Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Less than 6 million years ago (EVEs present only in H. sapiens): Akhmeta virus (AKMV), Molluscum contagiosum virus (MCV), and Roseolovirus humanbeta7 (HHV-7);
- Between 6 and 8 million years ago (EVEs present in humans and chimpanzees): Alphapapillomavirus 11 (HPV34) and HHV-7;
- Over 16 million years ago (EVEs present in humans, chimpanzees, gorillas, and orangutans): Taterapox virus (TATV), Camelpox virus (CMLV), Varicellovirus humanalpha3 (HHV-3), Cytomegalovirus humanbeta5 (HHV-5), Abatino macacapox virus (AMV), MCV, and HPV34.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. National Birth Defects Prevention Network. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef]
- Chan, R.K.; McPherson, B.; Whitehill, T.L. Chinese attitudes toward cleft lip and palate: Effects of personal contact. Cleft Palate Craniofacial J. 2006, 43, 731–739. [Google Scholar] [CrossRef]
- Yu, W.; Serrano, M.; Miguel, S.S.; Ruest, L.B.; Svoboda, K.K. Cleft lip and palate genetics and application in early embryological development. Indian J. Plast. Surg. 2009, 42, 35–50. [Google Scholar] [CrossRef]
- Nasreddine, G.; Hajj, J.E.; Ghassibe-Sabbagh, M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108373. [Google Scholar] [CrossRef] [PubMed]
- Condit, R.C. Principles of Virology. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 21–51. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Hobman, T.C. Rubella Virus. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 687–711. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 1971, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hulo, C.; de Castro, E.; Masson, P.; Bougueleret, L.; Bairoch, A.; Xenarios, I.; Le Mercier, P. ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Res. 2011, 39, 576–582. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P.; Wilson, J.; Hunt, T. (Eds.) Patógenos e infecção. In Biologia Molecular da Célula, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; pp. 1286–1289. ISBN 978-858-271-422-5. [Google Scholar]
- Geoghegan, J.L.; Holmes, E.C. Virus Evolution. In Fields Virology: Emerging Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Whelan, S., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020; pp. 1–29. ISBN 978-197-511-254-7. [Google Scholar]
- Katzourakis, A.; Gifford, R.J. Endogenous Viral Elements in Animal Genomes. PLoS Genet. 2010, 6, e1001191. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.C.P.; Messias, T.S.; Soares, S. The Public Health Importance of Flaviviruses as an Etiological Environmental Factor in Nonsyndromic Cleft Lip and/or Palate: In silico Study. Cleft Palate-Craniofacial J. 2022, 60, 544–550. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Available online: http://www.ncbi.nlm.nih.gov/ (accessed on 11 January 2023).
- International Committee on Taxonomy of Viruses (ICTV). Available online: https://ictv.global/msl (accessed on 19 October 2022).
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1–2456. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Howley, P.M.; Knipe, D.M.; Whelan, S. Fields Virology: Emerging Viruses, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020; pp. 1–826. ISBN 978-197-511-254-7. [Google Scholar]
- Howley, P.M.; Knipe, D.M.; Damania, B.A.; Cohen, J.I. Fields Virology: DNA Viruses, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 1–739. ISBN 978-197-511-257-8. [Google Scholar]
- Pääbo, S. The mosaic that is our genome. Nature 2003, 421, 409–412. [Google Scholar] [CrossRef]
- IBM SPSS Statistics for Windows. Available online: https://www.ibm.com/br-pt (accessed on 2 February 2023).
- Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [PubMed]
- Seeger, C.; Zoulim, F.; Mason, W.S. Hepadnaviruses. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 2185–2221. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Seeger, C.; Zoulim, F.; Mason, W.S. Hepadnaviridae. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 641–682. ISBN 978-197-511-257-8. [Google Scholar]
- Kuritzkes, D.R.; Koup, R.A. HIV-1: Pathogenesis, Clinical Manifestations, and Treatment. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1561–1583. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Whelan, S. Viral Replication Strategies. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 105–126. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Grubbs, F.E. Procedures for Detecting Outlying Observations in Samples. Technometrics 1969, 11, 1–21. [Google Scholar] [CrossRef]
- Martínez-Sobrido, L.; Zúñiga, E.I.; Rosario, D.; García-Sastre, A.; de la Torre, J.C. Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 2006, 80, 9192–9199. [Google Scholar] [CrossRef] [PubMed]
- West, B.R.; Hastie, K.M.; Saphire, E.O. Structure of the LCMV nucleoprotein provides a template for understanding arenavirus replication and immunosuppression. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, L.C.; Collins, T. The SCAN domain family of zinc finger transcription factors. Gene 2005, 359, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hastie, K.M.; Zandonatti, M.A.; Kleinfelter, L.M.; Heinrich, M.L.; Rowland, M.M.; Chandran, K.; Branco, L.M.; Robinson, J.E.; Garry, R.F.; Saphire, E.O. Structural basis for antibody-mediated neutralization of Lassa virus. Science 2017, 356, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Alliance of Genome Resources Consortium. Harmonizing model organism data in the Alliance of Genome Resources. Genetics 2022, 220, iyac022. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Xu, X.; Jing, J.; Wang, M.; Peng, Q.; Liu, S.; Wu, Y.; Bao, X.; Wang, P.; Qi, J.; et al. Structural insight into arenavirus replication machinery. Nature 2020, 579, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.A.; Martelli-Júnior, H.; de Almeida Reis, S.R.; Persuhn, D.C.; Coletta, R.D. Association between GOLGB1 tag-polymorphisms and nonsyndromic cleft palate only in the Brazilian population. Ann. Hum. Genet. 2018, 82, 227–231. [Google Scholar] [CrossRef]
- Buchmeier, M.J.; Torre, J.C.; Peters, C.J. Arenaviridae. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1283–1303. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P.; Wilson, J.; Hunt, T. (Eds.) Junções Celulares e Matriz Extracelular. In Biologia Molecular da Célula, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; pp. 1035–1086. ISBN 978-858-271-422-5. [Google Scholar]
- Acs, N.; Bánhidy, F.; Puhó, E.; Czeizel, A.E. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Res. Part A Clin. Mol. Teratol. 2005, 73, 989–996. [Google Scholar] [CrossRef]
- Neumann, G.; Treanor, J.J.; Kawaoka, Y. Orthomyxoviruses. In Fields Virology: Emerging Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Whelan, S., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020; pp. 649–705. ISBN 978-197-511-254-7. [Google Scholar]
- Walker, P.J.; Freitas-Astúa, J.; Bejerman, N.; Blasdell, K.R.; Breyta, R.; Dietzgen, R.G.; Fooks, A.R.; Kondo, H.; Kurath, G.; Kuzmin, I.V.; et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J. Gen. Virol. 2022, 103, 001689. [Google Scholar] [CrossRef]
- Xu, Q.; Mellitzer, G.; Wilkinson, D.G. Roles of Eph receptors and ephrins in segmental patterning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Egloff, M.; Malet, H.; Putics, Á.; Heinonen, M.; Dutartre, H.; Frangeul, A.; Gruez, A.; Campanacci, V.; Cambillau, C.; Ziebuhr, J.; et al. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 2006, 80, 8493–8502. [Google Scholar] [CrossRef]
- Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases 2016, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Snijder, E.J.; den Boon, J.A.; Horzinek, M.C.; Spaan, W.J. Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology 1991, 180, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Gagneur, A.; Dirson, E.; Audebert, S.; Vallet, S.; Legrand-Quillien, M.C.; Laurent, Y.; Collet, M.; Sizun, J.; Oger, E.; Payan, C. Materno-fetal transmission of human coronaviruses: A prospective pilot study. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S.; Masters, P.S. Corononaviridae: The Viruses and Their Replication. In Fields Virology: Emerging Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Whelan, S., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020; pp. 410–448. ISBN 978-197-511-254-7. [Google Scholar]
- Griffin, D.E.; Weaver, S.C. Alphaviruses. In Fields Virology: Emerging Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Whelan, S., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020; pp. 194–245. ISBN 978-197-511-254-7. [Google Scholar]
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef] [PubMed]
- Vieira, N.; Pereira, P.; Carvalho, L. Rotavirus gastroenteritis in a children’s hospital specialized in craniofacial malformations. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 355–367. [Google Scholar] [CrossRef]
- Estes, M.K.; Greenberg, H.B. Rotaviruses. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1347–1401. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Meng, X.; Huang, Y. Circoviridae and Anelloviridae. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 197–211. ISBN 978-197-511-257-8. [Google Scholar]
- Smith-Mungo, L.I.; Kagan, H.M. Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biol. 1998, 16, 387–398. [Google Scholar] [CrossRef]
- Abbas, A.; Taylor, L.J.; Collman, R.G.; Bushman, F.D. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Redondoviridae. J. Gen. Virol. 2021; 102, jgv001526. [Google Scholar] [CrossRef]
- Tiessen, R.G.; van Elsacker-Niele, A.M.; Vermeij-Keers, C.; Oepkes, D.; van Roosmalen, J.; Gorsira, M.C. A fetus with a parvovirus B19 infection and congenital anomalies. Prenat. Diagn. 1994, 14, 173–176. [Google Scholar] [CrossRef]
- Storch, G.S.; Wang, D. Diagnostic Virology. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 414–451. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
- Moss, B.; Smith, G.L. Poxviridae: The Viruses and Their Replication. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 573–613. ISBN 978-197-511-257-8. [Google Scholar]
- Babkin, I.V.; Babkina, I.N.; Tikunova, N.V. An Update of Orthopoxvirus Molecular Evolution. Viruses 2022, 14, 388. [Google Scholar] [CrossRef]
- Sathyan, K.M.; Shen, Z.; Tripathi, V.; Prasanth, K.V.; Prasanth, S.G. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J. Cell Sci. 2011, 124, 3149–3163. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI). Available online: https://pubchem.ncbi.nlm.nih.gov/protein/Q9Y233 (accessed on 19 January 2023).
- Shiller, J.T.; Lowy, D.R. Papillomaviruses. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 68–97. ISBN 978-197-511-257-8. [Google Scholar]
- McBride, A.A.; Howley, P.M. Papillomaviridae: The Viruses and Their Replication. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 45–67. ISBN 978-197-511-257-8. [Google Scholar]
- Willemsen, A.; Bravo, I.G. Origin and evolution of papillomavirus (onco)genes and genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180303. [Google Scholar] [CrossRef]
- Saribas, A.S.; Coric, P.; Hamazaspyan, A.; Davis, W.; Axman, R.; White, M.K.; Abou-Gharbia, M.; Childers, W.; Condra, J.H.; Bouaziz, S.; et al. Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. J. Cell. Physiol. 2016, 231, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, M.; Shang, X.; Nguyen, M.H.H.; Balakrishnan, S.; Sager, R.; Hu, H. Eyes shut homolog (EYS) interacts with matriglycan of O-mannosyl glycans whose deficiency results in EYS mislocalization and degeneration of photoreceptors. Sci. Rep. 2020, 10, 7795. [Google Scholar] [CrossRef]
- Moens, U.; Calvignac-Spencer, S.; Lauber, C.; Ramqvist, T.; Feltkamp, M.C.W.; Daugherty, M.D.; Verschoor, E.J.; Ehlers, B. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Polyomaviridae. J. Gen. Virol. 2017, 98, 1159–1160. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, D.J.; Gatherer, D. Integrating reptilian herpesviruses into the family herpesviridae. J. Virol. 2005, 79, 725–731. [Google Scholar] [CrossRef]
- Gatherer, D.; Depledge, D.P.; Hartley, C.A.; Szpara, M.L.; Vaz, P.K.; Benkő, M.; Brandt, C.R.; Bryant, N.A.; Dastjerdi, A.; Doszpoly, A.; et al. ICTV Virus Taxonomy Profile: Herpesviridae 2021. J. Gen. Virol. 2021, 102, 001673. [Google Scholar] [CrossRef] [PubMed]
- Krug, L.T.; Pellett, P.E. The Family Herpesviridae: A Brief Introduction. In Fields Virology: DNA Viruses, 7th ed.; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 212–233. ISBN 978-197-511-257-8. [Google Scholar]
- Cerný, M.; Fára, M.; Hrivnáková, J.; Seeman, J. Rozstĕp rtu a patra: Vztah k cytomegalovirové infekci [Cleft lip and palate: Relation to cytomegalovirus infection]. Cas. Lek. Ceskych 1987, 126, 469–473. [Google Scholar]
- Cerný, M.; Fára, M.; Hrivnáková, J.; Vojtĕchovský, K. Protilátky proti viru Epstein-Barrové u dĕtí s rozstĕpem rtu a patra a u jejich matek [Antibodies against the Epstein-Barr virus in children with cleft lip and palate and in their mothers]. Cesk Gynekol. 1988, 53, 577–582. [Google Scholar]
- Cerný, M.; Fára, M.; Hrivnáková, J. Aetiological, modifying and lethal factors in cleft lip and palate. Acta Chir. Plast. 1991, 33, 72–86. [Google Scholar] [PubMed]
- Molnárová, A.; Brozman, M.; Schwanzerová, I.; Blaskovicová, H.; Stancek, D.; Srámeková, R.; Hatiarová, Z.; Mayerová, A.; Mracnová, D. Prenatálne vírusové infekcie a orofaciálne rázstepy [Prenatal virus infections and orofacial clefts]. Bratisl. Lek. Listy 1992, 93, 469–476. [Google Scholar] [PubMed]
- Molnárová, A.; Brozman, M.; Schwanzerová, I.; Schwanzer, V.; Blaskovicová, H.; Srámeková, R.; Hatiarová, Z.; Mayerová, A. Possible teratogenic potential of certain virus infections as related to patients with orofacial cleft. Acta Virol. 1991, 35, 204. [Google Scholar]
- Stegmann, B.J.; Carey, J.C. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr. Womens Health Rep. 2002, 2, 253–258. [Google Scholar] [PubMed]
- Enquist, L.W.; Racaniello, V.R. Virology: From Contagium Fluidum to Virome. In Fields Virology, 6th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 1–20. ISBN 146-983-066-3/978-146-983-066-7. [Google Scholar]
Topic | Question | Response | Score | |
---|---|---|---|---|
I | Transplacental transmission | Can the virus cross the placental barrier? | If negative | 0 |
If positive | 2 | |||
If never investigated/not found | 1 | |||
II | Virus and orofacial cleftassociations | Are there any studies in the literature in which the virus is associated with orofacial clefts? | No/not found | 0 |
Positive (semiology) | 1 | |||
Positive (serology) | 2 | |||
Positive (polymerase chain reaction and/or viral isolation) | 3 | |||
III | Nucleotide similarity | Does the virus have nucleotide similarity with human sequences associated with orofacial clefts? (BLAST 2.13.0) | For each match with E-value ≤ 1 | +1 |
IV | Amino acid similarity | Does the virus have amino acid similarity with human sequences associated with orofacial clefts? (BLAST 2.13.0) | For each match with E-value ≤ 0.05 obtained in topic III and subject to protein translation | +1 |
V | Presence of Endogenous Viral Elements (EVEs) | Could the virus possibly result in EVE integration into a human sequence associated with orofacial clefts? (BLAST 2.13.0) | For each match with an E-value ≤ 0.0001 obtained in topic III resubmitted in alignment with a database with general nucleotide sequences and with a positive result for the same virus of origin (method adapted from Katzourakis and Gifford (2010)) [11] | +1 |
TPV | Total Potential Value (TPV) | What is the numerical value of the potential of the virus to cause orofacial clefts? | Sum of values obtained in previous topics | X |
Group | N | Median | 1º Quartile | 3º Quartile |
---|---|---|---|---|
G1 | 91 | 25 | 15 | 43 |
G2 | 72 | 10,5 | 4 | 16.75 |
G3 | 7 | 154 | 62 | 248 |
G4 | 129 | 8 | 6 | 15 |
G5 | 137 | 19 | 10 | 35 |
G6 | 5 | 13 | 8 | 35.5 |
Comparison | Difference in Ratings | Test Q | p-Value |
---|---|---|---|
G3 vs. G4 | 239 vs. 638 | 4.845 | <0.001 |
G3 vs. G2 | 234 vs. 366 | 4.645 | <0.001 |
G3 vs. G6 | 177 vs. 329 | 2.376 | 0.262 |
G3 vs. G5 | 133 vs. 502 | 2.703 | 0.103 |
G3 vs. G1 | 87 vs. 632 | 1.753 | 1 |
G1 vs. G4 | 152 vs. 006 | 8.712 | <0.001 |
G1 vs. G2 | 146 vs. 734 | 7.299 | <0.001 |
G1 vs. G6 | 89 vs. 697 | 1.532 | 1 |
G1 vs. G5 | 45 vs. 87 | 2.661 | 0.117 |
G5 vs. G4 | 106 vs. 136 | 6.788 | <0.001 |
G5 vs. G2 | 100 vs. 865 | 5.437 | <0.001 |
G5 vs. G6 | 43 vs. 827 | 0.755 | 1 |
G6 vs. G4 | 62 vs. 309 | 1.073 | 1 |
G6 vs. G2 | 57 vs. 037 | 0.968 | 1 |
G2 vs. G4 | 5 vs. 272 | 0.281 | 1 |
Viral Species and Abbreviation | Baltimore Class | Total Potential Value |
---|---|---|
Human coronavirus NL63 (HCoV-NL63) | IV | 29 |
Rio Negro virus (RNV) | IV | 30 |
Alphatorquevirus homin9 (TTV12) | II | 36 |
Brisavirus (HuRaBV) | II | 38 |
Cosavirus B (CoSV-B) | IV | 38 |
Torque teno mini virus 4 (TTMV4) | II | 41 |
Bocaparvovirus primate2 (HBoV2c) | II | 73 |
Human coronavirus HKU1 (HCoV-HKU1) | IV | 77 |
Monkeypox virus (MPXV) | I | 86 |
Mammarenavirus machupoense (MACV) | V | 86 |
Volepox virus (VPXV) | I | 87 |
Souris mammarenavirus (SOUV) | V | 87 |
Gammapapillomavirus 7 (HPV109) | I | 88 |
Betainfluenzavirus influenzae (FLUVB) | V | 104 |
Lymphocytic choriomeningitis mammarenavirus (LCMV) | V | 105 |
Ledantevirus kern (KCV) | V | 113 |
Gammainfluenzavirus influenzae (FLUVC) | V | 117 |
Betapolyomavirus hominis (BKPyV) | I | 118 |
Vesiculovirus perinet (PERV) | V | 232 |
Cytomegalovirus humanbeta5 (HHV-5) | I | 704 |
Viral Species and Abbreviation | Endogenous Viral Element | Maximum Fixation Time |
---|---|---|
Varicellovirus humanalpha3 (HHV-3) | ACTCTCTCTCTTTCTCtatatatatatatatatata | Over 16 million years |
AACTCTCTCTCTTTCTCtatatatat-atatatatatat | ||
tatatatatatatatatataGAGAAAGAGAGAGAGT | ||
atatatatatat-atatatataGAGAAAGAGAGAGAGTT | ||
Cytomegalovirus humanbeta5 (HHV-5) | TCGTCCTCTTCCTCTTCTTCCTCCTCTTC | Over 16 million years |
Roseolovirus humanbeta7 (HHV-7) | CATATATTTGCACATACTAATGTGTTCATGTGGGTATATGTACATAT-TACATA---ATATATGCTAGTAAATGATTACATGCACTAGCATATATTTGCACATACTAATGTGTTCATGTGGGTATATGTACATAT-TACATA | 6 to 8 million years old |
TGGGTATATGTACATATTACATAATATATGCTAGTAAATGATTACATGCACTAGCATATATTTGCACATACTAATGT—GTTCATGTGGGTATATGTACATATTACATAATATATGCTAGTAAATGATTACATGCACTAGCATATATTTGCACATACTAATGTGTTCATGTGGGTATATGTACATAT | ||
TGGGTATATGTACATATTACATAATATATGCTAGTAAATGATTACATGCACTAGCATATATTTGCACATACTAATGT—GTTCATGTGGGTATATGTACATAT | Under 6 million years | |
CATATATTTGCACATACTAATGTGTTCATGTGGGTATATGTACATAT-TACATA | ||
ATATATTTGCACATACTAATGTGTTCATGTGGGTATATGTACATAT | ||
Alphapapillomavirus 11 (HPV34) | TGTTAAAAGTATATATATTATATGTGTGTGTGTTT-TATAT | Over 16 million years |
GTATATATAT---TATATGTGTGTGTGT-TTTATAT | 6 to 8 million years old | |
GTATATATATTATATGTGTGTGTGT-TTTATAT | ||
Molluscum contagiosum virus (MCV) | GCACCTGCGCAAGATGTACG-GCGCAAGCAGGTCTATCTACAACTTCGCTGTGCGTATGC TCGTGTACATGTTTCCAGAGCTCTTTACTGCGGAGAACCTGCACACGCACTTCAACTGCT ACGGCTCCATGGGCAAGC-GCAGGCTCGACCCGCTACGCCTGCGCTTGCTCCGGCACTAT GTGCAGTTGCTGCACCCGGCGGCGCGC----AACGAGCGCGTGTGGATCACAAAGTTCCT GGCGTGCCTGGACGAGCGCTGCCGGCGCCGCTGCGCACGGA-CACAGGCGC | Over 16 million years |
TCCTCTCCCGGGGAGCTGGCGGTGCTCCTACTGCACAAGGTCTTCCAGGAGCTCTTTGAC GCGCGCCAGCTGCGCCGCTGCTACAGCTGCTACGGCGACGGGCGCACGCATTGTCTGGAC CCTGCGCGCCTGCAACTGATCCGGCACTGCGTGGCGCTTTGCTTCCCTTCCATG | ||
GATGAGGGAA----Atgtgtgtgtgtgtgtgtgtgtgtgtgtgtg | Under 6 million years | |
cacacacacacacacacacacacacacacaT----TTCCCTCATC | ||
Abatino macacapox virus (AMV) | GGACGCATTTATGTTATCGGTGGACGAGATGGATCAAATTATCTAAACACTGTAGAAAGTTGGAAACCT-ATGGACAACAAGTGGCAATACG | Over 16 million years |
Akhmeta virus (AKMV) | GGACGCATTTATGTTATTGGTGGACGAGATGGATCAAATTATCTAAACACTGTAGAAAGTTGGAAACCT | Under 6 million years |
GGACGCATTTATGTTATTGGTGGACGAGATGGATCAAATTATCTAAACACTGTAGAAAGTTGGAAACCT | ||
Camelpox virus (CMLV) | ATTTATGTTATCGGTGGTCGAGATGGATCAAATTATCTAAACACTGTAGAAAGTTGGAAACCT | Over 16 million years |
Taterapox virus (TATV) | ATTTATGTTATCGGTGGTCGAGATGGATCAAATTATCTAAACACTGTAGAAAGTTGGAAACCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messias, T.S.; Silva, K.C.P.; Silva, T.C.; Soares, S. Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts. Viruses 2024, 16, 511. https://doi.org/10.3390/v16040511
Messias TS, Silva KCP, Silva TC, Soares S. Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts. Viruses. 2024; 16(4):511. https://doi.org/10.3390/v16040511
Chicago/Turabian StyleMessias, Thiago S., Kaique C. P. Silva, Thiago C. Silva, and Simone Soares. 2024. "Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts" Viruses 16, no. 4: 511. https://doi.org/10.3390/v16040511
APA StyleMessias, T. S., Silva, K. C. P., Silva, T. C., & Soares, S. (2024). Potential of Viruses as Environmental Etiological Factors for Non-Syndromic Orofacial Clefts. Viruses, 16(4), 511. https://doi.org/10.3390/v16040511