; Jakob, W.L.; McLean, R.G. Distribution of Bunyamwera serogroup viruses in North America, 1956–1984. Am. J. Trop. Med. Hyg. 1986, 35, 429–443. [Google Scholar] [CrossRef]
- Mellor, P.S.; Boorman, J.; Loke, R. The multiplication of main drain virus in two species of Culicoides (Diptera, Ceratopogonidae). Arch. Gesamte Virusforsch. 1974, 46, 105–110. [Google Scholar] [CrossRef]
- Guagliardo, S.A.J.; Connelly, C.R.; Lyons, S.; Martin, S.W.; Sutter, R.; Hughes, H.R.; Brault, A.C.; Lambert, A.J.; Gould, C.V.; Staples, J.E. Reemergence of Oropouche Virus in the Americas and Risk for Spread in the United States and Its Territories, 2024. Emerg. Infect. Dis. 2024, 30, 2241–2249. [Google Scholar] [CrossRef]
- Ribas Freitas, A.R.; Schwartz, D.A.; Lima Neto, A.S.; Rodrigues, R.; Cavalcanti, L.P.G.; Alarcon-Elbal, P.M. Oropouche Virus (OROV): Expanding Threats, Shifting Patterns, and the Urgent Need for Collaborative Research in Latin America. Viruses 2025, 17, 353. [Google Scholar] [CrossRef]
- Roberts, D.R.; Hoch, A.L.; Dixon, K.E.; Llewellyn, C.H. Oropouche virus. III. Entomological observations from three epidemics in Para, Brazil, 1975. Am. J. Trop. Med. Hyg. 1981, 30, 165–171. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Travassos da Rosa, J.F.; Bensabath, G. An outbreak of Oropouche virus diease in the vicinity of santarem, para, barzil. Tropenmed. Parasitol. 1976, 27, 213–223. [Google Scholar] [PubMed]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Travassos da Rosa, J.F.; Ishak, R.; Freitas, R.B.; Gomes, M.L.; LeDuc, J.W.; Oliva, O.F. Oropouche virus. I. A review of clinical, epidemiological, and ecological findings. Am. J. Trop. Med. Hyg. 1981, 30, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Feitoza, L.H.M.; Gasparelo, N.W.F.; Meireles, A.C.A.; Rios, F.G.F.; Teixeira, K.S.; da Silva, M.S.; Paz, M.A.; Roca, T.P.; Moreira, H.M.; de França, K.P.; et al. Integrated surveillance for Oropouche Virus: Molecular evidence of potential urban vectors during an outbreak in the Brazilian Amazon. Acta Trop. 2025, 261, 107487. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.R.; Castillo-Pizango, M.J. Changes in relative species compositions of biting midges (Diptera: Ceratopogonidae) and an outbreak of Oropouche virus in Iquitos, Peru. J. Med. Entomol. 2005, 42, 554–558. [Google Scholar] [CrossRef]
- Poongavanan, J.; Dunaiski, M.; D’or, G.; Kraemer, M.U.G.; Giovanetti, M.; Lim, A.; Brady, O.J.; Baxter, C.; Fonseca, V.; Alcantara, L.; et al. Spatiotemporal disease suitability prediction for Oropouche virus and the role of vectors across the Americas. medRxiv 2025. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Gomes, M.L.; LeDuc, J.W.; Hoch, A.L. Transmission of Oropouche virus from man to hamster by the midge Culicoides paraensis. Science 1982, 215, 1251–1253. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Hoch, A.L.; Gomes, M.L.; Roberts, D.R. Oropouche virus. IV. Laboratory transmission by Culicoides paraensis. Am. J. Trop. Med. Hyg. 1981, 30, 172–176. [Google Scholar] [CrossRef]
- Gallichotte, E.N.; Ebel, G.D.; Carlson, C.J. Vector competence for Oropouche virus: A systematic review of pre-2024 experiments. medRxiv 2024. [Google Scholar] [CrossRef]
- McGregor, B.L.; Connelly, C.R.; Kenney, J.L. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 2021, 13, 226. [Google Scholar] [CrossRef]
- Payne, A.F.; Stout, J.; Dumoulin, P.; Locksmith, T.; Heberlein, L.A.; Mitchell, M.; Rodriguez-Hilario, A.; Dupuis, A.P., 2nd; Ciota, A.T. Lack of Competence of US Mosquito Species for Circulating Oropouche Virus. Emerg. Infect. Dis. 2025, 31, 619–621. [Google Scholar] [CrossRef]
- Smith, G.; Francy, D. Laboratory studies of a Brazilian strain of Aedes albopictus as a potential vector of Mayaro and Oropouche viruses. J. Am. Mosq. Control Assoc. 1991, 7, 89–93. [Google Scholar] [PubMed]
- de Mendonça, S.F.; Rocha, M.N.; Ferreira, F.V.; Leite, T.H.J.F.; Amadou, S.C.G.; Sucupira, P.H.F.; Marques, J.T.; Ferreira, A.G.A.; Moreira, L.A. Evaluation of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquitoes Competence to Oropouche virus Infection. Viruses 2021, 13, 755. [Google Scholar] [CrossRef] [PubMed]
- de Mendonça, S.F.; Baldon, L.V.R.; Todjro, Y.M.H.; Marçal, B.A.; Rodrigues, M.E.C.; Moreira, R.L.; Santos, E.C.; Rocha, M.N.; de Faria, I.J.D.S.; Silva, B.D.M.; et al. Oropouche orthobunyavirus in Urban Mosquitoes: Vector Competence, Coinfection, and Immune System Activation in Aedes aegypti. Viruses 2025, 17, 492. [Google Scholar] [CrossRef] [PubMed]
- Endalew, A.D.; Faburay, B.; Wilson, W.C.; Richt, J.A. Schmallenberg Disease-A Newly Emerged Culicoides-borne Viral Disease of Ruminants. Viruses 2019, 11, 1065. [Google Scholar] [CrossRef]
- Wernike, K.; Conraths, F.; Zanella, G.; Granzow, H.; Gache, K.; Schirrmeier, H.; Valas, S.; Staubach, C.; Marianneau, P.; Kraatz, F.; et al. Schmallenberg virus-two years of experiences. Prev. Vet. Med. 2014, 116, 423–434. [Google Scholar] [CrossRef]
- Hoffmann, B.; Scheuch, M.; Höper, D.; Jungblut, R.; Holsteg, M.; Schirrmeier, H.; Eschbaumer, M.; Goller, K.V.; Wernike, K.; Fischer, M.; et al. Novel orthobunyavirus in Cattle, Europe, 2011. Emerg. Infect. Dis. 2012, 18, 469–472. [Google Scholar] [CrossRef]
- Wernike, K.; Beer, M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv. Virus Res. 2024, 120, 77–98. [Google Scholar]
- Goffredo, M.; Meiswinkel, R.; Federici, V.; Di Nicola, F.; Mancini, G.; Ippoliti, C.; Di Lorenzo, A.; Quaglia, M.; Santilli, A.; Conte, A.; et al. The ‘Culicoides obsoletus group’ in Italy: Relative abundance, geographic range, and role as vector for Bluetongue virus. Vet. Ital. 2016, 52, 235–241. [Google Scholar]
- Aguilar-Vega, C.; Rivera, B.; Lucientes, J.; Gutierrez-Boada, I.; Sanchez-Vizcaino, J.M. A study of the composition of the Obsoletus complex and genetic diversity of Culicoides obsoletus populations in Spain. Parasites Vectors 2021, 14, 351. [Google Scholar] [CrossRef]
- Schwenkenbecher, J.M.; Mordue, A.J.; Piertney, S.B. Phylogenetic analysis indicates that Culicoides dewulfi should not be considered part of the Culicoides obsoletus complex. Bull. Entomol. Res. 2009, 99, 371–375. [Google Scholar] [CrossRef]
- Balenghien, T.; Pagès, N.; Goffredo, M.; Carpenter, S.; Augot, D.; Jacquier, E.; Talavera, S.; Monaco, F.; Depaquit, J.; Grillet, C.; et al. The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe. Prev. Vet. Med. 2014, 116, 360–369. [Google Scholar] [CrossRef] [PubMed]
- De Regge, N.; Deblauwe, I.; De Deken, R.; Vantieghem, P.; Madder, M.; Geysen, D.; Smeets, F.; Losson, B.; van den Berg, T.; Cay, A.B. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. Transbound. Emerg. Dis. 2012, 59, 471–475. [Google Scholar] [CrossRef] [PubMed]
- De Regge, N.; Madder, M.; Deblauwe, I.; Losson, B.; Fassotte, C.; Demeulemeester, J.; Smeets, F.; Tomme, M.; Cay, A.B. Schmallenberg virus circulation in culicoides in Belgium in 2012: Field validation of a real time RT-PCR approach to assess virus replication and dissemination in midges. PLoS ONE 2014, 9, e87005. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.; Meiswinkel, R.; van Weezep, E.; Kooi, E.A.; van der Poel, W.H. Schmallenberg Virus in Culicoides Biting Midges in the Netherlands in 2012. Transbound. Emerg. Dis. 2015, 62, 339–342. [Google Scholar] [CrossRef]
- Elbers, A.R.; Meiswinkel, R.; van Weezep, E.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Kooi, E.A. Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerg. Infect. Dis. 2013, 19, 106–109. [Google Scholar] [CrossRef]
- Goffredo, M.; Monaco, F.; Capelli, G.; Quaglia, M.; Federici, V.; Catalani, M.; Montarsi, F.; Polci, A.; Pinoni, C.; Calistri, P.; et al. Schmallenberg virus in Italy: A retrospective survey in Culicoides stored during the bluetongue Italian surveillance program. Prev. Vet. Med. 2013, 111, 230–236. [Google Scholar] [CrossRef]
- Larska, M.; Lechowski, L.; Grochowska, M.; Zmudzinski, J.F. Detection of the Schmallenberg virus in nulliparous Culicoides obsoletus/scoticus complex and C. punctatus—The possibility of transovarial virus transmission in the midge population and of a new vector. Vet. Microbiol. 2013, 166, 467–473. [Google Scholar] [CrossRef]
- Muz, D.; Dik, B.; Muz, M.N. The investigation of Culicoides (Diptera: Ceratopogonidae) species and Bluetongue virus and Schmallenberg virus in Northwest Turkiye. Trop. Anim. Health Prod. 2023, 55, 39. [Google Scholar] [CrossRef]
- DE Regge, N.; DE Deken, R.; Fassotte, C.; Losson, B.; Deblauwe, I.; Madder, M.; Vantieghem, P.; Tomme, M.; Smeets, F.; Cay, A.B. Culicoides monitoring in Belgium in 2011: Analysis of spatiotemporal abundance, species diversity and Schmallenberg virus detection. Med. Vet. Entomol. 2015, 29, 263–275. [Google Scholar] [CrossRef]
- Pagès, N.; Talavera, S.; Verdún, M.; Pujol, N.; Valle, M.; Bensaid, A.; Pujols, J. Schmallenberg virus detection in Culicoides biting midges in Spain: First laboratory evidence for highly efficient infection of Culicoides of the Obsoletus complex and Culicoides imicola. Transbound. Emerg. Dis. 2018, 65, e1–e6. [Google Scholar] [CrossRef]
- Rasmussen, L.D.; Kirkeby, C.; Bødker, R.; Kristensen, B.; Rasmussen, T.B.; Belsham, G.J.; Bøtner, A. Rapid spread of Schmallenberg virus-infected biting midges (Culicoides spp.) across Denmark in 2012. Transbound. Emerg. Dis. 2014, 61, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Segard, A.; Gardes, L.; Jacquier, E.; Grillet, C.; Mathieu, B.; Rakotoarivony, I.; Setier-Rio, M.L.; Chavernac, D.; Cetre-Sossah, C.; Balenghien, T.; et al. Schmallenberg virus in Culicoides Latreille (Diptera: Ceratopogonidae) populations in France during 2011–2012 outbreak. Transbound. Emerg. Dis. 2018, 65, e94–e103. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.; Harrup, L.E.; Silk, R.; Veronesi, E.; Gubbins, S.; Bachanek-Bankowska, K.; Carpenter, S. Blood-feeding, susceptibility to infection with Schmallenberg virus and phylogenetics of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom. Parasites Vectors 2018, 11, 116. [Google Scholar] [CrossRef]
- Veronesi, E.; Henstock, M.; Gubbins, S.; Batten, C.; Manley, R.; Barber, J.; Hoffmann, B.; Beer, M.; Attoui, H.; Mertens, P.P.; et al. Implicating Culicoides biting midges as vectors of Schmallenberg virus using semi-quantitative RT-PCR. PLoS ONE 2013, 8, e57747. [Google Scholar] [CrossRef] [PubMed]
- Cybinski, D.H. Douglas and Tinaroo viruses: Two Simbu group arboviruses infecting Culicoides brevitarsis and livestock in Australia. Aust. J. Biol. Sci. 1984, 37, 91–97. [Google Scholar] [CrossRef]
- Matsumori, Y.; Inai, K.; Yanase, T.; Ohashi, S.; Kato, T.; Yoshida, K.; Tsuda, T. Serological and genetic characterization of newly isolated Peaton virus in Japan. Brief report. Arch. Virol. 2002, 147, 401–410. [Google Scholar] [CrossRef]
- St George, T.D.; Standfast, H.A.; Cybinski, D.H.; Filippich, C.; Carley, J.G. Peaton virus: A new Simbu group arbovirus isolated from cattle and Culicoides brevitarsis in Australia. Aust. J. Biol. Sci. 1980, 33, 235–243. [Google Scholar] [CrossRef]
- Yanase, T.; Aizawa, M.; Kato, T.; Yamakawa, M.; Shirafuji, H.; Tsuda, T. Genetic characterization of Aino and Peaton virus field isolates reveals a genetic reassortment between these viruses in nature. Virus Res. 2010, 153, 1–7. [Google Scholar] [CrossRef]
- Mohlmann, T.W.R.; Oymans, J.; Wichgers Schreur, P.J.; Koenraadt, C.J.M.; Kortekaas, J.; Vogels, C.B.F. Vector competence of biting midges and mosquitoes for Shuni virus. PLoS Negl. Trop. Dis. 2018, 12, e0006993. [Google Scholar] [CrossRef]
- Reeves, W.C.; Scrivani, R.P.; Hardy, J.L.; Roberts, D.R.; Nelson, R.L. Buttonwillow virus, a new Arbovirus isolated from mammals and Culicoides midges in Kern County, California. Am. J. Trop. Med. Hyg. 1970, 19, 544–551. [Google Scholar] [CrossRef]
- Causey, O.R.; Kemp, G.E.; Causey, C.E.; Lee, V.H. Isolations of Simbu-group viruses in Ibadan, Nigeria 1964-69, including the new types Sango, Shamonda, Sabo and Shuni. Ann. Trop. Med. Parasitol. 1972, 66, 357–362. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, B.M.; McGillivray, G.M.; Dickinson, D.B. Ingwavuma virus: An arbovirus isolated in South Africa. S. Afr. J. Med. Sci. 1965, 30, 67–70. [Google Scholar] [PubMed]
- Calisher, C.H.; McLean, R.G.; Zeller, H.G.; Francy, D.B.; Karabatsos, N.; Bowen, R.A. Isolation of Tete serogroup bunyaviruses from Ceratopogonidae collected in Colorado. Am. J. Trop. Med. Hyg. 1990, 43, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Oragwa, A.O.; Obishakin, E.T.; Oluwayelu, D.O. Molecular Detection and Characterization of Rift Valley Fever Virus in Arthropod Vectors in Nigeria; Elsevier: Amsterdam, The Netherlands, 2024; p. 100198. [Google Scholar]
- Lee, V.H. Isolation of viruses from field populations of culicoides (Diptera: Ceratopogonidae) in Nigeria. J. Med. Entomol. 1979, 16, 76–79. [Google Scholar] [CrossRef]
- Corrin, T.; Ackford, R.; Mascarenhas, M.; Greig, J.; Waddell, L.A. Eastern Equine Encephalitis Virus: A Scoping Review of the Global Evidence. Vector Borne Zoonotic Dis. 2021, 21, 305–320. [Google Scholar] [CrossRef]
- Sabio, I.J.; Mackay, A.J.; Roy, A.; Foil, L.D. Detection of West Nile virus RNA in pools of three species of ceratopogonids (Diptera: Ceratopogonidae) collected in Louisiana. J. Med. Entomol. 2006, 43, 1020–1022. [Google Scholar]
- Causey, O.R.; Kemp, G.E.; Madbouly, M.H.; Lee, V.H. Arbovirus surveillance in Nigeria, 1964–1967. Bull. Soc. Pathol. Exot. Fil. 1969, 62, 249–253. [Google Scholar]
- Braverman, Y.; Davidson, I.; Chizov-Ginzburg, A.; Chastel, C. Detection of Israel turkey meningo-encephalitis virus from mosquito (Diptera: Culicidae) and Culicoides (Diptera: Ceratopogonidae) species and its survival in Culex pipiens and Phlebotomus papatasi (Diptera: Phlebotomidae). J. Med. Entomol. 2003, 40, 518–521. [Google Scholar] [CrossRef]
- Braverman, Y.; Rubina, M.; Frish, K. Pathogens of veterinary importance isolated from mosquitoes and biting midges in Israel. Int. J. Trop. Insect Sci. 1981, 2, 157–161. [Google Scholar] [CrossRef]
- Kramer, W.L.; Jones, R.H.; Holbrook, F.R.; Walton, T.E.; Calisher, C.H. Isolation of arboviruses from Culicoides midges (Diptera: Ceratopogonidae) in Colorado during an epizootic of vesicular stomatitis New Jersey. J. Med. Entomol. 1990, 27, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Potter, H.; Rhodes, H., Jr. Ceratopogonidae attacking horses in south Texas during the 1971 VEE epidemic. Mosq. News 1972, 32, 507–509. [Google Scholar]
- Miura, Y.; Goto, Y.; Kubo, M.; Kono, Y. Isolation of Chuzan virus, a new member of the Palyam subgroup of the genus Orbivirus, from cattle and Culicoides oxystoma in Japan. Am. J. Vet. Res. 1988, 49, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Kurogi, H.; Suzuki, T.; Akashi, H.; Ito, T.; Inaba, Y.; Matumoto, M. Isolation and preliminary characterization of an orbivirus of the Palyam serogroup from biting midge Culicoides oxystoma in Japan. Vet. Microbiol. 1989, 19, 1–11. [Google Scholar] [CrossRef]
- Gibbs, E.P.; Calisher, C.H.; Tesh, R.B.; Lazuick, J.S.; Bowen, R.; Greiner, E.C. Bivens arm virus: A new rhabdovirus isolated from Culicoides insignis in Florida and related to Tibrogargan virus of Australia. Vet. Microbiol. 1989, 19, 141–150. [Google Scholar] [CrossRef]
- Diniz, J.A.; Nunes, M.R.; Travassos da Rosa, A.P.; Cruz, A.C.; de Souza, W.; Medeiros, D.B.; Chiang, J.O.; Vasconcelos, P.F. Characterization of two new rhabdoviruses isolated from midges (Culicoides SPP) in the Brazilian Amazon: Proposed members of a new genus, Bracorhabdovirus. Arch. Virol. 2006, 151, 2519–2527. [Google Scholar] [CrossRef]
- Song, S.; Li, Y.; Fu, S.; Lei, W.; Guo, X.; Feng, Y.; Gao, X.; Li, X.; Yang, Z.; Xu, Z.; et al. Genome sequencing and phylogenetic analysis of Banna virus (genus Seadornavirus, family Reoviridae) isolated from Culicoides. Sci. China Life Sci. 2017, 60, 1372–1382. [Google Scholar] [CrossRef]
- Wiley, M.R.; Prieto, K.; Blasdell, K.R.; Caì, Y.; Campos Lawson, C.; Walker, P.J.; Chiu, C.Y.; Palacios, G.; Kuhn, J.H. Beatrice Hill Virus Represents a Novel Species in the Genus Tibrovirus (Mononegavirales: Rhabdoviridae). Genome Announc. 2017, 26, e01485-16. [Google Scholar] [CrossRef]
- Kemp, G.E.; Lee, V.H.; Moore, D.L.; Shope, R.E.; Causey, O.R.; Murphy, F.A. Kotonkan, a new rhabdovirus related to Mokola virus of the rabies serogroup. Am. J. Epidemiol. 1973, 98, 43–49. [Google Scholar] [CrossRef]
- Zakrzewski, H.; Cybinski, D.H. Isolation of Kimberley virus, a rhabdovirus, from Culicoides brevitarsis. Aust. J. Exp. Biol. Med. Sci. 1984, 62 Pt 6, 779–780. [Google Scholar] [CrossRef]
- Gubala, A.; Davis, S.; Weir, R.; Melville, L.; Cowled, C.; Boyle, D. Tibrogargan and Coastal Plains rhabdoviruses: Genomic characterization, evolution of novel genes and seroprevalence in Australian livestock. J. Gen. Virol. 2011, 92 Pt 9, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Firth, C.; Widen, S.G.; Blasdell, K.R.; Guzman, H.; Wood, T.G.; Paradkar, P.N.; Holmes, E.C.; Tesh, R.B.; Vasilakis, N. Evolution of genome size and complexity in the rhabdoviridae. PLoS Pathog. 2015, 11, e1004664. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Inaba, Y.; Akashi, H.; Miura, Y.; Shorthose, J.; Kurashige, K. Isolation of a new bovine ephemeral fever group virus. Aust. Vet. J. 1986, 63, 29. [Google Scholar] [CrossRef] [PubMed]
- Gubala, A.; Davis, S.; Weir, R.; Melville, L.; Cowled, C.; Walker, P.; Boyle, D. Ngaingan virus, a macropod-associated rhabdovirus, contains a second glycoprotein gene and seven novel open reading frames. Virology 2010, 399, 98–108. [Google Scholar] [CrossRef]
- Jennings, M.; Platt, G.S.; Bowen, E.T. The susceptibility of Culicoides variipennis Coq. (Diptera: Ceratopogonidae) to laboratory infection with Rift Valley fever virus. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 587–589. [Google Scholar] [CrossRef]
- Turell, M.J.; Wilson, W.C.; Bennett, K.E. Potential for North American mosquitoes (Diptera: Culicidae) to transmit rift valley fever virus. J. Med. Entomol. 2010, 47, 884–889. [Google Scholar] [CrossRef]
- Braverman, Y.; Boorman, J. Unsuccessful attempts to infect Culicoides with Israel turkey virus. Acta Virol. 1978, 22, 429. [Google Scholar]
- Lee, H.R.; Koo, B.S.; Kim, J.T.; Kim, H.C.; Kim, M.S.; Klein, T.A.; Shin, M.S.; Lee, S.; Jeon, E.O.; Min, K.C.; et al. Molecular Epidemiology of Avian Poxvirus in the Oriental Turtle Dove (Streptopelia Orientalis) and the Biting Midge (Culicoides Arakawae) in the Republic of Korea. J. Wildl. Dis. 2017, 53, 749–760. [Google Scholar] [CrossRef]
- Fukuda, T.; Goto, T.; Kitaoka, S.; Fujisaki, K.; Takamatsu, H. Experimental transmission of fowl pox by Culicoides arakawae. Natl. Inst. Anim. Health, Q. 1979, 19, 104–105. [Google Scholar]
- Minhas, S.K.; Kumar, P.; Panghal, R.; Mehtani, R.; Yadav, R.; Kalonia, S.; Gowthaman, V. Fowl pox virus: A minireview. World’s Poult. Sci. J. 2024, 80, 329–347. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Bampali, M.; de Courcy Williams, M.; Dovrolis, N.; Gatzidou, E.; Papazilakis, P.; Nearchou, A.; Veletza, S.; Karakasiliotis, I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front. Microbiol. 2022, 13, 802577. [Google Scholar] [CrossRef] [PubMed]
- Laredo-Tiscareño, S.V.; Garza-Hernandez, J.A.; Tangudu, C.S.; Dankaona, W.; Rodríguez-Alarcón, C.A.; Adame-Gallegos, J.R.; De Luna Santillana, E.J.; Huerta, H.; Gonzalez-Peña, R.; Rivera-Martínez, A.; et al. Discovery of Novel Viruses in Culicoides Biting Midges in Chihuahua, Mexico. Viruses 2024, 16, 1160. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shen, Q.; Li, N.; He, Y.; Han, N.; Wang, X.; Meng, J.; Peng, Y.; Pan, M.; Jin, Y.; et al. Comparative viromes of Culicoides and mosquitoes reveal their consistency and diversity in viral profiles. Brief Bioinform. 2021, 22, bbaa323. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, S.R.; Madhav, M.; Klein, M.J.; Blasdell, K.R.; Paradkar, P.N.; Lynch, S.E.; Eagles, D.; López-Denman, A.J.; Ahmed, K.A. Characterisation of the virome of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae), a vector of bluetongue virus in Australia. J. Gen. Virol. 2025, 106, 002076. [Google Scholar] [CrossRef]
- Silva, S.L.S.D.; Silva, S.P.D.; Aragão, C.F.; Gorayeb, I.S.; Cruz, A.C.R.; Dias, D.D.; Nascimento, B.L.S.D.; Chiang, J.O.; Casseb, L.M.N.; Nunes Neto, J.P.; et al. Investigation of RNA Viruses in Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) in a Mining Complex in the Southeastern Region of the Brazilian Amazon. Viruses 2024, 16, 1862. [Google Scholar] [CrossRef]
- Yang, X.; Qin, S.; Liu, X.; Zhang, N.; Chen, J.; Jin, M.; Liu, F.; Wang, Y.; Guo, J.; Shi, H.; et al. Meta-Viromic Sequencing Reveals Virome Characteristics of Mosquitoes and Culicoides on Zhoushan Island, China. Microbiol. Spectr. 2023, 11, e0268822. [Google Scholar] [CrossRef]
- Langat, S.K.; Eyase, F.; Bulimo, W.; Lutomiah, J.; Oyola, S.O.; Imbuga, M.; Sang, R. Profiling of RNA Viruses in Biting Midges (Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021, 6, e0055121. [Google Scholar] [CrossRef]
- Modha, S.; Hughes, J.; Bianco, G.; Ferguson, H.M.; Helm, B.; Tong, L.; Wilkie, G.S.; Kohl, A.; Schnettler, E. Metaviromics Reveals Unknown Viral Diversity in the Biting Midge Culicoides impunctatus. Viruses 2019, 11, 865. [Google Scholar] [CrossRef]
- Temmam, S.; Monteil-Bouchard, S.; Robert, C.; Baudoin, J.P.; Sambou, M.; Aubadie-Ladrix, M.; Labas, N.; Raoult, D.; Mediannikov, O.; Desnues, C. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus. Viruses 2016, 8, 77. [Google Scholar] [CrossRef]
- Temmam, S.; Monteil-Bouchard, S.; Sambou, M.; Aubadie-Ladrix, M.; Azza, S.; Decloquement, P.; Khalil, J.Y.; Baudoin, J.P.; Jardot, P.; Robert, C.; et al. Faustovirus-Like Asfarvirus in Hematophagous Biting Midges and Their Vertebrate Hosts. Front. Microbiol. 2015, 6, 1406. [Google Scholar] [CrossRef]
- Kobayashi, D.; Murota, K.; Faizah, A.N.; Amoa-Bosompem, M.; Higa, Y.; Hayashi, T.; Tsuda, Y.; Sawabe, K.; Isawa, H. RNA virome analysis of hematophagous Chironomoidea flies (Diptera: Ceratopogonidae and Simuliidae) collected in Tokyo, Japan. Med. Entomol. Zool. 2020, 71, 225–243. [Google Scholar] [CrossRef]
- Wilson, W.C. Detection of epizootic hemorrhagic disease virus in Culicoides variipennis (Diptera: Ceratopogonidae). J. Med. Entomol. 1991, 28, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, E.A.; Pinheiro, M.A.; Lucchesi, V.S.; Oliveira, A.G.G.; Galinari, G.C.F.; Tinoco, H.P.; Coelho, C.M.; Lobato, Z.I.P. The Study of Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) Circulation and Vectors at the Municipal Parks and Zoobotanical Foundation of Belo Horizonte, Minas Gerais, Brazil (FPMZB-BH). Viruses 2024, 16, 293. [Google Scholar] [CrossRef] [PubMed]
- Mullen, G.R.; Hayes, M.E.; Nusbaum, K.E. Potential vectors of bluetongue and epizootic hemorrhagic disease viruses of cattle and white-tailed deer in Alabama. Prog. Clin. Biol. Res. 1985, 178, 201–206. [Google Scholar]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef]
- Bossard, R.L.; Lareschi, M.; Urdapilleta, M.; Cutillas, C.; Zurita, A. Flea (Insecta: Siphonaptera) Family Diversity. Diversity 2023, 15, 1096. [Google Scholar] [CrossRef]
- Kocianova, E.; Kozuch, O. A contribution to the parasite fauna in winter nests of the common mole (Talpa europaea L.) and incidence of its infection with tick-borne encephalitis virus (TBE) and rickettsia Coxiella burnetii. Folia Parasitol. 1988, 35, 175–180. [Google Scholar]
- Sotnikova, A.N.; Soldatov, G.M. Isolation of Tick-Borne Encephalitis Viruses from Fleas Ceratophyllus Tamias Wagn. Med. Parazitol. 1964, 33, 622–624. [Google Scholar]
- Johnson, N.; Migne, C.V.; Gonzalez, G. Tick-borne encephalitis. Curr. Opin. Infect. Dis. 2023, 36, 198–202. [Google Scholar] [CrossRef]
- Pustijanac, E.; Bursic, M.; Talapko, J.; Skrlec, I.; Mestrovic, T.; Lisnjic, D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023, 11, 1634. [Google Scholar] [CrossRef]
- Wegner, Z. Experimental investigations on the role of the fleas Leptopsylla segnis Schoherr in transmission of the tick-borne encephalitis virus. Biul. Inst. Med. Morsk. Gdansk. 1966, 17, 461–469. [Google Scholar] [PubMed]
- Kulakova, Z. On the Role of Fleas in the Circulation of Tick-Borne Encephalitis Virus (Experimental Data); Session of the Committee for Tick-Borne Encephalitis Control: Kemerovo, Russia, 1962; pp. 8–10. [Google Scholar]
- Smetana, A. On the transmission of tick-borne encephalitis virus by fleas. Acta Virol. 1965, 9, 375–378. [Google Scholar] [PubMed]
- Dong, B. Experimental studies on the transmission of hemorrhagic fever with renal syndrome virus by gamasidea mites and fleas. Zhonghua Yi Xue Za Zhi 1991, 71, 502–504, 536. [Google Scholar] [PubMed]
- Trebbien, R.; Chriel, M.; Struve, T.; Hjulsager, C.K.; Larsen, G.; Larsen, L.E. Wildlife reservoirs of canine distemper virus resulted in a major outbreak in Danish farmed mink (Neovison vison). PLoS ONE 2014, 9, e85598. [Google Scholar] [CrossRef]
- Hofmann-Lehmann, R.; Hartmann, K. Feline leukaemia virus infection: A practical approach to diagnosis. J. Feline Med. Surg. 2020, 22, 831–846. [Google Scholar] [CrossRef]
- Willett, B.J.; Hosie, M.J. Feline leukaemia virus: Half a century since its discovery. Vet. J. 2013, 195, 16–23. [Google Scholar] [CrossRef]
- Vobis, M.; D’Haese, J.; Mehlhorn, H.; Mencke, N. Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol. Res. 2003, 91, 467–470. [Google Scholar] [CrossRef]
- Mencke, N.; Vobis, M.; Mehlhorn, H.; D Haese, J.; Rehagen, M.; Mangold-Gehring, S.; Truyen, U. Transmission of feline calicivirus via the cat flea (Ctenocephalides felis). Parasitol. Res. 2009, 105, 185–189. [Google Scholar] [CrossRef]
- Paweska, J.T.; Storm, N.; Jansen van Vuren, P.; Markotter, W.; Kemp, A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat (Rousettus aegyptiacus). Viruses 2024, 16, 1197. [Google Scholar] [CrossRef]
- Shepherd, R.C.; Edmonds, J.W. Myxomatosis: The transmission of a highly virulent strain of myxoma virus by the European rabbit flea Sphilopsyllus cuniculi (Dale) in the Mallee region of Victoria. J. Hyg. 1977, 79, 405–409. [Google Scholar] [CrossRef]
- Harvey, E.; Rose, K.; Eden, J.S.; Lawrence, A.; Doggett, S.L.; Holmes, E.C. Identification of diverse arthropod associated viruses in native Australian fleas. Virology 2019, 535, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bezerra-Santos, M.A.; Otranto, D. Keds, the enigmatic flies and their role as vectors of pathogens. Acta Trop. 2020, 209, 105521. [Google Scholar] [CrossRef] [PubMed]
- Keve, G.; Csorgo, T.; Kovats, D.; Benke, A.; Bende, A.T.; Agoston, H.; Morocz, A.; Nemeth, A.; Tamas, E.A.; Huber, A.; et al. Contributions to our knowledge on avian louse flies (Hippoboscidae: Ornithomyinae) with the first European record of the African species Ornithoctona laticornis. Parasites Vectors 2024, 17, 237. [Google Scholar] [CrossRef] [PubMed]
- Cisovska Bazsalovicsova, E.; Vichova, B.; Obona, J.; Radacovska, A.; Blazekova, V.; Kralova-Hromadova, I. Bird Louse Flies Ornithomya spp. (Diptera: Hippoboscidae) as Potential. Vectors of Mammalian Babesia and Other Pathogens. Vector Borne Zoonotic Dis. 2023, 23, 275–283. [Google Scholar] [CrossRef]
- Maslanko, W.; Szwaj, E.; Gazda, M.; Bartosik, K. Hippobosca equina L. (Hippoboscidae: Hippobosca)-An Old Enemy as an Emerging Threat in the Palearctic Zone. Int. J. Environ. Res. Public Health 2022, 19, 16978. [Google Scholar] [CrossRef]
- Farajollahi, A.; Crans, W.J.; Nickerson, D.; Bryant, P.; Wolf, B.; Glaser, A.; Andreadis, T.G. Detection of West Nile virus RNA from the louse fly Icosta americana (Diptera: Hippoboscidae). J. Am. Mosq. Control Assoc. 2005, 21, 474–476. [Google Scholar] [CrossRef]
- Gancz, A.Y.; Barker, I.K.; Lindsay, R.; Dibernardo, A.; McKeever, K.; Hunter, B. West Nile virus outbreak in North American owls, Ontario, 2002. Emerg. Infect. Dis. 2004, 10, 2135–2142. [Google Scholar] [CrossRef]
- Zhigailov, A.V.; Perfilyeva, Y.V.; Ostapchuk, Y.O.; Kulemin, M.V.; Ivanova, K.R.; Abdolla, N.; Kan, S.A.; Maltseva, E.R.; Berdygulova, Z.A.; Naizabayeva, D.A.; et al. Molecular detection and characterization of bovine viral diarrhea virus type 2 and bluetongue virus 9 in forest flies (Hippobosca equina) collected from livestock in southern Kazakhstan. Vet. Parasitol. Reg. Stud. Rep. 2023, 45, 100932. [Google Scholar] [CrossRef]
- Luedke, A.J.; Jochim, M.M.; Bowne, J.G. Preliminary bluetongue Transmission with the sheep ked Melophagus ovinus (L.). Can. J. Comp. Med. Vet. Sci. 1965, 29, 229–231. [Google Scholar]
- Liu, Y.H.; He, B.; Li, K.R.; Li, F.; Zhang, L.Y.; Li, X.Q.; Zhao, L. First report of border disease virus in Melophagus ovinus (sheep ked) collected in Xinjiang, China. PLoS ONE 2019, 14, e0221435. [Google Scholar] [CrossRef]
- Litov, A.G.; Belova, O.A.; Kholodilov, I.S.; Gadzhikurbanov, M.N.; Gmyl, L.V.; Oorzhak, N.D.; Saryglar, A.A.; Ishmukhametov, A.A.; Karganova, G.G. Possible Arbovirus Found in Virome of Melophagus ovinus. Viruses 2021, 13, 2375. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Caselli, A.; Di Giuseppe, G.; Canale, A. Control of biting lice, Mallophaga—A review. Acta Trop. 2018, 177, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Hellenthal, R.A.; Price, R.D. Phthiraptera: Chewing and sucking lice. In Encyclopedia of Insects; Elsevier: Amsterdam, The Netherlands, 2009; pp. 777–780. [Google Scholar]
- Ouarti, B.; Mbogning Fonkou, D.M.; Houhamdi, L.; Mediannikov, O.; Parola, P. Lice and lice-borne diseases in humans in Africa: A narrative review. Acta Trop. 2023, 237, 106709. [Google Scholar] [CrossRef]
- Deng, Y.P.; Fu, Y.T.; Yao, C.; Shao, R.; Zhang, X.L.; Duan, D.Y.; Liu, G.H. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel. Med. Infect. Dis. 2023, 55, 102630. [Google Scholar] [CrossRef]
- Webb, H.E. Kyasanur Forest Disease Virus in Three Species on Rodents. Trans. R. Soc. Trop. Med. Hyg. 1965, 59, 205–211. [Google Scholar] [CrossRef]
- La Linn, M.; Gardner, J.; Warrilow, D.; Darnell, G.A.; McMahon, C.R.; Field, I.; Hyatt, A.D.; Slade, R.W.; Suhrbier, A. Arbovirus of marine mammals: A new alphavirus isolated from the elephant seal louse, Lepidophthirus macrorhini. J. Virol. 2001, 75, 4103–4109. [Google Scholar] [CrossRef]
- Temmam, S.; Monteil-Bouchard, S.; Robert, C.; Pascalis, H.; Michelle, C.; Jardot, P.; Charrel, R.; Raoult, D.; Desnues, C. Host-Associated Metagenomics: A Guide to Generating Infectious RNA Viromes. PLoS ONE 2015, 10, e0139810. [Google Scholar] [CrossRef]
- Petersen, J.M.; Burgess, A.L.; van Oers, M.M.; Herniou, E.A.; Bojko, J. Nudiviruses in free-living and parasitic arthropods: Evolutionary taxonomy. Trends Parasitol. 2024, 40, 744–762. [Google Scholar] [CrossRef]
- Okland, A.L.; Nylund, A.; Overgard, A.C.; Blindheim, S.; Watanabe, K.; Grotmol, S.; Arnesen, C.E.; Plarre, H. Genomic characterization and phylogenetic position of two new species in Rhabdoviridae infecting the parasitic copepod, salmon louse (Lepeophtheirus salmonis). PLoS ONE 2014, 9, e112517. [Google Scholar] [CrossRef]
- Cai, W.; Kumar, S.; Navaneethaiyer, U.; Caballero-Solares, A.; Carvalho, L.A.; Whyte, S.K.; Purcell, S.L.; Gagne, N.; Hori, T.S.; Allen, M.; et al. Transcriptome Analysis of Atlantic Salmon (Salmo salar) Skin in Response to Sea Lice and Infectious Salmon Anemia Virus Co-Infection Under Different Experimental Functional Diets. Front. Immunol. 2021, 12, 787033. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Hunt, B.P.V.; Hirai, J.; Suttle, C.A. Divergent RNA viruses infecting sea lice, major ectoparasites of fish. PLoS Pathog. 2023, 19, e1011386. [Google Scholar] [CrossRef] [PubMed]
- Walter, D.E.; Proctor, H.C. Mites: Ecology, Evolution and Behaviour; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- OConnor, B.M. Mites. In Encyclopedia of Insects; Elsevier: Amsterdam, The Netherlands, 2009; pp. 643–649. [Google Scholar]
- Navajas, M.; Migeon, A.; Estrada-Peña, A.; Mailleux, A.-C.; Servigne, P.; Petanović, R. Mites and ticks (Acari). Chapter 7.4. BioRisk 2010, 4, 149–192. [Google Scholar] [CrossRef]
- Diaz, J.H. Mite-transmitted dermatoses and infectious diseases in returning travelers. J. Travel. Med. 2010, 17, 21–31. [Google Scholar] [CrossRef]
- Smith, M.G.; Blattner, R.J.; Heys, F.M. Further Isolation of St. Louis Encephalitis Virus; Congenital Transfer of Virus in Chicken Mites (Dermanyssus gallinae). Proc. Soc. Exp. Biol. Med. 1945, 59, 136–138. [Google Scholar]
- Smith, M.G.; Blattner, R.J.; Heys, F.M. The Isolation of the St. Louis Encephalitis Virus from Chicken Mites (Dermanyssus gallinae) in Nature. Science 1944, 100, 362–363. [Google Scholar] [CrossRef]
- Smith, M.G.; Blattner, R.J.; Heys, F.M. St. Louis Encephalitis: Infection of Chicken Mites, Dermanyssus gallinae, by Feeding on Chickens with Viremia; Transovarian Passage of Virus into the Second Generation. J. Exp. Med. 1946, 84, 1–6. [Google Scholar] [CrossRef]
- Smith, M.G.; Blattner, R.J.; Heys, F.M. St. Louis Encephalitis: Transmission of Virus to Chickens by Infected Mites Dermanyssus gallinae and Resulting Viremia as Source of Virus for Infection of Mites. J. Exp. Med. 1947, 86, 229–237. [Google Scholar] [CrossRef]
- Chamberlain, R.W.; Sikes, R.K.; Sudia, W.D. Attempted laboratory infection of bird mites with the virus of St. Louis encephalitis. Am. J. Trop. Med. Hyg. 1957, 6, 1047–1053. [Google Scholar] [CrossRef]
- Miles, V.I.; Howitt, B.F.; Gorrie, R.; Cockburn, T.A. Encephalitis in Midwest. V. Western equine encephalomyelitis virus recovered from mites Dermanyssus americanus Ewing. Proc. Soc. Exp. Biol. Med. 1951, 77, 395–396. [Google Scholar] [CrossRef]
- Reeves, W.C.; Hammon, W.M.; Furman, D.P.; McClure, H.E.; Brookman, B. Recovery of Western Equine Encephalomyelitis Virus From Wild Bird Mites (Liponyssus sylviarum) in Kern County, California. Science 1947, 105, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Sulkin, S.E.; Izumi, E.M. Isolation of western equine encephalomyelitis virus from tropical fowl mites, Liponyssus bursa (Berlese). Proc. Soc. Exp. Biol. Med. 1947, 66, 249. [Google Scholar] [CrossRef] [PubMed]
- Sulkin, S.E. Recovery of Equine Encephalomyelitis Virus (Western Type) from Chicken Mites. Science 1945, 101, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Howitt, B.F.; Dodge, H.R.; Bishop, L.K.; Gorrie, R.H. Virus of eastern equine encephalomyelitis isolated from chicken mites, Dermanyssus gallinae and chicken lice, Eomenacanthus stramineus. Proc. Soc. Exp. Biol. Med. 1948, 68, 622–625. [Google Scholar] [CrossRef]
- Reisen, W.K.; Monath, T.P. Western equine encephalomyelitis. In The Arboviruses; CRC Press: Boca Raton, FL, USA, 2019; pp. 89–138. [Google Scholar]
- Long, M.T.; Gibbs, E.P.J. Chapter 20—equine alphaviruses. In Equine Infectious Diseases, 2nd ed.; Sellon, D., Long, M.T., Eds.; Elsevier Health Sciences: St. Louis, NY, USA, 2007; pp. 210–217. [Google Scholar]
- Chamberlain, R.W.; Sikes, R.K. Laboratory investigations on the role of bird mites in the transmission of eastern and western equine encephalitis. Am. J. Trop. Med. Hyg. 1955, 4, 106–118. [Google Scholar] [CrossRef]
- Durden, L.A.; Linthicum, K.J.; Monath, T.P. Laboratory transmission of eastern equine encephalomyelitis virus to chickens by chicken mites (Acari: Dermanyssidae). J. Med. Entomol. 1993, 30, 281–285. [Google Scholar] [CrossRef]
- Durden, L.A.; Linthicum, K.J.; Turell, M.J. Mechanical transmission of Venezuelan equine encephalomyelitis virus by hematophagous mites (Acari). J. Med. Entomol. 1992, 29, 118–121. [Google Scholar] [CrossRef]
- Durden, L.A.; Turell, M.J. Inefficient mechanical transmission of Langat (tick-borne encephalitis virus complex) virus by blood-feeding mites (Acari) to laboratory mice. J. Med. Entomol. 1993, 30, 639–641. [Google Scholar] [CrossRef]
- Jonkers, A.H.; Shope, R.E.; Aitken, T.H.; Spence, L. Cocal Virus, a New Agent in Trinidad Related to Vesicular Stomatitis Virus, Type Indiana. Am. J. Vet. Res. 1964, 25, 236–242. [Google Scholar]
- Gu, X.L.; Su, W.Q.; Zhou, C.M.; Fang, L.Z.; Zhu, K.; Ma, D.Q.; Jiang, F.C.; Li, Z.M.; Li, D.; Duan, S.H.; et al. SFTSV infection in rodents and their ectoparasitic chiggers. PLoS Negl. Trop. Dis. 2022, 16, e0010698. [Google Scholar] [CrossRef]
- Wang, Q.K.; Ge, H.M.; Hu, J.L.; Zhang, Z.Y.; Wang, Y.P.; Jiao, Y.J.; Li, Z.-F.; Hu, S.M.; Lu, D.J.; Wang, X.; et al. Surveillance of vectors and host animals of severe fever with thrombocytopenia syndrome virus in Donghai, China in 2010–2011. Chin. J. Vector Biol. Control. 2013, 24, 313–316. [Google Scholar]
- Linsuwanon, P.; Poovorawan, Y.; Lee, K.H.; Auysawasdi, N.; Wongwairot, S.; Limsuwan, C.; Vuthitanachot, V.; Leepitakrat, S.; Vongpunsawasdi, S.; Nilyanimit, P.; et al. Comprehensive Surveillance of Severe Fever with Thrombocytopenia Syndrome Virus in Patients with Acute Febrile Illness, Wild Rodents, and Trombiculid Larval Mites, Thailand. Emerg. Infect. Dis. 2024, 30, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.J.; Tesh, R.B. The role of mites in the transmission and maintenance of Hantaan virus (Hantavirus: Bunyaviridae). J. Infect. Dis. 2014, 210, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Yun-Long, H.; Hua-Zhong, Z.; Guang-Hua, T.; Ke-Jian, J. Study on natural infection of EHFV in Letotrombidium (L.) Setttellarc. Virol. Sin. 1995, 10, 94–96. [Google Scholar]
- Zhang, Y.; Zhu, J.; Deng, X. Experimental study on the roles of gasmid mite and chigger mite in the transmission of hemorrhagic fever with renal syndrome virus. Zhonghua liu Xing Bing xue za zhi = Zhonghua Liuxingbingxue Zazhi 2001, 22, 352–354. [Google Scholar]
- Yun, Z. Investigation of the relationship between gamasid mites, chigger mites and hemorrhagic fever with renal syndrome. Chin. J. Public Health 2000, 16, 525–526. [Google Scholar]
- Zhang, Y.; Zhu, J.; Deng, X.; Wu, G.; Zhang, J.; Zhou, Y. Distribution of hemorrhagic fever with renal syndrome virus in gamasid mites and chigger mites. Chin. J. Prev. Med. 2002, 36, 232–234. [Google Scholar]
- Tao, K.; Zhang, Y.; Zhu, J. Detection of HFRSV structural protein genes in trombiculid mites and gamasid mites. China Public Health 2000, 16, 17–18. [Google Scholar]
- Zhang, Y. Study on distribution and life span of hemorrhagic fever with renal syndrome virus in Gasmid mete and chigger mite. Chin. J. Zoonoses 2000, 16, 5–7. [Google Scholar]
- Qian, J.; Zhang, Y.; Tao, K. Investigation of the relationship between chigger mites and hemorrhagic fever with renal syndrome. Chin. J. Vector Biol. Control 2000, 11, 166–168. [Google Scholar]
- Yu, J.; Deng, X.Z.; Yang, Z.Q.; Yao, P.P.; Zhu, H.P.; Xiong, H.R.; Li, C.L.; Zhang, Y. Study on the transmission of Hantaan virus and Orientia tsutsugamushi by naturally dual infected Leptotrombidium scutellare through stinging. Zhonghua Yu Fang Yi Xue Za Zhi 2010, 44, 324–328. [Google Scholar] [PubMed]
- Parodi, A.S.; Rugiero, H.R.; Greenway, D.J.; Mettler, N.; Martinez, A.; Boxaca, M.; De La Barrera, J.M. Isolation of the Junin virus (epidemic hemorrhagic fever) from the mites of the epidemic area (Echinolaelaps echidninus, Barlese). Prensa Med. Argent. 1959, 46, 2242–2244. [Google Scholar] [PubMed]
- Guo, L.; Lu, X.; Liu, X.; Li, P.; Wu, J.; Xing, F.; Peng, H.; Xiao, X.; Shi, M.; Liu, Z.; et al. Metatranscriptomic analysis reveals the virome and viral genomic evolution of medically important mites. J. Virol. 2021, 95, e02185-18. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.D. Muscid flies (muscidae). In Medical and Veterinary Entomology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–368. [Google Scholar]
- Crosskey, R. Stable-flies and horn-flies (bloodsucking Muscidae). In Medical Insects and Arachnids; Springer: Berlin/Heidelberg, Germany, 1993; pp. 389–402. [Google Scholar]
- Johnson, G.; Panella, N.; Hale, K.; Komar, N. Detection of West Nile virus in stable flies (Diptera: Muscidae) parasitizing juvenile American white pelicans. J. Med. Entomol. 2010, 47, 1205–1211. [Google Scholar] [CrossRef]
- Turcinaviciene, J.; Petrasiunas, A.; Bernotiene, R.; Masiulis, M.; Jonusaitis, V. The contribution of insects to African swine fever virus dispersal: Data from domestic pig farms in Lithuania. Med. Vet. Entomol. 2021, 35, 484–489. [Google Scholar] [CrossRef]
- Olesen, A.S.; Hansen, M.F.; Rasmussen, T.B.; Belsham, G.J.; Bodker, R.; Botner, A. Survival and localization of African swine fever virus in stable flies (Stomoxys calcitrans) after feeding on viremic blood using a membrane feeder. Vet. Microbiol. 2018, 222, 25–29. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Hansen, M.F.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Botner, A.; Bodker, R. Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transbound. Emerg. Dis. 2018, 65, 1152–1157. [Google Scholar] [CrossRef]
- Panei, C.J.; Larsen, A.E.; Fuentealba, N.A.; Metz, G.E.; Echeverría, M.G.; Galosi, C.M.; Valera, A.R. Study of horn flies as vectors of bovine leukemia virus. Open Vet. J. 2019, 9, 33–37. [Google Scholar] [CrossRef]
- Rochon, K.; Baker, R.B.; Almond, G.W.; Gimeno, I.M.; Perez de Leon, A.A.; Watson, D.W. Persistence and Retention of Porcine Reproductive and Respiratory Syndrome Virus in Stable Flies (Diptera: Muscidae). J. Med. Entomol. 2015, 52, 1117–1123. [Google Scholar] [CrossRef]
- Torres, L.; Almazan, C.; Ayllon, N.; Galindo, R.C.; Rosario-Cruz, R.; Quiroz-Romero, H.; Gortazar, C.; de la Fuente, J. Identification of microorganisms in partially fed female horn flies, Haematobia irritans. Parasitol. Res. 2012, 111, 1391–1395. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Debat, H.J.; Boiani, M.; Ures, X.; Rocha, S.; Breijo, M. An insight into the sialome, mialome and virome of the horn fly, Haematobia irritans. BMC Genom. 2019, 20, 616. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.A.B.; Rodrigues, B.L. A review of historical Phlebotominae taxonomy (Diptera: Psychodidae). Neotrop. Entomol. 2023, 52, 539–559. [Google Scholar] [CrossRef] [PubMed]
- Majoor, A.; Michel, G.; Marty, P.; Boyer, L.; Pomares, C. Leishmaniases: Strategies in treatment development. Parasite 2025, 32, 18. [Google Scholar] [CrossRef] [PubMed]
- Reguera, R.M.; Moran, M.; Perez-Pertejo, Y.; Garcia-Estrada, C.; Balana-Fouce, R. Current status on prevention and treatment of canine leishmaniasis. Vet. Parasitol. 2016, 227, 98–114. [Google Scholar] [CrossRef]
- Pinart, M.; Rueda, J.R.; Romero, G.A.; Pinzon-Florez, C.E.; Osorio-Arango, K.; Silveira Maia-Elkhoury, A.N.; Reveiz, L.; Elias, V.M.; Tweed, J.A. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst. Rev. 2020, 8, CD004834. [Google Scholar]
- Maia, C. Sand fly-borne diseases in Europe: Epidemiological overview and potential triggers for their emergence and re-emergence. J. Comp. Pathol. 2024, 209, 6–12. [Google Scholar] [CrossRef]
- Calisher, C.H.; Calzolari, M. Taxonomy of Phleboviruses, Emphasizing Those That Are Sandfly-Borne. Viruses 2021, 13, 918. [Google Scholar] [CrossRef]
- Sellali, S.; Lafri, I.; Garni, R.; Manseur, H.; Besbaci, M.; Lafri, M.; Bitam, I. Epidemiology of Sandfly-Borne Phleboviruses in North Africa: An Overview. Insects 2024, 15, 846. [Google Scholar] [CrossRef]
- Woyessa, A.B.; Omballa, V.; Wang, D.; Lambert, A.; Waiboci, L.; Ayele, W.; Ahmed, A.; Abera, N.A.; Cao, S.; Ochieng, M.; et al. An outbreak of acute febrile illness caused by Sandfly Fever Sicilian Virus in the Afar region of Ethiopia, 2011. Am. J. Trop. Med. Hyg. 2014, 91, 1250. [Google Scholar] [CrossRef]
- Downs, J.W.; Flood, D.T.; Orr, N.H.; Constantineau, J.A.; Caviness, J.W. Sandfly fever in Afghanistan-a sometimes overlooked disease of military importance: A case series and review of the literature. US Army Med. Dep. J. 2017, 60–66. [Google Scholar]
- Konstantinou, G.N.; Papa, A.; Antoniadis, A. Sandfly-fever outbreak in Cyprus: Are phleboviruses still a health problem? Travel. Med. Infect. Dis. 2007, 5, 239–242. [Google Scholar] [CrossRef]
- Ayhan, N.; Eldin, C.; Charrel, R. Toscana virus: A comprehensive review of 1381 cases showing an emerging threat in the Mediterranean regions. J. Infect. 2025, 90, 106415. [Google Scholar] [CrossRef]
- Dersch, R.; Sophocleous, A.; Cadar, D.; Emmerich, P.; Schmidt-Chanasit, J.; Rauer, S. Toscana virus encephalitis in Southwest Germany: A retrospective study. BMC Neurol. 2021, 21, 495. [Google Scholar] [CrossRef]
- Fotakis, E.A.; Di Maggio, E.; Del Manso, M.; Mateo-Urdiales, A.; Petrone, D.; Fabiani, M.; Perego, G.; Bella, A.; Bongiorno, G.; Bernardini, I.; et al. Human neuroinvasive Toscana virus infections in Italy from 2016 to 2023: Increased incidence in 2022 and 2023. Euro Surveill. 2025, 30, 2400203. [Google Scholar] [CrossRef]
- Keskek Turk, Y.; Ergunay, K.; Kohl, A.; Hughes, J.; McKimmie, C.S. Toscana virus—An emerging Mediterranean arbovirus transmitted by sand flies. J. Gen. Virol. 2024, 105, 002045. [Google Scholar] [CrossRef]
- Popescu, C.P.; Cotar, A.I.; Dinu, S.; Zaharia, M.; Tardei, G.; Ceausu, E.; Badescu, D.; Ruta, S.; Ceianu, C.S.; Florescu, S.A. Emergence of Toscana Virus, Romania, 2017–2018. Emerg. Infect. Dis. 2021, 27, 1482–1485. [Google Scholar] [CrossRef]
- Wenzel, M.; Afzali, A.M.; Hoffmann, D.; Zange, S.; Georgi, E.; Hemmer, B. Toscana Virus Meningoencephalitis in Upper Bavaria. Dtsch. Arztebl. Int. 2022, 119, 546–547. [Google Scholar] [CrossRef]
- Dehghani, R.; Kassiri, H.; Khodkar, I.; Karami, S. A comprehensive overview on sandfly fever. J. Acute Dis. 2021, 10, 98–106. [Google Scholar] [CrossRef]
- Ergunay, K.; Saygan, M.B.; Aydogan, S.; Lo, M.M.; Weidmann, M.; Dilcher, M.; Sener, B.; Hasçelik, G.; Pınar, A.; Us, D. Sandfly fever virus activity in central/northern Anatolia, Turkey: First report of Toscana virus infections. Clin. Microbiol. Infect. 2011, 17, 575–581. [Google Scholar] [CrossRef]
- Guler, S.; Guler, E.; Caglayik, D.Y.; Kokoglu, O.F.; Ucmak, H.; Bayrakdar, F.; Uyar, Y. A sandfly fever virus outbreak in the East Mediterranean region of Turkey. Int. J. Infect. Dis. 2012, 16, e244–e246. [Google Scholar] [CrossRef]
- Papa, A.; Konstantinou, G.; Pavlidou, V.; Antoniadis, A. Sandfly fever virus outbreak in Cyprus. Clin. Microbiol. Infect. 2006, 12, 192–194. [Google Scholar] [CrossRef]
- Ergunay, K.; Ismayilova, V.; Colpak, I.A.; Kansu, T.; Us, D. A case of central nervous system infection due to a novel Sandfly Fever Virus (SFV) variant: Sandfly Fever Turkey Virus (SFTV). J. Clin. Virol. 2012, 54, 79–82. [Google Scholar] [CrossRef]
- Goverdhan, M.K.; Dhanda, V.; Modi, G.B.; Bhatt, P.N.; Bhagwat, R.B.; Dandawate, C.N.; Pavri, K.M. Isolation of phlebotomus (sandfly) fever virus from sandflies and humans during the same season in Aurangabad District, Maharashtra State, India. Indian J. Med. Res. 1976, 64, 57–63. [Google Scholar]
- Schmidt, J.R.; Schmidt, M.L.; Mc, W.J. Isolation of phlebotomus fever virus from Phlebotomus papatasi. Am. J. Trop. Med. Hyg. 1960, 9, 450–454. [Google Scholar] [CrossRef]
- Schmidt, J.R.; Schmidt, M.L.; Said, M.I. Phlebotomus fever in Egypt. Isolation of phlebotomus fever viruses from Phlebotomus papatasi. Am. J. Trop. Med. Hyg. 1971, 20, 483–490. [Google Scholar] [CrossRef]
- Zhioua, E.; Moureau, G.; Chelbi, I.; Ninove, L.; Bichaud, L.; Derbali, M.; Champs, M.; Cherni, S.; Salez, N.; Cook, S.; et al. Punique virus, a novel phlebovirus, related to sandfly fever Naples virus, isolated from sandflies collected in Tunisia. J. Gen. Virol. 2010, 91 Pt 5, 1275–1283. [Google Scholar] [CrossRef]
- Izri, A.; Temmam, S.; Moureau, G.; Hamrioui, B.; de Lamballerie, X.; Charrel, R.N. Sandfly fever Sicilian virus, Algeria. Emerg. Infect. Dis. 2008, 14, 795–797. [Google Scholar] [CrossRef]
- Tesh, R.; Saidi, S.; Javadian, E.; Nadim, A. Studies on the epidemiology of sandfly fever in Iran. I. Virus isolates obtained from Phlebotomus. Am. J. Trop. Med. Hyg. 1977, 26, 282–287. [Google Scholar] [CrossRef]
- Carhan, A.; Uyar, Y.; Ozkaya, E.; Ertek, M.; Dobler, G.; Dilcher, M.; Wang, Y.; Spiegel, M.; Hufert, F.; Weidmann, M. Characterization of a sandfly fever Sicilian virus isolated during a sandfly fever epidemic in Turkey. J. Clin. Virol. 2010, 48, 264–269. [Google Scholar] [CrossRef]
- Sabin, A.B. Experimental studies on Phlebotomus (pappataci, sandfly) fever during World War II. Arch. Gesamte Virusforsch. 1951, 4, 367–410. [Google Scholar] [CrossRef]
- Bichaud, L.; Dachraoui, K.; Piorkowski, G.; Chelbi, I.; Moureau, G.; Cherni, S.; De Lamballerie, X.; Sakhria, S.; Charrel, R.N.; Zhioua, E. Toscana virus isolated from sandflies, Tunisia. Emerg. Infect. Dis. 2013, 19, 322–324. [Google Scholar] [CrossRef]
- Es-sette, N.; Ajaoud, M.; Anga, L.; Mellouki, F.; Lemrani, M. Toscana virus isolated from sandflies, Morocco. Parasites Vectors 2015, 8, 205. [Google Scholar] [CrossRef]
- Ozbel, Y.; Oguz, G.; Arserim, S.K.; Erisoz Kasap, O.; Karaoglu, B.; Yilmaz, A.; Emanet, N.; Gunay, F.; Hacioglu, S.; Demirok, M.C.; et al. The initial detection of Toscana virus in phlebotomine sandflies from Turkey. Med. Vet. Entomol. 2020, 34, 402–410. [Google Scholar] [CrossRef]
- Verani, P.; Ciufolini, M.G.; Caciolli, S.; Renzi, A.; Nicoletti, L.; Sabatinelli, G.; Bartolozzi, D.; Volpi, G.; Amaducci, L.; Coluzzi, M.; et al. Ecology of viruses isolated from sand flies in Italy and characterized of a new Phlebovirus (Arabia virus). Am. J. Trop. Med. Hyg. 1988, 38, 433–439. [Google Scholar] [CrossRef]
- Calzolari, M.; Chiapponi, C.; Bellini, R.; Bonilauri, P.; Lelli, D.; Moreno, A.; Barbieri, I.; Pongolini, S.; Lavazza, A.; Dottori, M. Isolation of three novel reassortant phleboviruses, Ponticelli I, II, III, and of Toscana virus from field-collected sand flies in Italy. Parasites Vectors 2018, 11, 84. [Google Scholar] [CrossRef]
- Calzolari, M.; Ferrarini, G.; Bonilauri, P.; Lelli, D.; Chiapponi, C.; Bellini, R.; Dottori, M. Co-circulation of eight different phleboviruses in sand flies collected in the Northern Apennine Mountains (Italy). Infect. Genet. Evol. 2018, 64, 131–134. [Google Scholar] [CrossRef]
- Hong, X.G.; Zhang, M.Q.; Tang, F.; Song, S.H.; Wang, J.Y.; Hu, Z.Y.; Liu, L.M.; Zhang, X.A.; Sun, Y.; Fang, L.Q.; et al. Epidemiology and Ecology of Toscana Virus Infection and Its Global Risk Distribution. Viruses 2024, 17, 15. [Google Scholar] [CrossRef]
- Remoli, M.E.; Fortuna, C.; Marchi, A.; Bucci, P.; Argentini, C.; Bongiorno, G.; Maroli, M.; Gradoni, L.; Gramiccia, M.; Ciufolini, M.G. Viral isolates of a novel putative phlebovirus in the Marche Region of Italy. Am. J. Trop. Med. Hyg. 2014, 90, 760–763. [Google Scholar] [CrossRef]
- Ciufolini, M.G.; Maroli, M.; Verani, P. Growth of two phleboviruses after experimental infection of their suspected sand fly vector, Phlebotomus perniciosus (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1985, 34, 174–179. [Google Scholar] [CrossRef]
- Jancarova, M.; Polanska, N.; Thiesson, A.; Arnaud, F.; Stejskalova, M.; Rehbergerova, M.; Kohl, A.; Viginier, B.; Volf, P.; Ratinier, M. Susceptibility of diverse sand fly species to Toscana virus. PLoS Negl. Trop. Dis. 2025, 19, e0013031. [Google Scholar] [CrossRef]
- Yuko, E.; Sang, R.; Owino, E.A.; Ingonga, J.; Matoke-Muhia, D.; Hassaballa, I.B.; Junglen, S.; Tchouassi, D.P. Sandfly Blood-Feeding Habits and Competence in Transmitting Ntepes Virus, a Recently Discovered Member of the Genus Phlebovirus. Biomed Res. Int. 2022, 2022, 4231978. [Google Scholar] [CrossRef]
- Dohm, D.J.; Rowton, E.D.; Lawyer, P.G.; O’Guinn, M.; Turell, M.J. Laboratory transmission of Rift Valley fever virus by Phlebotomus duboscqi, Phlebotomus papatasi, Phlebotomus sergenti, and Sergentomyia schwetzi (Diptera: Psychodidae). J. Med. Entomol. 2000, 37, 435–438. [Google Scholar] [CrossRef]
- Hoch, A.L.; Turell, M.J.; Bailey, C.L. Replication of Rift Valley fever virus in the sand fly Lutzomyia longipalpis. Am. J. Trop. Med. Hyg. 1984, 33, 295–299. [Google Scholar] [CrossRef]
- Turell, M.J.; Perkins, P.V. Transmission of Rift Valley fever virus by the sand fly, Phlebotomus duboscqi (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1990, 42, 185–188. [Google Scholar] [CrossRef]
- Marklewitz, M.; Tchouassi, D.P.; Hieke, C.; Heyde, V.; Torto, B.; Sang, R.; Junglen, S. Insights into the Evolutionary Origin of Mediterranean Sandfly Fever Viruses. mSphere 2020, 5, 00598-20. [Google Scholar] [CrossRef]
- Tchouassi, D.P.; Marklewitz, M.; Chepkorir, E.; Zirkel, F.; Agha, S.B.; Tigoi, C.C.; Koskei, E.; Drosten, C.; Borgemeister, C.; Torto, B.; et al. Sand Fly-Associated Phlebovirus with Evidence of Neutralizing Antibodies in Humans, Kenya. Emerg. Infect. Dis. 2019, 25, 681–690. [Google Scholar] [CrossRef]
- Tesh, R.B.; Chaniotis, B.N.; Peralta, P.H.; Johnson, K.M. Ecology of viruses isolated from Panamanian phlebotomine sandflies. Am. J. Trop. Med. Hyg. 1974, 23, 258–269. [Google Scholar] [CrossRef]
- Palacios, G.; Wiley, M.R.; Travassos da Rosa, A.P.A.; Guzman, H.; Quiroz, E.; Savji, N.; Carrera, J.P.; Bussetti, A.V.; Ladner, J.T.; Ian Lipkin, W.; et al. Characterization of the Punta Toro species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 2015, 96, 2079–2085. [Google Scholar] [CrossRef]
- Fares, W.; Charrel, R.N.; Dachraoui, K.; Bichaud, L.; Barhoumi, W.; Derbali, M.; Cherni, S.; Chelbi, I.; de Lamballerie, X.; Zhioua, E. Infection of sand flies collected from different bio-geographical areas of Tunisia with phleboviruses. Acta Trop. 2015, 141 Pt A, 1–6. [Google Scholar] [CrossRef]
- Walker, P.J.; Freitas-Astua, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 001689. [Google Scholar] [CrossRef]
- Jancarova, M.; Polanska, N.; Volf, P.; Dvorak, V. The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 2023, 104, 001837. [Google Scholar] [CrossRef] [PubMed]
- Brisse, M.E.; Ly, H. Chandipura Virus Causing Large Viral Encephalitis Outbreaks in India. Pathogens 2024, 13, 1110. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Mukherjee, T.; Mohanty, S. Chandipura Virus: A Growing Public Health Threat in India and Beyond. Infect. Disord. Drug Targets 2025, 25, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, A.B.; Bondre, V.P.; Gurav, Y.K.; Gokhale, M.D.; Sapkal, G.N.; Mavale, M.S.; George, R.P.; Mishra, A.C. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India. Indian, J. Med. Res. 2014, 139, 769–772. [Google Scholar]
- Fontenille, D.; Traore-Lamizana, M.; Trouillet, J.; Leclerc, A.; Mondo, M.; Ba, Y.; Digoutte, J.P.; Zeller, H.G. First isolations of arboviruses from phlebotomine sand flies in West Africa. Am. J. Trop. Med. Hyg. 1994, 50, 570–574. [Google Scholar] [CrossRef]
- Damle, R.G.; Sankararaman, V.; Bhide, V.S.; Jadhav, V.K.; Walimbe, A.M.; Gokhale, M.D. Molecular Evidence of Chandipura Virus from Sergentomyia species of Sandflies in Gujarat, India. Jpn. J. Infect. Dis. 2018, 71, 247–249. [Google Scholar] [CrossRef]
- Dhanda, V.; Rodrigues, F.M.; Ghosh, S.N. Isolation of Chandipura virus from sandflies in Aurangabad. Indian, J. Med. Res. 1970, 58, 179–180. [Google Scholar]
- Geevarghese, G.; Arankalle, V.A.; Jadi, R.; Kanojia, P.C.; Joshi, M.V.; Mishra, A.C. Detection of chandipura virus from sand flies in the genus Sergentomyia (Diptera: Phlebotomidae) at Karimnagar District, Andhra Pradesh, India. J. Med. Entomol. 2005, 42, 495–496. [Google Scholar] [CrossRef]
- Gurav, Y.K.; Tandale, B.V.; Jadi, R.S.; Gunjikar, R.S.; Tikute, S.S.; Jamgaonkar, A.V.; Khadse, R.K.; Jalgaonkar, S.V.; Arankalle, V.A.; Mishra, A.C. Chandipura virus encephalitis outbreak among children in Nagpur division, Maharashtra, 2007. Indian J. Med. Res. 2010, 132, 395–399. [Google Scholar]
- Mavale, M.S.; Fulmali, P.V.; Ghodke, Y.S.; Mishra, A.C.; Kanojia, P.; Geevarghese, G. Experimental transmission of Chandipura virus by Phlebotomus argentipes (diptera: Psychodidae). Am. J. Trop. Med. Hyg. 2007, 76, 307–309. [Google Scholar] [CrossRef]
- Tesh, R.B.; Modi, G.B. Growth and transovarial transmission of Chandipura virus (Rhabdoviridae: Vesiculovirus) in phlebotomus papatasi. Am. J. Trop. Med. Hyg. 1983, 32, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Comer, J.A.; Corn, J.L.; Stallknecht, D.E.; Landgraf, J.G.; Nettles, V.F. Titers of vesicular stomatitis virus, New Jersey serotype, in naturally infected male and female Lutzomyia shannoni (Diptera: Psychodidae) in Georgia. J. Med. Entomol. 1992, 29, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Corn, J.L.; Comer, J.A.; Erickson, G.A.; Nettles, V.F. Isolation of vesicular stomatitis virus New Jersey serotype from phlebotomine sand flies in Georgia. Am. J. Trop. Med. Hyg. 1990, 42, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Tesh, R.B.; Chaniotis, B.N.; Johnson, K.M. Vesicular stomatitis virus, Indiana serotype: Multiplication in and transmission by experimentally infected phlebotomine sandflies (Lutzomyia trapidoi). Am. J. Epidemiol. 1971, 93, 491–495. [Google Scholar] [CrossRef]
- Comer, J.A.; Stallknecht, D.E.; Corn, J.L.; Nettles, V.F. Lutzomyia shannoni (Diptera: Psychodidae): A biological vector of the New Jersey serotype of vesicular stomatitis virus on Ossabaw Island, Georgia. Parassitologia 1991, 33, 151–158. [Google Scholar]
- Comer, J.A.; Tesh, R.B.; Modi, G.B.; Corn, J.L.; Nettles, V.F. Vesicular stomatitis virus, New Jersey serotype: Replication in and transmission by Lutzomyia shannoni (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1990, 42, 483–490. [Google Scholar] [CrossRef]
- Weaver, S.C.; Tesh, R.B.; Guzman, H. Ultrastructural aspects of replication of the New Jersey serotype of vesicular stomatitis virus in a suspected sand fly vector, Lutzomyia shannoni (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 1992, 46, 201–210. [Google Scholar] [CrossRef]
- Travassos da Rosa, A.P.; Tesh, R.B.; Travassos da Rosa, J.F.; Herve, J.P.; Main, A.J., Jr. Carajas and Maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am. J. Trop. Med. Hyg. 1984, 33, 999–1006. [Google Scholar] [CrossRef]
- Tesh, R.B.; Boshell, J.; Modi, G.B.; Morales, A.; Young, D.G.; Corredor, A.; Ferro de Carrasquilla, C.; de Rodriguez, C.; Walters, L.L.; Gaitan, M.O. Natural infection of humans, animals, and phlebotomine sand flies with the Alagoas serotype of vesicular stomatitis virus in Colombia. Am. J. Trop. Med. Hyg. 1987, 36, 653–661. [Google Scholar] [CrossRef]
- Doherty, R.L.; Carley, J.G.; Standfast, H.A.; Dyce, A.L.; Kay, B.H.; Snowdon, W.A. Isolation of arboviruses from mosquitoes, biting midges, sandflies and vertebrates collected in Queensland, 1969 and 1970. Trans. R. Soc. Trop. Med. Hyg. 1973, 67, 536–543. [Google Scholar] [CrossRef]
- Wanzeller, A.L.; Nunes, M.R.; Tavares, F.N.; Pinto, W.V.; Júnior, E.C.; de Lima, C.P.; de Oliveira, L.F.; Júnior, J.L.; Cardoso, J.F.; Vasconcelos, P.F. Inhangapi Virus: Genome Sequencing of a Brazilian Ungrouped Rhabdovirus Isolated in the Amazon Region. Genome Announc. 2016, 4, e01525-15. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Widen, S.; Mayer, S.V.; Seymour, R.; Wood, T.G.; Popov, V.; Guzman, H.; Travassos da Rosa, A.P.; Ghedin, E.; Holmes, E.C.; et al. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology 2013, 444, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Tesh, R.B.; Widen, S.G.; Mirchandani, D.; Walker, P.J. Genomic characterisation of Cuiaba and Charleville viruses: Arboviruses (family Rhabdoviridae, genus Sripuvirus) infecting reptiles and amphibians. Virus Genes 2019, 55, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Aitken, T.H.; Woodall, J.P.; De Andrade, A.H.; Bensabath, G.; Shope, R.E. Pacui virus, phlebotomine flies, and small mammals in Brazil: An epidemiological study. Am. J. Trop. Med. Hyg. 1975, 24, 358–368. [Google Scholar] [CrossRef]
- Nunes-Neto, J.P.; Souza, W.M.; Acrani, G.O.; Romeiro, M.F.; Fumagalli, M.; Vieira, L.C.; Medeiros, D.B.A.; Lima, J.A.; Lima, C.P.S.; Cardoso, J.F.; et al. Characterization of the Bujaru, frijoles and Tapara antigenic complexes into the sandfly fever group and two unclassified phleboviruses from Brazil. J. Gen. Virol. 2017, 98, 585–594. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, N.; Hou, X.; Wang, J.; Fu, S.; Song, J.; Shi, M.; Liang, G. Isolation and Identification of a Novel Phlebovirus, Hedi Virus, from Sandflies Collected in China. Viruses 2021, 13, 772. [Google Scholar] [CrossRef]
- Traoré-Lamizana, M.; Fontenille, D.; Diallo, M.; Bâ, Y.; Zeller, H.G.; Mondo, M.; Adam, F.; Thonon, J.; Maïga, A. Arbovirus surveillance from 1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus. J. Med. Entomol. 2001, 38, 480–492. [Google Scholar] [CrossRef]
- Sylla, M.; Souris, M.; Gonzalez, J.-P. Ticks of the genus Rhipicephalus Koch, 1844 in Senegal: Review host associations, chorology, and associated human and animal pathogens. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2021, 74, 61–69. [Google Scholar] [CrossRef]
- Butenko, A.M. Arbovirus circulation in the Republic of Guinea. Med. Parazitol. 1996, 2, 40–45. [Google Scholar]
- Wang, J.; Fan, N.; Fu, S.; Cheng, J.; Wu, B.; Xu, Z.; Song, J.; Tian, X.; Li, Y.; He, Y.; et al. Isolation and Characterization of Wuxiang Virus from Sandflies Collected in Yangquan County, Shanxi Province, China. Vector Borne Zoonotic Dis. 2021, 21, 446–457. [Google Scholar] [CrossRef]
- Hukic, M.; Avdihodzic, H.; Kurolt, I.C.; Markotic, A.; Hanjalic, J.; Kapur-Pojskic, L.; Mahmuljin, I.; Avdic, M.; Salimovic-Besic, I.; Smajlovic-Skenderagic, L. A novel flavivirus strain detected in phlebotomine sandflies in Bosnia and Herzegovina. Med. Glas. 2020, 17, 301–307. [Google Scholar]
- Moureau, G.; Ninove, L.; Izri, A.; Cook, S.; De Lamballerie, X.; Charrel, R.N. Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis. 2010, 10, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Alkan, C.; Zapata, S.; Bichaud, L.; Moureau, G.; Lemey, P.; Firth, A.E.; Gritsun, T.S.; Gould, E.A.; de Lamballerie, X.; Depaquit, J.; et al. Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. J. Virol. 2015, 89, 11773–11785. [Google Scholar] [CrossRef] [PubMed]
- Phumee, A.; Wacharapluesadee, S.; Petcharat, S.; Siriyasatien, P. A new cluster of rhabdovirus detected in field-caught sand flies (Diptera: Psychodidae: Phlebotominae) collected from southern Thailand. Parasites Vectors 2021, 14, 569. [Google Scholar] [CrossRef]
- Fonseca, P.; Ferreira, F.; da Silva, F.; Oliveira, L.S.; Marques, J.T.; Goes-Neto, A.; Aguiar, E.; Gruber, A. Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus-Host Interaction Signatures. Viruses 2020, 13, 9. [Google Scholar] [CrossRef]
- Nunes, M.R.T.; Contreras-Gutierrez, M.A.; Guzman, H.; Martins, L.C.; Barbirato, M.F.; Savit, C.; Balta, V.; Uribe, S.; Vivero, R.; Suaza, J.D.; et al. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology 2017, 504, 152–167. [Google Scholar] [CrossRef]
- Alkan, C.; Alwassouf, S.; Piorkowski, G.; Bichaud, L.; Tezcan, S.; Dincer, E.; Ergunay, K.; Ozbel, Y.; Alten, B.; de Lamballerie, X.; et al. Isolation, genetic characterization, and seroprevalence of Adana virus, a novel phlebovirus belonging to the Salehabad virus complex, in Turkey. J. Virol. 2015, 89, 4080–4091. [Google Scholar] [CrossRef]
- Palacios, G.; Travassos da Rosa, A.; Savji, N.; Sze, W.; Wick, I.; Guzman, H.; Hutchison, S.; Tesh, R.; Lipkin, W.I. Aguacate virus, a new antigenic complex of the genus Phlebovirus (family Bunyaviridae). J. Gen. Virol. 2011, 92 Pt 6, 1445–1453. [Google Scholar] [CrossRef]
- Amaro, F.; Ze-Ze, L.; Alves, M.J.; Borstler, J.; Clos, J.; Lorenzen, S.; Becker, S.C.; Schmidt-Chanasit, J.; Cadar, D. Co-circulation of a novel phlebovirus and Massilia virus in sandflies, Portugal. Virol. J. 2015, 12, 174. [Google Scholar] [CrossRef]
- Tesh, R.B.; Boshell, J.; Young, D.G.; Morales, A.; Ferra de Carrasquilla, C.; Corredor, A.; Modi, G.B.; Travassos da Rosa, A.P.; McLean, R.G.; de Rodriguez, C.; et al. Characterization of five new phleboviruses recently isolated from sand flies in tropical America. Am. J. Trop. Med. Hyg. 1989, 40, 529–533. [Google Scholar] [CrossRef]
- Palacios, G.; Tesh, R.; Travassos da Rosa, A.; Savji, N.; Sze, W.; Jain, K.; Serge, R.; Guzman, H.; Guevara, C.; Nunes, M.R.; et al. Characterization of the Candiru antigenic complex (Bunyaviridae: Phlebovirus), a highly diverse and reassorting group of viruses affecting humans in tropical America. J. Virol. 2011, 85, 3811–3820. [Google Scholar] [CrossRef] [PubMed]
- Amaro, F.; Hanke, D.; Ze-Ze, L.; Alves, M.J.; Becker, S.C.; Hoper, D. Genetic characterization of Arrabida virus, a novel phlebovirus isolated in South Portugal. Virus Res. 2016, 214, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, N.; Alten, B.; Ivovic, V.; Dvorak, V.; Martinkovic, F.; Omeragic, J.; Stefanovska, J.; Petric, D.; Vaselek, S.; Baymak, D.; et al. Direct evidence for an expanded circulation area of the recently identified Balkan virus (Sandfly fever Naples virus species) in several countries of the Balkan archipelago. Parasites Vectors 2017, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, N.; Velo, E.; de Lamballerie, X.; Kota, M.; Kadriaj, P.; Ozbel, Y.; Charrel, R.N.; Bino, S. Detection of Leishmania infantum and a Novel Phlebovirus (Balkan Virus) from Sand Flies in Albania. Vector Borne Zoonotic Dis. 2016, 16, 802–806. [Google Scholar] [CrossRef]
- Ayhan, N.; Alten, B.; Ivovic, V.; Cvetkovikj, A.; Stefanovska, J.; Martinkovic, F.; Piorkowski, G.; Moureau, G.; Gould, E.A.; Pettersson, J.H.; et al. Field surveys in Croatia and North Macedonia reveal two novel phleboviruses circulating in sandflies. J. Gen. Virol. 2021, 102, 001674. [Google Scholar] [CrossRef]
- Tesh, R.B.; Boshell, J.; Young, D.G.; Morales, A.; Corredor, A.; Modi, G.B.; Ferro de Carrasquilla, C.; de Rodriquez, C.; Gaitan, M.O. Biology of Arboledas virus, a new phlebotomus fever serogroup virus (Bunyaviridae: Phlebovirus) isolated from sand flies in Colombia. Am. J. Trop. Med. Hyg. 1986, 35, 1310–1316. [Google Scholar] [CrossRef]
- Sudeep, A.B.; Shil, P.; Selarka, K.; Godke, Y.S.; Sonawane, P.A.; Gokhale, M.D. Diversity of sandflies in Vidarbha region of Maharashtra, India, a region endemic to Chandipura virus encephalitis. Indian, J. Med. Res. 2023, 157, 259–267. [Google Scholar] [CrossRef]
- Peralta, P.H.; Shelokov, A. Isolation and characterization of arboviruses from Almirante, Republic of Panama. Am. J. Trop. Med. Hyg. 1966, 15, 369–378. [Google Scholar] [CrossRef]
- Alkan, C.; Moin Vaziri, V.; Ayhan, N.; Badakhshan, M.; Bichaud, L.; Rahbarian, N.; Javadian, E.A.; Alten, B.; de Lamballerie, X.; Charrel, R.N. Isolation and sequencing of Dashli virus, a novel Sicilian-like virus in sandflies from Iran; genetic and phylogenetic evidence for the creation of one novel species within the Phlebovirus genus in the Phenuiviridae family. PLoS Negl. Trop. Dis. 2017, 11, e0005978. [Google Scholar] [CrossRef]
- Hughes, H.R.; Russell, B.J.; Lambert, A.J. Genetic Characterization of Frijoles and Chilibre Species Complex Viruses (Genus Phlebovirus; Family Phenuiviridae) and Three Unclassified New World Phleboviruses. Am. J. Trop. Med. Hyg. 2020, 102, 359–365. [Google Scholar] [CrossRef]
- Collao, X.; Palacios, G.; de Ory, F.; Sanbonmatsu, S.; Perez-Ruiz, M.; Navarro, J.M.; Molina, R.; Hutchison, S.K.; Lipkin, W.I.; Tenorio, A.; et al. Granada virus: A natural phlebovirus reassortant of the sandfly fever Naples serocomplex with low seroprevalence in humans. Am. J. Trop. Med. Hyg. 2010, 83, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Causey, O.R.; Causey, C.E.; Maroja, O.M.; Macedo, D.G. The isolation of arthropod-borne viruses, including members of two hitherto undescribed serological groups, in the Amazon region of Brazil. Am. J. Trop. Med. Hyg. 1961, 10, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Tesh, R.; Saidi, S.; Javadian, E.; Loh, P.; Nadim, A. Isfahan virus, a new vesiculovirus infecting humans, gerbils, and sandflies in Iran. Am. J. Trop. Med. Hyg. 1977, 26, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Gaidamovich, S.; Altukhova, L.M.; Obukhova, V.R.; Ponirovskii, E.N.; Sadykov, V.G. Isolation of the Isfahan virus in Turkmenia. Vopr. Virusol. 1980, 5, 618–620. [Google Scholar]
- Palacios, G.; Tesh, R.B.; Savji, N.; Travassos da Rosa, A.P.A.; Guzman, H.; Bussetti, A.V.; Desai, A.; Ladner, J.; Sanchez-Seco, M.; Lipkin, W.I. Characterization of the Sandfly fever Naples species complex and description of a new Karimabad species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 2014, 95 Pt 2, 292–300. [Google Scholar] [CrossRef]
- Fall, G.; Diallo, D.; Soumaila, H.; Ndiaye, E.H.; Lagare, A.; Sadio, B.D.; Ndione, M.H.D.; Wiley, M.; Dia, M.; Diop, M.; et al. First Detection of the West Nile Virus Koutango Lineage in Sandflies in Niger. Pathogens 2021, 10, 257. [Google Scholar] [CrossRef]
- Bichaud, L.; Dachraoui, K.; Alwassouf, S.; Alkan, C.; Mensi, M.; Piorkowski, G.; Sakhria, S.; Seston, M.; Fares, W.; De Lamballerie, X.; et al. Isolation, full genomic characterization and neutralization-based human seroprevalence of Medjerda Valley virus, a novel sandfly-borne phlebovirus belonging to the Salehabad virus complex in northern Tunisia. J. Gen. Virol. 2016, 97, 602–610. [Google Scholar] [CrossRef]
- Manseur, H.; Hachid, A.; Khardine, A.F.; Benallal, K.E.; Bia, T.; Temani, M.; Hakem, A.; Sanchez-Seco, M.P.; Bitam, I.; Vazquez, A.; et al. First Isolation of Punique Virus from Sand Flies Collected in Northern Algeria. Viruses 2022, 14, 1796. [Google Scholar] [CrossRef]
- Fezaa, O.; M’ghirbi, Y.; Savellini, G.G.; Ammari, L.; Hogga, N.; Triki, H.; Cusi, M.G.; Bouattour, A. Serological and molecular detection of Toscana and other Phleboviruses in patients and sandflies in Tunisia. BMC Infect. Dis. 2014, 14, 598. [Google Scholar] [CrossRef]
- Dachraoui, K.; Chelbi, I.; Ben Said, M.; Ben Osman, R.; Cherni, S.; Charrel, R.; Zhioua, E. Transmission Dynamics of Punique Virus in Tunisia. Viruses 2022, 14, 904. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Medeiros, D.B.; Rodrigues, S.G.; Martins, L.C.; de Lima, C.P.; de Oliveira, L.F.; de Vasconcelos, J.M.; Da Silva, D.E.; Cardoso, J.F.; da Silva, S.P.; et al. Pacui Virus, Rio Preto da Eva Virus, and Tapirape Virus, Three Distinct Viruses within the Family Bunyaviridae. Genome Announc. 2014, 2, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Palacios, G.; Savji, N.; Travassos da Rosa, A.; Desai, A.; Sanchez-Seco, M.P.; Guzman, H.; Lipkin, W.I.; Tesh, R. Characterization of the Salehabad virus species complex of the genus Phlebovirus (Bunyaviridae). J. Gen. Virol. 2013, 94 Pt 4, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Tesh, R.B.; Travassos da Rosa, A.P.A.; Peters, C.J.; Yang, Z.; Guzman, H.; Xiao, S.Y. Phylogenetic relationships among members of the genus Phlebovirus (Bunyaviridae) based on partial M segment sequence analyses. J. Gen. Virol. 2003, 84, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chen, H.; Travassos da Rosa, A.P.A.; Tesh, R.B.; Xiao, S.Y. Phylogenetic relationships among sandfly fever group viruses (Phlebovirus: Bunyaviridae) based on the small genome segment. J. Gen. Virol. 2007, 88 Pt 8, 2312–2319. [Google Scholar] [CrossRef]
- Gaidamovich, S.Y.; Kurakhmedova, S.; Melnikova, E. Aetiology of Phlebotomus fever in Ashkhabad studied in retrospect. Acta Virol. 1974, 18, 508–511. [Google Scholar]
- Ayhan, N.; Charrel, R.N. Emergent sand fly–borne phleboviruses in the Balkan region. Emerg. Infect. Dis. 2018, 24, 2324. [Google Scholar] [CrossRef]
- Shahhosseini, N.; Paquette, S.J.; Kayedi, M.H.; Abaei, M.R.; Sedaghat, M.M. Genetic Characterization of Sandfly-Borne Viruses in Phlebotomine Sandflies in Iran. Microorganisms 2023, 11, 2754. [Google Scholar] [CrossRef]
- Ayhan, N.; Charrel, R.N. Sandfly-Borne Viruses of Demonstrated/Relevant Medical Importance. In Vectors and Vector-Borne Zoonotic Diseases; Savic, S., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, S.; Cheng, J.; Xu, X.; Wang, J.; Wu, B.; Tian, X.; Li, Y.; He, Y.; Li, F.; et al. Re-isolation of Wuxiang Virus from Wild Sandflies Collected from Yangquan County, China. Virol. Sin. 2021, 36, 1177–1186. [Google Scholar] [CrossRef]
- Alkan, C.; Erisoz Kasap, O.; Alten, B.; de Lamballerie, X.; Charrel, R.N. Sandfly-Borne Phlebovirus Isolations from Turkey: New Insight into the Sandfly fever Sicilian and Sandfly fever Naples Species. PLoS Negl. Trop. Dis. 2016, 10, e0004519. [Google Scholar] [CrossRef]
- Pape, T.; Evenhuis, N. Systema Dipterorum. Biodivers. Inf. Sci. Stand. 2023, 7, e111959. [Google Scholar] [CrossRef]
- Baldacchino, F.; Desquesnes, M.; Mihok, S.; Foil, L.D.; Duvallet, G.; Jittapalapong, S. Tabanids: Neglected subjects of research, but important vectors of disease agents! Infect. Genet. Evol. 2014, 28, 596–615. [Google Scholar] [CrossRef] [PubMed]
- Foil, L.D.; Meek, C.L.; Adams, W.V.; Issel, C.J. Mechanical transmission of equine infectious anemia virus by deer flies (Chrysops flavidus) and stable flies (Stomoxys calcitrans). Am. J. Vet. Res. 1983, 44, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Tidwell, M.A.; Dean, W.D.; Combs, G.P.; Anderson, D.W.; Cowart, W.O.; Axtell, R.C. Transmission of hog cholera virus by horseflies (Tabanidae: Diptera). Am. J. Vet. Res. 1972, 33, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Foil, L.D.; Seger, C.L.; French, D.D.; Issel, C.J.; McManus, J.M.; Ohrberg, C.L.; Ramsey, R.T. Mechanical transmission of bovine leukemia virus by horse flies (Diptera: Tabanidae). J. Med. Entomol. 1988, 25, 374–376. [Google Scholar] [CrossRef]
- Manet, G.; Guilbert, X.; Roux, A.; Vuillaume, A.; Parodi, A.L. Natural mode of horizontal transmission of bovine leukemia virus (BLV): The potential role of tabanids (Tabanus spp.). Vet. Immunol. Immunopathol. 1989, 22, 255–263. [Google Scholar] [CrossRef]
- Hasselschwert, D.L.; French, D.D.; Hribar, L.J.; Luther, D.G.; Leprince, D.J.; Van der Maaten, M.J.; Whetstone, C.A.; Foil, L.D. Relative susceptibility of beef and dairy calves to infection by bovine leukemia virus via tabanid (Diptera: Tabanidae) feeding. J. Med. Entomol. 1993, 30, 472–473. [Google Scholar] [CrossRef]
- DeFoliart, G.R.; Anslow, R.O.; Hanson, R.P.; Morris, C.D.; Papadopoulos, O.; Sather, G.E. Isolation of Jamestown Canyon serotype of California encephalitis virus from naturally infected Aedes mosquitoes and tabanids. Am. J. Trop. Med. Hyg. 1969, 18, 440–447. [Google Scholar] [CrossRef]
- Miller, B.R.; Kloter, K.O.; Beaty, B.J.; Magnarelli, L.A. Nonreplication of Jamestown Canyon and Keystone (California group) viruses in tabanids (Diptera: Tabanidae). J. Med. Entomol. 1983, 20, 214–215. [Google Scholar] [CrossRef]
- Litov, A.G.; Belova, O.A.; Kholodilov, I.S.; Kalyanova, A.S.; Gadzhikurbanov, M.N.; Rogova, A.A.; Gmyl, L.V.; Karganova, G.G. Viromes of Tabanids from Russia. Viruses 2023, 15, 2368. [Google Scholar] [CrossRef]
- Kobayashi, D.; Watanabe, M.; Faizah, A.N.; Amoa-Bosompem, M.; Higa, Y.; Tsuda, Y.; Sawabe, K.; Isawa, H. Discovery of a Novel Flavivirus (Flaviviridae) From the Horse Fly, Tabanus rufidens (Diptera: Tabanidae): The Possible Coevolutionary Relationships Between the Classical Insect-Specific Flaviviruses and Host Dipteran Insects. J. Med. Entomol. 2021, 58, 880–890. [Google Scholar] [CrossRef]
- de Paiva, V.F.; Belintani, T.; de Oliveira, J.; Galvao, C.; da Rosa, J.A. A review of the taxonomy and biology of Triatominae subspecies (Hemiptera: Reduviidae). Parasitol. Res. 2022, 121, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.A.; Weirauch, C.; Felix, M.; Lazoski, C.; Abad-Franch, F. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Adv. Parasitol. 2018, 99, 265–344. [Google Scholar]
- Schofield, C.J.; Galvao, C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009, 110, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Cucunuba, Z.M.; Gutierrez-Romero, S.A.; Ramirez, J.D.; Velasquez-Ortiz, N.; Ceccarelli, S.; Parra-Henao, G.; Henao-Martinez, A.F.; Rabinovich, J.; Basanez, M.G.; Nouvellet, P.; et al. The epidemiology of Chagas disease in the Americas. Lancet Reg. Health Am. 2024, 37, 100881. [Google Scholar] [CrossRef] [PubMed]
- Swett, M.C.; Rayes, D.L.; Campos, S.V.; Kumar, R.N. Chagas Disease: Epidemiology, Diagnosis, and Treatment. Curr. Cardiol. Rep. 2024, 26, 1105–1112. [Google Scholar] [CrossRef]
- Justines, G.; Sousa, O.E. Survival of arboviruses in trypanosome-infected triatomines. Am. J. Trop. Med. Hyg. 1977, 26, 326–328. [Google Scholar] [CrossRef]
- Muscio, O.A.; LaTorre, J.L.; Scodeller, E.A. Small nonoccluded viruses from triatomine bug Triatoma infestans (Hemiptera: Reduviidae). J. Invertebr. Pathol. 1987, 49, 218–220. [Google Scholar] [CrossRef]
- Susevich, M.L.; Marti, G.A.; Metz, G.E.; Echeverria, M.G. First study of different insect cells to triatoma virus infection. Curr. Microbiol. 2015, 70, 470–475. [Google Scholar] [CrossRef]
- Marti, G.A.; Bonica, M.B.; Susevich, M.L.; Reynaldi, F.; Micieli, M.V.; Echeverria, M.G. Host range of Triatoma virus does not extend to Aedes aegypti and Apis mellifera. J. Invertebr. Pathol. 2020, 173, 107383. [Google Scholar] [CrossRef]
- Querido, J.F.; Echeverria, M.G.; Marti, G.A.; Costa, R.M.; Susevich, M.L.; Rabinovich, J.E.; Copa, A.; Montano, N.A.; Garcia, L.; Cordova, M.; et al. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasites Vectors 2015, 8, 29. [Google Scholar] [CrossRef]
- Bourke, B.P.; de Oliveira, J.; Ergunay, K.; Linton, Y.M. Leveraging transcriptome sequence read archives for virus detection in wild and colony populations of triatomines (Hemiptera: Reduviidae: Triatominae). Arch. Virol. 2024, 169, 215. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.F.; Coelho, V.L.; Cardoso, M.A.; Brito, I.A.A.; Berni, M.A.; Zenk, F.L.; Iovino, N.; Pane, A. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog. 2021, 17, e1009780. [Google Scholar] [CrossRef] [PubMed]
- Krafsur, E.S. Tsetse flies: Genetics, evolution, and role as vectors. Infect. Genet. Evol. 2009, 9, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Vreysen, M.J.; Seck, M.T.; Sall, B.; Bouyer, J. Tsetse flies: Their biology and control using area-wide integrated pest management approaches. J. Invertebr. Pathol. 2013, 112, S15–S25. [Google Scholar] [CrossRef]
- Wamwiri, F.N.; Changasi, R.E. Tsetse Flies (Glossina) as Vectors of Human African Trypanosomiasis: A Review. Biomed Res. Int. 2016, 2016, 6201350. [Google Scholar] [CrossRef]
- Abd-Alla, A.M.; Parker, A.G.; Vreysen, M.J.; Bergoin, M. Tsetse salivary gland hypertrophy virus: Hope or hindrance for tsetse control? PLoS Negl. Trop. Dis. 2011, 5, e1220. [Google Scholar] [CrossRef]
- Odindo, M.O.; Payne, C.C.; Crook, N.E.; Jarrett, P. Properties of a novel DNA virus from the tsetse fly, Glossina pallidipes. J. Gen. Virol. 1986, 67 Pt 3, 527–536. [Google Scholar] [CrossRef]
- Meki, I.K.; Huditz, H.I.; Strunov, A.; van der Vlugt, R.A.A.; Kariithi, H.M.; Rezapanah, M.; Miller, W.J.; Vlak, J.M.; van Oers, M.M.; Abd-Alla, A.M.M. Characterization and Tissue Tropism of Newly Identified Iflavirus and Negeviruses in Glossina morsitans morsitans Tsetse Flies. Viruses 2021, 13, 2472. [Google Scholar] [CrossRef]
- Domingo-Calap, P.; Sanjuan, R. Experimental evolution of RNA versus DNA viruses. Evolution 2011, 65, 2987–2994. [Google Scholar] [CrossRef]
- Elena, S.F.; Sanjuan, R. Adaptive value of high mutation rates of RNA viruses: Separating causes from consequences. J. Virol. 2005, 79, 11555–11558. [Google Scholar] [CrossRef]
- Furio, V.; Moya, A.; Sanjuan, R. The cost of replication fidelity in an RNA virus. Proc. Natl. Acad. Sci. USA 2005, 102, 10233–10237. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Frydman, J.; Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 2013, 11, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, B.; Han, Y.; Wang, Y.; Chen, L.; Wu, Z.; Yang, J. ZOVER: The database of zoonotic and vector-borne viruses. Nucleic Acids Res. 2022, 50, D943–D949. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blitvich, B.J. The Role of Hematophagous Arthropods, Other Than Mosquitoes and Ticks, in Arbovirus Transmission. Viruses 2025, 17, 932. https://doi.org/10.3390/v17070932
Blitvich BJ. The Role of Hematophagous Arthropods, Other Than Mosquitoes and Ticks, in Arbovirus Transmission. Viruses. 2025; 17(7):932. https://doi.org/10.3390/v17070932
Chicago/Turabian StyleBlitvich, Bradley J. 2025. "The Role of Hematophagous Arthropods, Other Than Mosquitoes and Ticks, in Arbovirus Transmission" Viruses 17, no. 7: 932. https://doi.org/10.3390/v17070932
APA StyleBlitvich, B. J. (2025). The Role of Hematophagous Arthropods, Other Than Mosquitoes and Ticks, in Arbovirus Transmission. Viruses, 17(7), 932. https://doi.org/10.3390/v17070932