Transcriptomics Reveals the Inhibitory Effect of Scutellarin on PRRSV-Infected PAMs
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Cultivation and Viral Infection
2.2. Establishment of the Quantitative Fluorescent PCR Standard Curve
2.2.1. Design and Synthesis of Fluorescent Primers
2.2.2. Preparation and Identification of Positive-Strand Plasmids
2.2.3. Measure and Plot the Standard Curve
2.3. Determination of Cell Safety Concentration by Scutellarin
2.4. Mechanism of Scutellarin Action Against PRRSV
2.4.1. Preventive Effect of Scutellarin Against PRRSV
2.4.2. Determination of the Direct Effect of Scutellarin on PRRSV
2.4.3. Scutellarin Inhibition of PRRSV
2.4.4. Scutellarin Adsorption of PRRSV
2.5. Transcriptomic Analysis of the Inhibitory Effect of Scutellarin on PRRSV
2.5.1. Total RNA Extraction from Cell Samples and Library Quality Control
2.5.2. RNA Data Analysis
2.5.3. RT-qPCR Validation
2.6. Data Analysis
2.7. Analysis of Inflammation-Related Gene Expression Levels in PAMs Induced by PRRSV Following Treatment with Scutellarin
3. Results
3.1. Establishment of the Quantitative Fluorescent PCR Standard Curve
3.2. Safety Concentration Determination of Scutellarin for PAMs
3.3. Optimal Mode of Action of Scutellarin on PRRSV
3.3.1. Preventive Effect of Scutellarin on PRRSV
3.3.2. Direct Effects of Scutellarin on PRRSV
3.3.3. Inhibitory Effect of Scutellarin on PRRSV
3.3.4. Adsorption of PRRSV by Scutellarin
3.4. Transcriptomics Analysis
3.4.1. Gene Expression Analysis of Samples
3.4.2. Sample Correlation Analysis
3.4.3. Differential Gene Analysis
3.4.4. GO Enrichment Analysis of Differentially Expressed Genes
3.4.5. KEGG Enrichment Analysis of Differentially Expressed Genes
3.4.6. qPCR Validation Results for Transcriptomes
3.4.7. The qPCR Results of Scutellarin on Inflammatory Factors in PRRSV-Infected PAMs
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Primer Name | Primer Sequence (5′-3′) |
|---|---|
| pcDNA3.1-M-F | GCTGGCTAGCGTTTAAACTTAAGCTTGCCACCATGGGGTCGTCTCTAGACG |
| pcDNA3.1-M-R | CACTGTGCTGGATATCTGCAGAATTCTTACTTGTCATCGTCGTCCTTGTAATCTTTGGCATATTTGACAAGGTTTACC |
| β-actin-F | CTCCATCATGAAGTGCGACGT |
| β-actin-R | GTGATCTCCTTCTGCATCCTGT |
| PRRSV-qF | TTGCTAGGCCGCAAGTAC |
| PRRSV-qM | ACGCCGGACGACAAATGC |
| PRRSV-P | CTGGCCCCTGCCCACCAC |
| ATF3-F | TGGCGGCGGCAATCTTAT |
| ATF3-R | TGGCGGCGGCAATCTTAT |
| AK5-F | GCCAATCTCAGCAACACCAA |
| AK5-R | GCCGAGCAGTCCATACAGA |
| IFNE-F | TGTTGGTACTGCTGGCTTCT |
| IFNE-R | ACTGCTGAATTGATGAGGTCTG |
| IRS1-F | GACCAGCAAGACCATCAG |
| IRS1-R | GCCACCACAGAATCATCC |
| NGFR-F | CCTGTCTATTGCTCCATCC |
| NGFR-R | TTGGCTCCTTGCTTGTTC |
| TOX3-F | ACCACCATCAACCAGTCT |
| TOX3-R | ATTCATCAGCGTCCTCTTC |
| TRIB3-F | GAAGAAGCGGTTGGAGTT |
| TRIB3-R | CTCAGAAGCAGTGGACAG |
| ABTB2-F | CCATCAAGGAGGAGGAATAC |
| ABTB2-R | CACGAGGAAGGTCACATC |
| ABLIM3-F | CTCGCCTCACCACTACTA |
| ABLIM3-R | AACTCATCCTCCTCTCCTC |
| ACKR3-F | TTCGGCAGCATCTTCTTC |
| ACKR3-R | AGTAGGTCTCGTTGTTGGA |
| ACP5-F | CAGGATGAGAATGGCTTGG |
| ACP5-R | CCTTGGCAACTTGGTCTT |
| ACSL4-F | ATGTCCGTATGATGCTGTC |
| ACSL4-R | GGCTTGTCGTGAACTGTA |
| DAPP1-F | AGGCACTCTCATTGTTCTG |
| DAPP1-R | AGGTCGTTCTCTGTTCTTC |
| PIK3R1-F | TGGAATGTCGGAAGCAGCAACC |
| PIK3R1-R | ACAGAGCAGGCGTAGCAACC |
| ALPK1-F | CCTATTCACAGCACCACACTTC |
| ALPK1-R | CTCCAGACCACTCTTAGCCATT |
| CD9-F | ATTGCGGTCCTTGCCATTG |
| CD9-R | GGAAGCCCACCACCATCAT |
| SLA-8-F | GTTGCTGGTCTGGTTCTCCT |
| SLA-8-R | CGACGCTGTTGTTGCTTGG |
| CSDC2-F | GCAGTTCTCACGCTCACAG |
| CSDC2-R | GTCACCTCATCGCCTTCCA |
| CCNE2-F | GCGTATGTCACTGATGGT |
| CCNE2-R | GAGAATACTGAGGTAGAAGAAC |
| IER3-F | CTGGTCCCGAGATATTCAC |
| IER3-R | ACAGAAGACGATGGTAAGC |
| SKA1-F | GTGATGTTCGTTGCTGTC |
| SKA1-R | GCCGTGATGTAGAGAAGG |
| CCL3-F | CTGGTGAGGAACGACAAG |
| CCL3-R | ACATAGGCTTGAGGTCATAC |
| CXCL10-F | CTGAGAGTGATTGAGAGTGGAC |
| CXCL10-R | TACTGCTGTTGTTGTTGCTTCT |
| IL6-F | CCTTCAGTCCAGTCGCCTTCTC |
| IL6-R | GCATCACCTTTGGCATCTTCTTCC |
References
- Zhou, G. Clinical Manifestations and Prevention and Control Measures of Porcine Reproductive and Respiratory Syndrome. China Anim. Health 2023, 25, 27–28. [Google Scholar]
- Zhang, H. Epidemiological Survey of PRRSV in China and Research on NADC30-like PRRSV Live Attenuated Vaccine. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2022. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, C.; Ren, J.; Dai, Y. CD163 and Research Progress on Porcine Reproductive and Respiratory Syndrome Virus. China Swine Ind. 2019, 14, 65–69. [Google Scholar] [CrossRef]
- Plagemann, P.G. Porcine reproductive and respiratory syndrome virus: Origin hypothesis. Emerg. Infect. Dis. 2003, 9, 903–908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elazhary, Y.; Weber, J.; Bikour, H.; Morin, M.; Girard, C. Mystery swine disease in Canada. Vet. Rec. 1991, 129, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Meulenberg, J.J. PRRSV, the virus. Vet. Res. 2000, 31, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, C.; Chen, G.; Yang, Y.; Li, J.; Dan, H.; Dai, A.; Huang, C.; Luo, M.; Liu, J. Genetic characterization and pathogenicity of two recombinant PRRSV-2 strains from lineages 1, 3, 5, and 8 emerged in China. BMC Vet. Res. 2025, 21, 341, Erratum in BMC Vet. Res. 2025, 21, 402. https://doi.org/10.1186/s12917-025-04858-x. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dokland, T. The structural biology of PRRSV. Virus Res. 2010, 154, 86–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, X.; Jiang, Y.; Yu, W.; Chen, X.; Qin, Y.; Wang, N.; Yang, Y. Intermolecular disulfide bond of PRRSV GP5 and M facilitates VLPs secretion and cell binding. Vet. Microbiol. 2024, 298, 110249. [Google Scholar] [CrossRef] [PubMed]
- Kappes, M.A.; Faaberg, K.S. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015, 479, 475–486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amona, F.M.; Pang, Y.; Gong, X.; Wang, Y.; Fang, X.; Zhang, C.; Chen, X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024, 15, 2417707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Sun, S.; Li, W.; Zhang, W.; Wang, X.; Yang, S.Y. Effect of scutellarin inhibits collagen-induced arthritis through TLR4/NF-κB-mediated inflammation. Mol. Med. Rep. 2017, 16, 5555–5560. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Hu, Z.; Bian, Y.; Su, W.; Li, X.; Li, S.; Wu, J.; Shi, L.; Song, Y.; Zheng, G.; et al. Scutellarin Attenuates the IL-1β-Induced Inflammation in Mouse Chondrocytes and Prevents Osteoarthritic Progression. Front. Pharmacol. 2020, 11, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, L.; Wen, L.; Shi, Q.F.; Gao, F.; Huang, B.; Meng, J.; Hu, C.P.; Wang, C.M. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 2020, 11, 978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Wei, L.; Wang, L.; Chen, X.; Kong, X.; Luan, Y.; Guan, J.; Guo, X.; Shi, Y.; Wang, T.; et al. Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem. Pharmacol. 2022, 199, 114982. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Zhang, Y.; Deng, X.; Wang, J. Anti-infective Effects of scutellarin against Enterohemorrhagic Escherichia coli Infection. Chin. J. Vet. Sci. 2019, 39, 482–485+492. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, Y.; Xia, R.; Zhou, Y.; Wu, L. Mechanism of scutellarin Inhibiting Malignant Transformation of Oral Leukoplakia Based on Network Pharmacology and In Vitro Cytology. Shanghai J. Stomatol. 2023, 32, 572–577. [Google Scholar] [CrossRef]
- Liu, K.; Liu, K.; Tian, T.; Tian, T.; Zheng, Y. Scutellarin inhibits proliferation and invasion of hepatocellular carcinoma cells via down-regulation of JAK2/STAT3 pathway. J. Cell. Mol. Med. 2019, 23, 3040–3044. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Mechanism Study of Scutellariae Radix Extract in Improving Acute Alcoholic Liver Injury via Nrf2 and JAK2/STAT3 Signaling Pathways. Master’s Thesis, Dali University, Dali, China, 2024. [Google Scholar] [CrossRef]
- Zhang, G.H.; Wang, Q.; Chen, J.J.; Zhang, X.M.; Tam, S.C.; Zheng, Y.T. The anti-HIV-1 effect of scutellarin. Biochem. Biophys. Res. Commun. 2005, 334, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Broad-Spectrum Antiviral Activity of Lamp Flower B-Saponin Against Enveloped Viruses and Its Mechanism of Action. Ph.D. Thesis, Southern Medical University, Guangzhou, China, 2024. [Google Scholar] [CrossRef]
- Keum, Y.-S.; Jeong, Y.-J. Development of chemical inhibitors of the SARS-CoV coronavirus: Viral helicase as a potential target. Biochem. Pharmacol. 2012, 84, 1351–1358. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Abel, A.M.; Young, A.J.; Xie, L.; Xie, Z. Role of phosphatidylinositol 3-kinase (PI3K) and Akt1 kinase in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Arch. Virol. 2014, 159, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, L.; Liu, F.; Wei, Z.; Gao, L.; Feng, W.H. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Induces Interleukin-17 Production via Activation of the IRAK1-PI3K-p38MAPK-C/EBPβ/CREB Pathways. J. Virol. 2019, 93, e01100-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Y.; Wubshet, A.K.; Ding, X.; Zhang, Z.; Li, Q.; Dai, J.; Hou, Q.; Hu, Y.; Zhang, J. Evaluation of Four Commercial Vaccines for the Protection of Piglets Against the Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (hp-PRRSV) QH-08 Strain. Vaccines 2021, 9, 1020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leng, C.; Zhang, W.; Zhang, H.; Kan, Y.; Yao, L.; Zhai, H.; Li, M.; Li, Z.; Liu, C.; An, T.; et al. ORF1a of highly pathogenic PRRS attenuated vaccine virus plays a key role in neutralizing antibody induction in piglets and virus neutralization in vitro. Virol. J. 2017, 14, 159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chai, W.; Liu, Z.; Sun, Z.; Su, L.; Zhang, C.; Huang, L. Efficacy of two porcine reproductive and respiratory syndrome (PRRS) modified-live virus (MLV) vaccines against heterologous NADC30-like PRRS virus challenge. Vet. Microbiol. 2020, 248, 108805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. Evolutionary analysis of six isolates of porcine reproductive and respiratory syndrome virus from a single pig farm: MLV-evolved and recombinant viruses. Infect. Genet. Evol. 2018, 66, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Wang, G.; Li, C.; Hou, J. Effects of Astragalus polysaccharides and Hedyotis polysaccharides on T cell subsets and antibody levels in pigs immunized with an inactivated vaccine against porcine reproductive and respiratory syndrome. Chin. J. Vet. Sci. 2011, 31, 1196–1199. [Google Scholar] [CrossRef]
- Yu, P.W.; Fu, P.F.; Zeng, L.; Qi, Y.L.; Li, X.Q.; Wang, Q.; Yang, G.Y.; Li, H.W.; Wang, J.; Chu, B.B.; et al. EGCG Restricts PRRSV Proliferation by Disturbing Lipid Metabolism. Microbiol. Spectr. 2022, 10, e0227621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, M.; Cui, B.; Zhang, H.; Xia, P.; Wang, X.; Wang, Y.; Zhao, X. Study on the In Vitro Effects of Active Extracts from Traditional Chinese Medicines, Including Banlangen and Huangqi, on Porcine Reproductive and Respiratory Syndrome Virus. J. Chin. Vet. Med. 2006, 6, 14–17. [Google Scholar] [CrossRef]
- Su, K.; Li, Q.; Fan, J.; Liu, J.; Zhu, S.; Hao, X.; Yang, M.; Zhang, H. Effects of Isatis Root Polysaccharides on In Vitro Proliferation of PRRSV-JXA1 Strain. Chin. J. Vet. Sci. 2022, 42, 2505–2513. [Google Scholar] [CrossRef]
- Hu, J. Mechanism Study of Allicin Inhibiting Porcine Reproductive and Respiratory Syndrome Virus Infection. Master’s Thesis, Yangzhou University, Yangzhou, China, 2024. [Google Scholar]






| Concentration (μg/mL) | OD450 (Mean ± SD) | Suppression Rate (%) |
|---|---|---|
| 800 | 0.7868 ± 0.005 | 31.99 |
| 600 | 0.8725 ± 0.006 | 22.20 |
| 400 | 0.9133 ± 0.013 | 17.55 |
| 200 | 1.220 ± 0.016 | 5.14 |
| 100 | 1.0399 ± 0.012 | 3.10 |
| 50 | 1.0679 ± 0.015 | −0.10 |
| Cell Control | 1.0672 ± 0.070 | 0.00 |
| Blank Control | 0.1915 ± 0.007 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Tu, T.; Li, Y.; Zeng, Y.; Hu, M.; Du, C.; Yang, Z.; Yao, X.; Chen, D.; Shi, T.; et al. Transcriptomics Reveals the Inhibitory Effect of Scutellarin on PRRSV-Infected PAMs. Viruses 2025, 17, 1460. https://doi.org/10.3390/v17111460
Zhang G, Tu T, Li Y, Zeng Y, Hu M, Du C, Yang Z, Yao X, Chen D, Shi T, et al. Transcriptomics Reveals the Inhibitory Effect of Scutellarin on PRRSV-Infected PAMs. Viruses. 2025; 17(11):1460. https://doi.org/10.3390/v17111460
Chicago/Turabian StyleZhang, Guidong, Teng Tu, Yanwei Li, Yueyan Zeng, Mingpeng Hu, Chengchao Du, Zexiao Yang, Xueping Yao, Dishi Chen, Tian Shi, and et al. 2025. "Transcriptomics Reveals the Inhibitory Effect of Scutellarin on PRRSV-Infected PAMs" Viruses 17, no. 11: 1460. https://doi.org/10.3390/v17111460
APA StyleZhang, G., Tu, T., Li, Y., Zeng, Y., Hu, M., Du, C., Yang, Z., Yao, X., Chen, D., Shi, T., & Wang, Y. (2025). Transcriptomics Reveals the Inhibitory Effect of Scutellarin on PRRSV-Infected PAMs. Viruses, 17(11), 1460. https://doi.org/10.3390/v17111460

