Metformin in Antiviral Therapy: Evidence and Perspectives
Abstract
:1. Introduction
2. Metformin in Viral Infections and Its Therapeutic Applications Across Multiple Pathogens
2.1. Metformin’s Antiviral Potential Against Influenza: Mechanisms and Therapeutic Insight
2.2. Metformin in the Context of COVID-19: Mechanisms of Action and Its Potential as a Therapeutic Agent Against SARS-CoV-2
2.3. Metformin and HIV: Exploring Its Potential in Modulating Immune Responses and Enhancing Treatment Outcomes
2.4. Metformin in Hepatitis C: Potential Therapeutic Effects on Viral Replication, Inflammation, and Hepatic Fibrosis
2.5. Metformin in Hepatitis B: Targeting Insulin Resistance, Inflammation, and Fibrosis in Chronic Liver Disease
2.6. Metformin as an Antiviral: Potential Applications Against Cytomegalovirus, Herpes Simplex Virus, Zika Virus, Dengue Virus, Epstein–Barr Virus, Human Papillomavirus, and Others
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dutta, S.; Shah, R.B.; Singhal, S.; Dutta, S.B.; Bansal, S.; Sinha, S.; Haque, M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des. Dev. Ther. 2023, 17, 1907–1932. [Google Scholar] [CrossRef] [PubMed]
- Amengual-Cladera, E.; Morla-Barcelo, P.M.; Morán-Costoya, A.; Sastre-Serra, J.; Pons, D.G.; Valle, A.; Roca, P.; Nadal-Serrano, M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology 2024, 13, 302. [Google Scholar] [CrossRef]
- Redkva, O.V.; Babinets, L.S.; Halabitska, I.M. Evaluation of Parameters of Actual Typical Pathogenetic Syndromes in Comorbidity of Type 2 Diabetes Mellitus and Chronic Pancreatitis. Wiad. Lek. 2021, 74, 2557–2559. [Google Scholar] [CrossRef]
- Du, M.R.; Gao, Q.Y.; Liu, C.L.; Bai, L.Y.; Li, T.; Wei, F.L. Exploring the Pharmacological Potential of Metformin for Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 838173. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Halabitska, I.; Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.E.; Kamyshnyi, O. The interplay of gut microbiota, obesity, and depression: Insights and interventions. Cell. Mol. Life Sci. CMLS 2024, 81, 443. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, F.; Li, S.; Jiang, N.; Yu, C.; Zhu, X.; Qin, Y.; Hui, J.; Meng, L.; Song, C.; et al. Metformin promotes innate immunity through a conserved PMK-1/p38 MAPK pathway. Virulence 2020, 11, 39–48. [Google Scholar] [CrossRef]
- Rahman, M.A.; Sarker, A.; Ayaz, M.; Shatabdy, A.R.; Haque, N.; Jalouli, M.; Rahman, M.D.H.; Mou, T.J.; Dey, S.K.; Hoque Apu, E.; et al. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024, 12, 1757. [Google Scholar] [CrossRef]
- Naicker, N.; Sigal, A.; Naidoo, K. Metformin as Host-Directed Therapy for TB Treatment: Scoping Review. Front. Microbiol. 2020, 11, 435. [Google Scholar] [CrossRef]
- Bilyi, A.K.; Antypenko, L.M.; Ivchuk, V.V.; Kamyshnyi, O.M.; Polishchuk, N.M.; Kovalenko, S.I. 2-Heteroaryl-[1,2,4]triazolo[1,5-c]quinazoline-5(6 H)-thiones and Their S-Substituted Derivatives: Synthesis, Spectroscopic Data, and Biological Activity. ChemPlusChem 2015, 80, 980–989. [Google Scholar] [CrossRef]
- Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int. J. Mol. Sci. 2024, 25, 4083. [Google Scholar] [CrossRef] [PubMed]
- Nosulenko, I.S.; Voskoboynik, O.Y.; Berest, G.G.; Safronyuk, S.L.; Kovalenko, S.I.; Kamyshnyi, O.M.; Polishchuk, N.M.; Sinyak, R.S.; Katsev, A.V. Synthesis and Antimicrobial Activity of 6-Thioxo-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]-quinazolin-2-one Derivatives. Sci. Pharm. 2014, 82, 483–500. [Google Scholar] [CrossRef]
- Froldi, G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals 2024, 17, 478. [Google Scholar] [CrossRef]
- Thakur, S.; Daley, B.; Klubo-Gwiezdzinska, J. The role of an anti-diabetic drug metformin in the treatment of endocrine tumors. J. Mol. Endocrinol. 2019, 63, R17-r35. [Google Scholar] [CrossRef] [PubMed]
- Kamyshna, I.I.; Pavlovych, L.B.; Maslyanko, V.A.; Kamyshnyi, A.M. Analysis of the transcriptional activity of genes of neuropeptides and their receptors in the blood of patients with thyroid pathology. J. Med. Life 2021, 14, 243–249. [Google Scholar] [CrossRef]
- Lyubomirskaya, E.S.; Kamyshnyi, A.M.; Krut, Y.Y.; Smiianov, V.A.; Fedoniuk, L.Y.; Romanyuk, L.B.; Kravets, N.Y.; Mochulska, O.M. SNPs and transcriptional activity of genes of innate and adaptive immunity at the maternal-fetal interface in woman with preterm labour, associated with preterm premature rupture of membranes. Wiad. Lek. 2020, 73, 25–30. [Google Scholar]
- Kamyshna, I.I.; Pavlovych, L.B.; Sydorchuk, L.P.; Malyk, I.V.; Kamyshnyi, A.M. BDNF blood serum linkage with BDNF gene polymorphism (rs6265) in thyroid pathology patients in the West-Ukrainian population. Endocr. Regul. 2021, 55, 193–203. [Google Scholar] [CrossRef]
- Halabitska, I.; Babinets, L. Different consequences of the treatment of osteoarthritis in gastrointestinal comorbidity with exocrine pancreatic insufficiency. Fam. Med. Prim. Care Rev. 2021, 23, 422–428. [Google Scholar] [CrossRef]
- Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018820980225. [Google Scholar] [CrossRef]
- Siavash Dastjerdi, M.; Tabbakhian, M.; Sabzghabaee, A.M.; Razavi, N. Severity of Gastrointestinal Side Effects of Metformin Tablet Compared to Metformin Capsule in Type 2 Diabetes Mellitus Patients. J. Res. Pharm. Pract. 2017, 6, 73. [Google Scholar] [CrossRef]
- Zemlyak, O.S.; Babinets, L.S.; Halabitska, I.M. The Role of Endotoxicosis and Inflammation in Deepening the Pancreatic Functional Insufficiency in Chronic Pancreatitis in Combination with Type 2 Diabetes. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2023, 51, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Halabitska, I.; Oksenych, V.; Kamyshnyi, O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024, 16, 3349. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Kim, W.J. Metformin reduces the risk of developing influenza A virus related cardiovascular disease. Heliyon 2023, 9, e20284. [Google Scholar] [CrossRef]
- Ventura-López, C.; Cervantes-Luevano, K.; Aguirre-Sánchez, J.S.; Flores-Caballero, J.C.; Alvarez-Delgado, C.; Bernaldez-Sarabia, J.; Sánchez-Campos, N.; Lugo-Sánchez, L.A.; Rodríguez-Vázquez, I.C.; Sander-Padilla, J.G.; et al. Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial. Biomed. Pharmacother. 2022, 152, 113223. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, M.S.; Gallo, E.S.; Borenstein, R. Multifaceted Role of AMPK in Viral Infections. Cells 2021, 10, 1118. [Google Scholar] [CrossRef]
- Parthasarathy, H.; Tandel, D.; Siddiqui, A.H.; Harshan, K.H. Metformin suppresses SARS-CoV-2 in cell culture. Virus Res. 2023, 323, 199010. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ao, H.; Guo, G.; Liu, M. The Role and Mechanism of Metformin in Inflammatory Diseases. J. Inflamm. Res. 2023, 16, 5545–5564. [Google Scholar] [CrossRef]
- Dziedzic, A.; Saluk-Bijak, J.; Miller, E.; Bijak, M. Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 5957. [Google Scholar] [CrossRef]
- Babinets, L.; Migenko, B.; Borovyk, I.; Halabitska, I.; Lobanets, N.; Onyskiv, O. The role of cytocin imbalance in the development of man infertility. Wiad. Lek. 2020, 73, 525–528. [Google Scholar] [CrossRef]
- Bharath, L.P.; Nikolajczyk, B.S. The intersection of metformin and inflammation. Am. J. Physiol. Cell Physiol. 2021, 320, C873–C879. [Google Scholar] [CrossRef]
- Peairs, A.; Radjavi, A.; Davis, S.; Li, L.; Ahmed, A.; Giri, S.; Reilly, C.M. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin. Exp. Immunol. 2009, 156, 542–551. [Google Scholar] [CrossRef]
- Amor, S.; Fernández Blanco, L.; Baker, D. Innate immunity during SARS-CoV-2: Evasion strategies and activation trigger hypoxia and vascular damage. Clin. Exp. Immunol. 2020, 202, 193–209. [Google Scholar] [CrossRef]
- Zasłona, Z.; O’Neill, L.A.J. Cytokine-like Roles for Metabolites in Immunity. Mol. Cell 2020, 78, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, F.; Romeo, E.; Caserta, C.A.; Rumio, C.; Lefoulon, F. Context-Dependent Pharmacological Effects of Metformin on the Immune System. Trends Pharmacol. Sci. 2020, 41, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Benedetti, F.; Sorrenti, V.; Buriani, A.; Fortinguerra, S.; Scapagnini, G.; Zella, D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020, 12, 1458. [Google Scholar] [CrossRef]
- Plowman, T.J.; Christensen, H.; Aiges, M.; Fernandez, E.; Shah, M.H.; Ramana, K.V. Anti-Inflammatory Potential of the Anti-Diabetic Drug Metformin in the Prevention of Inflammatory Complications and Infectious Diseases Including COVID-19: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 5190. [Google Scholar] [CrossRef]
- Martin, D.E.; Cadar, A.N.; Bartley, J.M. Old drug, new tricks: The utility of metformin in infection and vaccination responses to influenza and SARS-CoV-2 in older adults. Front. Aging 2023, 4, 1272336. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, M.; Jafari-Gharabaghlou, D.; Zarghami, N. An update on mode of action of metformin in modulation of meta-inflammation and inflammaging. Pharmacol. Rep. 2022, 74, 310–322. [Google Scholar] [CrossRef]
- Nojima, I.; Wada, J. Metformin and Its Immune-Mediated Effects in Various Diseases. Int. J. Mol. Sci. 2023, 24, 755. [Google Scholar] [CrossRef]
- Babinets, L.S.; Halabitska, I.M.; Kotsaba, Y.Y.; Borovyk, I.O.; Migenko, B.O.; Ryabokon, S.S.; Tsybulska, L.S. The effect of the proteolisis’ system activity for the trophological status of patients with osteoarthrosis and excretory insufficiency of pancreas. Wiad. Lek. 2018, 71, 273–276. [Google Scholar] [PubMed]
- Suardi, C.; Cazzaniga, E.; Graci, S.; Dongo, D.; Palestini, P. Link between Viral Infections, Immune System, Inflammation and Diet. Int. J. Environ. Res. Public Health 2021, 18, 2455. [Google Scholar] [CrossRef]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13. [Google Scholar] [CrossRef]
- Sutter, A.; Landis, D.; Nugent, K. Metformin has immunomodulatory effects which support its potential use as adjunctive therapy in tuberculosis. Indian J. Tuberc. 2024, 71, 89–95. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef]
- Nagendra, L.; Bhattacharya, S.; Kalra, S.; Kapoor, N. Metformin in COVID-19: Is There a Role Beyond Glycemic Control? Int. J. Endocrinol. Metab. 2023, 21, e132965. [Google Scholar] [CrossRef] [PubMed]
- Drzewoski, J.; Hanefeld, M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals 2021, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Nogales, A.; Martínez-Sobrido, L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int. J. Mol. Sci. 2016, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Raza, M.A.; Amjad, M.N.; Ud Din, G.; Yue, L.; Shen, B.; Chen, L.; Dong, W.; Xu, H.; Hu, Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front. Microbiol. 2024, 15, 1467029. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.S.; Wei, J.C.; Shih, Y.H.; Hsu, C.Y.; Hsu, C.C.; Hwu, C.M. Metformin Use before Influenza Vaccination May Lower the Risks of Influenza and Related Complications. Vaccines 2022, 10, 1752. [Google Scholar] [CrossRef] [PubMed]
- Cummings, T.H.; Magagnoli, J.; Hardin, J.W.; Sutton, S.S. Patients with Obesity and a History of Metformin Treatment Have Lower Influenza Mortality: A Retrospective Cohort Study. Pathogens 2022, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Greene, E.; Green, C.L.; Hurst, J.; MacIver, N.J. Metformin use associated with lower rate of hospitalization for influenza in individuals with diabetes. Diabetes Obes. Metab. 2024, 26, 3281–3289. [Google Scholar] [CrossRef] [PubMed]
- Thom, R.E.; D’Elia, R.V. Future applications of host direct therapies for infectious disease treatment. Front. Immunol. 2024, 15, 1436557. [Google Scholar] [CrossRef]
- Brandi, P.; Conejero, L.; Cueto, F.J.; Martínez-Cano, S.; Dunphy, G.; Gómez, M.J.; Relaño, C.; Saz-Leal, P.; Enamorado, M.; Quintas, A.; et al. Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Rep. 2022, 38, 110184. [Google Scholar] [CrossRef]
- Goel, S.; Singh, R.; Singh, V.; Singh, H.; Kumari, P.; Chopra, H.; Sharma, R.; Nepovimova, E.; Valis, M.; Kuca, K.; et al. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front. Genet. 2022, 13, 1022739. [Google Scholar] [CrossRef]
- Martin, D.E.; Cadar, A.N.; Panier, H.; Torrance, B.L.; Kuchel, G.A.; Bartley, J.M. The effect of metformin on influenza vaccine responses in nondiabetic older adults: A pilot trial. Immun. Ageing I A 2023, 20, 18. [Google Scholar] [CrossRef]
- Xia, C.; Wang, T.; Hahm, B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int. J. Mol. Sci. 2024, 25, 4677. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E.; Chavez, V.; Hunter, R.L. Morphoproteomic Features of Pulmonary Influenza A (H1N1) with Therapeutic Implications: A Case Study. Ann. Clin. Lab. Sci. 2022, 52, 991–995. [Google Scholar]
- Frasca, D.; Diaz, A.; Romero, M.; Blomberg, B.B. Metformin Enhances B Cell Function and Antibody Responses of Elderly Individuals with Type-2 Diabetes Mellitus. Front. Aging 2021, 2, 715981. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.R.; Yang, T.L.; Lai, Y.H.; Lin, K.J.; Fang, Y.A.; Chen, M.Y.; Hsu, M.H.; Chiu, C.C.; Yang, T.Y.; Chen, C.C.; et al. The Association between Influenza Vaccine and Risk of Chronic Kidney Disease/Dialysis in Patients with Hypertension. Vaccines 2023, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Saenwongsa, W.; Nithichanon, A.; Chittaganpitch, M.; Buayai, K.; Kewcharoenwong, C.; Thumrongwilainet, B.; Butta, P.; Palaga, T.; Takahashi, Y.; Ato, M.; et al. Metformin-induced suppression of IFN-α via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes. Sci. Rep. 2020, 10, 3229. [Google Scholar] [CrossRef]
- Yang, A.; Shi, M.; Wu, H.; Lau, E.S.H.; Ma, R.C.W.; Kong, A.P.S.; So, W.Y.; Luk, A.O.Y.; Chan, J.C.N.; Chow, E. Long-term metformin use and risk of pneumonia and related death in type 2 diabetes: A registry-based cohort study. Diabetologia 2021, 64, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Role of metformin in various pathologies: State-of-the-art microcapsules for improving its pharmacokinetics. Ther. Deliv. 2020, 11, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Choe, J.Y.; Park, S.H. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J. Intern. Med. 2022, 37, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, L.; Pan, X.; Liang, Y.; Zhang, Y.; Li, J.; Zhou, B. 5-Methoxyflavone-induced AMPKα activation inhibits NF-κB and P38 MAPK signaling to attenuate influenza A virus-mediated inflammation and lung injury in vitro and in vivo. Cell. Mol. Biol. Lett. 2022, 27, 82. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Lee, J.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Lee, W.Y. Activation of AMP-Activated Protein Kinase Attenuates Tumor Necrosis Factor-α-Induced Lipolysis via Protection of Perilipin in 3T3-L1 Adipocytes. Endocrinol. Metab. 2014, 29, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.A.; Akhter, M.S.; Kubra, K.T.; Siejka, A.; Barabutis, N. Metformin in acute respiratory distress syndrome: An opinion. Exp. Gerontol. 2021, 145, 111197. [Google Scholar] [CrossRef]
- Fan, S.Y.; Zhao, Z.C.; Liu, X.L.; Peng, Y.G.; Zhu, H.M.; Yan, S.F.; Liu, Y.J.; Xie, Q.; Jiang, Y.; Zeng, S.Z. Metformin Mitigates Sepsis-Induced Acute Lung Injury and Inflammation in Young Mice by Suppressing the S100A8/A9-NLRP3-IL-1β Signaling Pathway. J. Inflamm. Res. 2024, 17, 3785–3799. [Google Scholar] [CrossRef]
- Khandia, R.; Dadar, M.; Munjal, A.; Dhama, K.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Iqbal, H.M.N.; Singh, K.P.; Joshi, S.K.; et al. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019, 8, 674. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Drexler, I. Targeting Autophagy in Innate Immune Cells: Angel or Demon During Infection and Vaccination? Front. Immunol. 2020, 11, 460. [Google Scholar] [CrossRef]
- Pehote, G.; Vij, N. Autophagy Augmentation to Alleviate Immune Response Dysfunction, and Resolve Respiratory and COVID-19 Exacerbations. Cells 2020, 9, 1952. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Tu, S.; Ding, L.; Jin, M.; Chen, H.; Zhou, H. The role of autophagy in viral infections. J. Biomed. Sci. 2023, 30, 5. [Google Scholar] [CrossRef]
- Abdelaziz, D.H.; Thapa, S.; Abdulrahman, B.; Vankuppeveld, L.; Schatzl, H.M. Metformin reduces prion infection in neuronal cells by enhancing autophagy. Biochem. Biophys. Res. Commun. 2020, 523, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zou, W.; Leng, Y.; Mu, Z.; Zhan, L. Neuroprotective Effects of Metformin on Cerebral Ischemia-Reperfusion Injury: Modulation of JNK and p38 MAP Kinase Signaling Pathways. Cell Biochem. Biophys. 2024, 82, 2597–2606. [Google Scholar] [CrossRef]
- Rothenburg, S.; Brennan, G. Species-Specific Host-Virus Interactions: Implications for Viral Host Range and Virulence. Trends Microbiol. 2020, 28, 46–56. [Google Scholar] [CrossRef]
- Weitzman, M.D.; Fradet-Turcotte, A. Virus DNA Replication and the Host DNA Damage Response. Annu. Rev. Virol. 2018, 5, 141–164. [Google Scholar] [CrossRef]
- Shaikh, S.R.; MacIver, N.J.; Beck, M.A. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu. Rev. Nutr. 2022, 42, 67–89. [Google Scholar] [CrossRef]
- Hulme, K.D.; Noye, E.C.; Short, K.R.; Labzin, L.I. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front. Immunol. 2021, 12, 770066. [Google Scholar] [CrossRef]
- Chen, X.; Guo, H.; Qiu, L.; Zhang, C.; Deng, Q.; Leng, Q. Immunomodulatory and Antiviral Activity of Metformin and Its Potential Implications in Treating Coronavirus Disease 2019 and Lung Injury. Front. Immunol. 2020, 11, 2056. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.; Silvestre, R.; Cordeiro-da-Silva, A.; Estaquier, J.; Foretz, M.; Viollet, B. AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes? Curr. Drug Targets 2016, 17, 942–953. [Google Scholar] [CrossRef]
- Prantner, D.; Perkins, D.J.; Vogel, S.N. AMP-activated Kinase (AMPK) Promotes Innate Immunity and Antiviral Defense through Modulation of Stimulator of Interferon Genes (STING) Signaling. J. Biol. Chem. 2017, 292, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Qin, G.; Zhao, J.; Sun, Y.; Zhang, B.; Li, D.; Wang, B.; Jin, X.; Wu, H. Metformin activates the STING/IRF3/IFN-β pathway by inhibiting AKT phosphorylation in pancreatic cancer. Am. J. Cancer Res. 2020, 10, 2851–2864. [Google Scholar]
- Pereira, G.; Leão, A.; Erustes, A.G.; Morais, I.B.M.; Vrechi, T.A.M.; Zamarioli, L.D.S.; Pereira, C.A.S.; Marchioro, L.O.; Sperandio, L.P.; Lins, I.V.F.; et al. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. Int. J. Mol. Sci. 2021, 22, 4067. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Yi, J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J. Funct. Biomater. 2024, 15, 220. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Rinaldi, L.; Caturano, A.; Vetrano, E.; Aprea, C.; Albanese, G.; Di Martino, A.; Ricozzi, C.; et al. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020, 9, 3. [Google Scholar] [CrossRef]
- Luo, P.; Qiu, L.; Liu, Y.; Liu, X.L.; Zheng, J.L.; Xue, H.Y.; Liu, W.H.; Liu, D.; Li, J. Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with Diabetes in a Retrospective Analysis. Am. J. Trop. Med. Hyg. 2020, 103, 69–72. [Google Scholar] [CrossRef]
- Torunoglu, S.T.; Zajda, A.; Tampio, J.; Markowicz-Piasecka, M.; Huttunen, K.M. Metformin derivatives—Researchers’ friends or foes? Biochem. Pharmacol. 2023, 215, 115743. [Google Scholar] [CrossRef] [PubMed]
- Bartee, E.; McFadden, G. Cytokine synergy: An underappreciated contributor to innate anti-viral immunity. Cytokine 2013, 63, 237–240. [Google Scholar] [CrossRef]
- Halabitska, I.; Babinets, L.; Kotsaba, Y. PATHOGENETIC FEATURES OF COMORBIDITY OF PRIMARY OSTEOARTHRITIS AND DISEASES WITH EXOCRINE PANCREATIC INSUFFICIENCY. Georgian Med. News 2021, 321, 57–62. [Google Scholar]
- Li, J.H.; Hsin, P.Y.; Hsiao, Y.C.; Chen, B.J.; Zhuang, Z.Y.; Lee, C.W.; Lee, W.J.; Vo, T.T.T.; Tseng, C.F.; Tseng, S.F.; et al. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers 2024, 16, 3017. [Google Scholar] [CrossRef] [PubMed]
- Fert, A.; Richard, J.; Raymond Marchand, L.; Planas, D.; Routy, J.P.; Chomont, N.; Finzi, A.; Ancuta, P. Metformin facilitates viral reservoir reactivation and their recognition by anti-HIV-1 envelope antibodies. iScience 2024, 27, 110670. [Google Scholar] [CrossRef] [PubMed]
- Szewczuk, M.; Boguszewska, K.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The role of AMPK in metabolism and its influence on DNA damage repair. Mol. Biol. Rep. 2020, 47, 9075–9086. [Google Scholar] [CrossRef] [PubMed]
- de Marañón, A.M.; Díaz-Pozo, P.; Canet, F.; Díaz-Morales, N.; Abad-Jiménez, Z.; López-Domènech, S.; Vezza, T.; Apostolova, N.; Morillas, C.; Rocha, M.; et al. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol. 2022, 53, 102342. [Google Scholar] [CrossRef]
- Jing, W.; Liu, C.; Su, C.; Liu, L.; Chen, P.; Li, X.; Zhang, X.; Yuan, B.; Wang, H.; Du, X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front. Immunol. 2023, 14, 1107670. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.; Yang, A.; Chung, C.H.L.; Chan, J.C.N. A Clinical Perspective of the Multifaceted Mechanism of Metformin in Diabetes, Infections, Cognitive Dysfunction, and Cancer. Pharmaceuticals 2022, 15, 442. [Google Scholar] [CrossRef]
- Justice, J.N.; Gubbi, S.; Kulkarni, A.S.; Bartley, J.M.; Kuchel, G.A.; Barzilai, N. A geroscience perspective on immune resilience and infectious diseases: A potential case for metformin. GeroScience 2021, 43, 1093–1112. [Google Scholar] [CrossRef] [PubMed]
- Varghese, E.; Samuel, S.M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021, 17, e1009634. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.M.; Varghese, E.; Büsselberg, D. Therapeutic Potential of Metformin in COVID-19: Reasoning for Its Protective Role. Trends Microbiol. 2021, 29, 894–907. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Vorobets, I.; Halabitska, I.; Kamyshnyi, O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024, 16, 985. [Google Scholar] [CrossRef] [PubMed]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Budarna, O.; Halabitska, I.; Petakh, P.; Kamyshnyi, O. Genomic insight into COVID-19 severity in MAFLD patients: A single-center prospective cohort study. Front. Genet. 2024, 15, 1460318. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Vari, S.G.; Kamyshnyi, A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023, 15, 1724. [Google Scholar] [CrossRef]
- Pedrosa, A.R.; Martins, D.C.; Rizzo, M.; Silva-Nunes, J. Metformin in SARS-CoV-2 infection: A hidden path—From altered inflammation to reduced mortality. A review from the literature. J. Diabetes Its Complicat. 2023, 37, 108391. [Google Scholar] [CrossRef]
- Bramante, C.T.; Beckman, K.B.; Mehta, T.; Karger, A.B.; Odde, D.J.; Tignanelli, C.J.; Buse, J.B.; Johnson, D.M.; Watson, R.H.B.; Daniel, J.J.; et al. Metformin reduces SARS-CoV-2 in a Phase 3 Randomized Placebo Controlled Clinical Trial. medRxiv Prepr. Serv. Health Sci. 2023. [Google Scholar] [CrossRef]
- Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents 2020, 55, 105982. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, C.; Fei, Y.; Shen, M.; Zhou, Y.; Zhang, Y.; Zeng, X.; Zhang, S. Anti-inflammatory and immune therapy in severe coronavirus disease 2019 (COVID-19) patients: An update. Clin. Immunol. 2022, 239, 109022. [Google Scholar] [CrossRef]
- Halabitska, I.; Petakh, P.; Oksenych, V.; Kamyshnyi, O. Predictive analysis of osteoarthritis and chronic pancreatitis comorbidity: Complications and risk factors. Front. Endocrinol. 2024, 15, 1492741. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
- Putilin, D.A.; Evchenko, S.Y.; Fedoniuk, L.Y.; Tokarskyy, O.S.; Kamyshny, O.M.; Migenko, L.M.; Andreychyn, S.M.; Hanberher, I.I.; Bezruk, T.O. The Influence of Metformin to the Transcriptional Activity of the mTOR and FOX3 Genes in Parapancreatic Adipose Tissue of Streptozotocin-Induced Diabetic Rats. J. Med. Life 2020, 13, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): A multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect. Dis. 2023, 23, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Kamyshnyi, O.; Matskevych, V.; Lenchuk, T.; Strilbytska, O.; Storey, K.; Lushchak, O. Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomed. Pharmacother. 2021, 144, 112230. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Hepokoski, M.; McCowen, K.C.; Shyy, J.Y.J. ACE2, Metformin, and COVID-19. iScience 2020, 23, 101425. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for COVID-19. N. Engl. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.; Kamyshnyi, A. Metformin Therapy Changes Gut Microbiota Alpha-Diversity in COVID-19 Patients with Type 2 Diabetes: The Role of SARS-CoV-2 Variants and Antibiotic Treatment. Pharmaceuticals 2023, 16, 904. [Google Scholar] [CrossRef] [PubMed]
- Lalau, J.D.; Al-Salameh, A.; Hadjadj, S.; Goronflot, T.; Wiernsperger, N.; Pichelin, M.; Allix, I.; Amadou, C.; Bourron, O.; Duriez, T.; et al. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 2021, 47, 101216. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Kamyshna, I.; Kamyshnyi, A. Gene expression of protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), solute carrier family 2 member 1 (SLC2A1) and mechanistic target of rapamycin (MTOR) in metformin-treated type 2 diabetes patients with COVID-19: Impact on inflammation markers. Inflammopharmacology 2024, 32, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Beckman, K.B.; Mehta, T.; Karger, A.B.; Odde, D.J.; Tignanelli, C.J.; Buse, J.B.; Johnson, D.M.; Watson, R.H.B.; Daniel, J.J.; et al. Favorable Antiviral Effect of Metformin on SARS-CoV-2 Viral Load in a Randomized, Placebo-Controlled Clinical Trial of COVID-19. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2024, 79, 354–363. [Google Scholar] [CrossRef]
- Boulware, D.R.; Murray, T.A.; Proper, J.L.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; et al. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccination and Booster on Coronavirus Disease 2019 (COVID-19) Symptom Severity Over Time in the COVID-OUT Trial. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, e1–e9. [Google Scholar] [CrossRef]
- Petakh, P.; Griga, V.; Mohammed, I.B.; Loshak, K.; Poliak, I.; Kamyshnyiy, A. Effects of Metformin, Insulin on Hematological Parameters of COVID-19 Patients with Type 2 Diabetes. Med. Arch. 2022, 76, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Grappasonni, I.; Nguyen, C.T.T.; Tesauro, M.; Pantanetti, P.; Xhafa, S.; Cangelosi, G. Metformin and COVID-19: A systematic review of systematic reviews with meta-analysis. Acta Bio-Medica Atenei Parm. 2023, 94, e2023138. [Google Scholar] [CrossRef]
- Silverii, G.A.; Fumagalli, C.; Rozzini, R.; Milani, M.; Mannucci, E.; Marchionni, N. Is Metformin Use Associated with a More Favorable COVID-19 Course in People with Diabetes? J. Clin. Med. 2024, 13, 1874. [Google Scholar] [CrossRef]
- Petakh, P.; Oksenych, V.; Kamyshnyi, A. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin. Biomed. Pharmacother. 2023, 163, 114892. [Google Scholar] [CrossRef]
- Miguel, V.; Rey-Serra, C.; Tituaña, J.; Sirera, B.; Alcalde-Estévez, E.; Herrero, J.I.; Ranz, I.; Fernández, L.; Castillo, C.; Sevilla, L.; et al. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol. 2023, 68, 102957. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Kobyliak, N.; Kamyshnyi, A. Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method. Front. Cell. Infect. Microbiol. 2023, 13, 1142578. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, Z.; Xiang, B.; Liu, J.; Geng, L.; Xu, D.; Zhan, M.; Xu, Y.; Zhang, B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci. Rep. 2024, 14, 12406. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; El Kholy, A.A.; El-Khateeb, E.; Alexiou, A.; Papadakis, M.; Elekhnawy, E.; Alsubaie, N.; Hamad, R.S.; Batiha, G.E. The potential therapeutic effect of metformin in type 2 diabetic patients with severe COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11445–11456. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Kamyshna, I.; Oksenych, V.; Kamyshnyi, O. Metformin Alters mRNA Expression of FOXP3, RORC, and TBX21 and Modulates Gut Microbiota in COVID-19 Patients with Type 2 Diabetes. Viruses 2024, 16, 281. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, M.; Mathew, S.K.; Paul, S.; Kurian, S.J.; Kunhikatta, V.; Karanth, S.; Shetty, S.; Kudru, C.U.; Manu, M.K.; Saravu, K.; et al. Metformin use and its association with various outcomes in COVID-19 patients with diabetes mellitus: A retrospective cohort study in a tertiary care facility. Ann. Med. 2024, 56, 2425829. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Hubbard, A.E.; Gutiérrez, J.P.; Pimpale, G.; Juárez-Flores, A.; Ghosh, R.; de Jesús Ascencio-Montiel, I.; Bertozzi, S.M. Estimating the effect of realistic improvements of metformin adherence on COVID-19 mortality using targeted machine learning. Glob. Epidemiol. 2024, 7, 100142. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, T.D. Coordination chemistry suggests that independently observed benefits of metformin and Zn2+ against COVID-19 are not independent. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2024, 37, 983–1022. [Google Scholar] [CrossRef]
- Harmon, D.C.; Levene, J.A.; Rutlen, C.L.; White, E.S.; Freeman, I.R.; Lapidus, J.A. Preadmission Metformin Use Is Associated with Reduced Mortality in Patients with Diabetes Mellitus Hospitalized with COVID-19. J. Gen. Intern. Med. 2024, 39, 3253–3260. [Google Scholar] [CrossRef]
- Lewandowski, Ł.; Bronowicka-Szydełko, A.; Rabczyński, M.; Bednarska-Chabowska, D.; Adamiec-Mroczek, J.; Doroszko, A.; Trocha, M.; Kujawa, K.; Matera-Witkiewicz, A.; Kuźnik, E.; et al. Insulin and Metformin Administration: Unravelling the Multifaceted Association with Mortality across Various Clinical Settings Considering Type 2 Diabetes Mellitus and COVID-19. Biomedicines 2024, 12, 605. [Google Scholar] [CrossRef]
- De Jesús-González, L.A.; Del Ángel, R.M.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Rodríguez-Carlos, A.; Trujillo-Paez, J.V.; Farfan-Morales, C.N.; Osuna-Ramos, J.F.; Reyes-Ruiz, J.M.; Rivas-Santiago, B.; et al. A Dual Pharmacological Strategy against COVID-19: The Therapeutic Potential of Metformin and Atorvastatin. Microorganisms 2024, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Wiernsperger, N.; Al-Salameh, A.; Cariou, B.; Lalau, J.D. Protection by metformin against severe COVID-19: An in-depth mechanistic analysis. Diabetes Metab. 2022, 48, 101359. [Google Scholar] [CrossRef]
- To, E.E.; Erlich, J.R.; Liong, F.; Luong, R.; Liong, S.; Esaq, F.; Oseghale, O.; Anthony, D.; McQualter, J.; Bozinovski, S.; et al. Mitochondrial Reactive Oxygen Species Contribute to Pathological Inflammation During Influenza A Virus Infection in Mice. Antioxid. Redox Signal. 2020, 32, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Isevych, V.; Mohammed, I.; Loshak, K.; Poliak, I.; Kamyshnyi, O. Association between Use of Metformin and Insulin with Hematological Parameters in COVID-19 Patients with Type 2 Diabetes: A Single Center, Cross-Sectional Study. Clin. Diabetol. 2022, 11, 432–433. [Google Scholar] [CrossRef]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Wihandani, D.M.; Purwanta, M.L.A.; Mulyani, W.R.W.; Putra, I.; Supadmanaba, I.G.P. New-onset diabetes in COVID-19: The molecular pathogenesis. BioMedicine 2023, 13, 3–12. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, Z.; Wang, Q.; Chen, Y.; Lu, D.; Wu, W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front. Endocrinol. 2021, 12, 772865. [Google Scholar] [CrossRef] [PubMed]
- Buchynskyi, M.; Kamyshna, I.; Oksenych, V.; Zavidniuk, N.; Kamyshnyi, A. The Intersection of COVID-19 and Metabolic-Associated Fatty Liver Disease: An Overview of the Current Evidence. Viruses 2023, 15, 1072. [Google Scholar] [CrossRef] [PubMed]
- Nafisa, A.; Gray, S.G.; Cao, Y.; Wang, T.; Xu, S.; Wattoo, F.H.; Barras, M.; Cohen, N.; Kamato, D.; Little, P.J. Endothelial function and dysfunction: Impact of metformin. Pharmacol. Ther. 2018, 192, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sydorchuk, L.; Dzhuryak, V.; Sydorchuk, A.; Levytska, S.; Petrynych, V.; Knut, R.; Kshanovska, A.; Iftoda, O.; Tkachuk, O.; Kyfiak, P.; et al. The cytochrome 11B2 aldosterone synthase gene rs1799998 single nucleotide polymorphism determines elevated aldosterone, higher blood pressure, and reduced glomerular filtration, especially in diabetic female patients. Endocr. Regul. 2020, 54, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Repchuk, Y.; Sydorchuk, L.P.; Sydorchuk, A.R.; Fedonyuk, L.Y.; Kamyshnyi, O.; Korovenkova, O.; Plehutsa, I.M.; Dzhuryak, V.S.; Myshkovskii, Y.M.; Iftoda, O.M.; et al. Linkage of blood pressure, obesity and diabetes mellitus with angiotensinogen gene (AGT 704T>C/rs699) polymorphism in hypertensive patients. Bratisl. Lek. Listy 2021, 122, 715–720. [Google Scholar] [CrossRef]
- Scheen, A.J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab. 2020, 46, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Kamyshna, I.; Nykyforuk, A.; Yao, R.; Imbery, J.F.; Oksenych, V.; Korda, M.; Kamyshnyi, A. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses 2022, 14, 477. [Google Scholar] [CrossRef]
- Asar, T.; Al-Abbasi, F.; Sheikh, R.; Zeyadi, M.; Nadeem, M.; Naqvi, S.; Kumar, V.; Anwar, F. Metformin’s dual impact on Gut microbiota and cardiovascular health: A comprehensive analysis. Biomed. Pharmacother. 2024, 178, 117128. [Google Scholar] [CrossRef]
- Petakh, P.; Kamyshna, I.; Kamyshnyi, A. Unveiling the potential pleiotropic effects of metformin in treating COVID-19: A comprehensive review. Front. Mol. Biosci. 2023, 10, 1260633. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Kamyshna, I.; Lyubomirskaya, K.; Moshynets, O.; Kobyliak, N.; Oksenych, V.; Kamyshnyi, A. Efficacy of interferon alpha for the treatment of hospitalized patients with COVID-19: A meta-analysis. Front. Immunol. 2023, 14, 1069894. [Google Scholar] [CrossRef] [PubMed]
- Kamyshnyi, A.; Koval, H.; Kobevko, O.; Buchynskyi, M.; Oksenych, V.; Kainov, D.; Lyubomirskaya, K.; Kamyshna, I.; Potters, G.; Moshynets, O. Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int. J. Mol. Sci. 2023, 24, 6887. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Kamyshnyi, O. Exploring Paxlovid Efficacy in COVID-19 Patients with MAFLD: Insights from a Single-Center Prospective Cohort Study. Viruses 2024, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Lowe, J.R.; Bramante, C.T.; Shah, S.; Klatt, N.R.; Sherwood, N.; Aronne, L.; Puskarich, M.; Tamariz, L.; Palacio, A.; et al. Metformin and COVID-19: Focused Review of Mechanisms and Current Literature Suggesting Benefit. Front. Endocrinol. 2021, 12, 587801. [Google Scholar] [CrossRef] [PubMed]
- Zangiabadian, M.; Nejadghaderi, S.A.; Zahmatkesh, M.M.; Hajikhani, B.; Mirsaeidi, M.; Nasiri, M.J. The Efficacy and Potential Mechanisms of Metformin in the Treatment of COVID-19 in the Diabetics: A Systematic Review. Front. Endocrinol. 2021, 12, 645194. [Google Scholar] [CrossRef]
- Ganesh, A.; Randall, M.D. Does metformin affect outcomes in COVID-19 patients with new or pre-existing diabetes mellitus? A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 2642–2656. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Marfella, R.; Prattichizzo, F.; La Grotta, R.; Paolisso, G.; Ceriello, A. Effect of Hyperglycemia on COVID-19 Outcomes: Vaccination Efficacy, Disease Severity, and Molecular Mechanisms. J. Clin. Med. 2022, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Zaongo, S.D.; Chen, Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin. Med. J. 2023, 136, 2147–2155. [Google Scholar] [CrossRef] [PubMed]
- Babinets, L.; Halabitska, I. Chronic inflammatory process and bone tissue changes in patients with osteoarthritis and exocrine pancreatic insufficiency. Lek. Obz. 2020, 69, 7–10. [Google Scholar]
- Chew, G.M.; Padua, A.J.P.; Chow, D.C.; Souza, S.A.; Clements, D.M.; Corley, M.J.; Pang, A.P.S.; Alejandria, M.M.; Gerschenson, M.; Shikuma, C.M.; et al. Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Res. Hum. Retroviruses 2021, 37, 24–33. [Google Scholar] [CrossRef]
- Pollak, M. The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia 2017, 60, 1662–1667. [Google Scholar] [CrossRef]
- Hasanvand, A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: A new perspective for treatment and prevention of diseases. Inflammopharmacology 2022, 30, 775–788. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells 2013, 36, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Kifle, Z.D.; Woldeyohanis, A.E.; Demeke, C.A. A review on protective roles and potential mechanisms of metformin in diabetic patients diagnosed with COVID-19. Metab. Open 2021, 12, 100137. [Google Scholar] [CrossRef]
- Schuiveling, M.; Vazirpanah, N.; Radstake, T.; Zimmermann, M.; Broen, J. Metformin, A New Era for an Old Drug in the Treatment of Immune Mediated Disease? Curr. Drug Targets 2018, 19, 945–959. [Google Scholar] [CrossRef]
- McCabe, L.; Burns, J.E.; Latifoltojar, A.; Post, F.A.; Fox, J.; Pool, E.; Waters, A.; Santana, B.; Garvey, L.; Johnson, M.; et al. MAVMET trial: Maraviroc and/or metformin for metabolic dysfunction associated fatty liver disease in adults with suppressed HIV. AIDS 2024, 38, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Timani, K.; He, J. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis. 2023, 15, 831. [Google Scholar] [CrossRef] [PubMed]
- McCrea, J.B.; Patel, M.; Liu, Y.; Vargo, R.; Witter, R.; Litovsky, A.; Stoch, S.A.; Iwamoto, M.; Matthews, R.P. Pharmacokinetics of Atorvastatin and Metformin after Coadministration with Islatravir in Healthy Adults. J. Clin. Pharmacol. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Corley, M.J.; Pang, A.P.S.; Shikuma, C.M.; Ndhlovu, L.C. Cell-type specific impact of metformin on monocyte epigenetic age reversal in virally suppressed older people living with HIV. Aging Cell 2024, 23, e13926. [Google Scholar] [CrossRef]
- Nguyen, D.; Miao, X.; Taskar, K.; Magee, M.; Gorycki, P.; Moore, K.; Tai, G. No dose adjustment of metformin or substrates of organic cation transporters (OCT)1 and OCT2 and multidrug and toxin extrusion protein (MATE)1/2K with fostemsavir coadministration based on modeling approaches. Pharmacol. Res. Perspect. 2024, 12, e1238. [Google Scholar] [CrossRef]
- Mhlanga, N.L.; Netangaheni, T.R. Interventions for Type 2 Diabetes reduction among older people living with HIV in Harare. S. Afr. Fam. Pract. 2024, 66, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Hurbans, N.; Naidoo, P. Comorbidity and concomitant medication use in an integrase strand transfer inhibitor naïve cohort on first-line dolutegravir-based antiretroviral therapy. Pan Afr. Med. J. 2024, 47, 137. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Ding, Y.; Yu, X.; Ma, D.; Yang, B.; Li, Y.; Huang, L.; Chen, Z.; Zheng, J.; Yang, C. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am. J. Transl. Res. 2019, 11, 2393–2402. [Google Scholar] [PubMed]
- Smigiel, K.; Srivastava, S.; Stolley, J.; Campbell, D. Regulatory T-cell homeostasis: Steady-state maintenance and modulation during inflammation. Immunol. Rev. 2014, 259, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Jenabian, M.A.; Ancuta, P.; Gilmore, N.; Routy, J.P. Regulatory T cells in HIV infection: Can immunotherapy regulate the regulator? Clin. Dev. Immunol. 2012, 2012, 908314. [Google Scholar] [CrossRef] [PubMed]
- Esmail Nia, G.; Mohammadi, M.; Sharifizadeh, M.; Ghalamfarsa, G.; Bolhassani, A. The role of T regulatory cells in the immunopathogenesis of HIV: Clinical implications. Braz. J. Infect. Dis. 2024, 28, 103866. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Chen, H. Metformin: A Novel Weapon Against Inflammation. Front. Pharmacol. 2021, 12, 622262. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Hu, K.; Tang, Y.; Zeng, X.; Liu, J.; Xu, J. Effects of metformin treatment on serum levels of C-reactive protein and interleukin-6 in women with polycystic ovary syndrome: A meta-analysis: A PRISMA-compliant article. Medicine 2017, 96, e8183. [Google Scholar] [CrossRef]
- Obare, L.M.; Temu, T.; Mallal, S.A.; Wanjalla, C.N. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ. Res. 2024, 134, 1515–1545. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Cao, W.; Li, T. HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J. Immunol. Res. 2021, 2021, 7316456. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Isnard, S.; Lin, J.; Fombuena, B.; Marette, A.; Routy, B.; Chen, Y.; Routy, J.P. Metformin effect on gut microbiota: Insights for HIV-related inflammation. AIDS Res. Ther. 2020, 17, 10. [Google Scholar] [CrossRef]
- So-Armah, K.; Benjamin, L.A.; Bloomfield, G.S.; Feinstein, M.J.; Hsue, P.; Njuguna, B.; Freiberg, M.S. HIV and cardiovascular disease. Lancet HIV 2020, 7, e279–e293. [Google Scholar] [CrossRef] [PubMed]
- Topol, I.; Kamyshny, A. Study of expression of TLR2, TLR4 and transckription factor NF-kB structures of galt of rats in the conditions of the chronic social stress and modulation of structure of intestinal microflora. Georgian Med. News 2013, 225, 115–122. [Google Scholar]
- MacCann, R.; Landay, A.L.; Mallon, P.W.G. HIV and comorbidities—The importance of gut inflammation and the kynurenine pathway. Curr. Opin. HIV AIDS 2023, 18, 102–110. [Google Scholar] [CrossRef]
- Ponte, R.; Mehraj, V.; Ghali, P.; Couëdel-Courteille, A.; Cheynier, R.; Routy, J.P. Reversing Gut Damage in HIV Infection: Using Non-Human Primate Models to Instruct Clinical Research. EBioMedicine 2016, 4, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Fakharian, F.; Thirugnanam, S.; Welsh, D.A.; Kim, W.K.; Rappaport, J.; Bittinger, K.; Rout, N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023, 11, 1849. [Google Scholar] [CrossRef]
- Topol, I.A.; Kamyshny, A.M.; Abramov, A.V.; Kolesnik, Y.M. Expression of XBP1 in lymphocytes of the small intestine in rats under chronic social stress and modulation of intestinal microflora composition. Fiziolohichnyi Zhurnal 2014, 60, 38–44. [Google Scholar] [CrossRef]
- Mazzuti, L.; Turriziani, O.; Mezzaroma, I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Patankar, V.; Kitchen, S.; Zhen, A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Nasri, H.; Rafieian-Kopaei, M. Metformin: Current knowledge. J. Res. Med. Sci. 2014, 19, 658–664. [Google Scholar]
- Routy, J.-P.; Isnard, S.; Mehraj, V.; Ostrowski, M.; Chomont, N.; Ancuta, P.; Ponte, R.; Planas, D.; Dupuy, F.; Angel, J. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: Single-arm non-randomised Lilac pilot study protocol. BMJ Open 2019, 9, e028444. [Google Scholar] [CrossRef]
- Nelson, A.G.; Zhang, X.; Ganapathi, U.; Szekely, Z.; Flexner, C.W.; Owen, A.; Sinko, P.J. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J. Control. Release 2015, 219, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Nicol, M.R.; Adams, J.L.; Kashuba, A.D. HIV PrEP Trials: The Road to Success. Clin. Investig. 2013, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Deeks, S.G.; Archin, N.; Cannon, P.; Collins, S.; Jones, R.B.; de Jong, M.; Lambotte, O.; Lamplough, R.; Ndung’u, T.; Sugarman, J.; et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 2021, 27, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Kristófi, R.; Eriksson, J. Metformin as an anti-inflammatory agent: A short review. J. Endocrinol. 2021, 251, R11–R22. [Google Scholar] [CrossRef]
- Halabitska, I.; Babinets, L.; Oksenych, V.; Kamyshnyi, O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024, 12, 1630. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Yokosuka, O.; Omata, M. Hepatitis C virus and hepatocellular carcinoma. Biology 2013, 2, 304–316. [Google Scholar] [CrossRef]
- Coppola, N.; Vatiero, L.M.; Sagnelli, E. HCV genotype 2 as a risk factor for reactivation of chronic HCV infection. Gut 2005, 54, 1207. [Google Scholar] [CrossRef]
- Babinets, L.S.; Shaihen, O.R.; Homyn, H.O.; Halabitska, I.M. Specific aspects of clinical course in case of combination of chronic pancreatitis and concomitant viral hepatitis C. Wiad. Lek. 2019, 72, 595–599. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Ferraro, D.; Carbone, G.; Frampton, A.E.; Vennarecci, G.; Kykalos, S.; Schizas, D.; Theocharis, S.; Machairas, N. The Emerging Role of Metformin in the Treatment of Hepatocellular Carcinoma: Is There Any Value in Repurposing Metformin for HCC Immunotherapy? Cancers 2023, 15, 3161. [Google Scholar] [CrossRef]
- Kwo, P.Y. Metformin and statins and their role in reducing hepatocellular carcinoma risk: Randomized trials are needed: Editorial on “Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy”. Clin. Mol. Hepatol. 2024, 30, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Landis, D.; Sutter, A.; Khemka, S.; Songtanin, B.; Nichols, J.; Nugent, K. Metformin as adjuvant treatment in hepatitis C virus infections and associated complications. Am. J. Med. Sci. 2024, 368, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.; Geh, D.; Elsharkawy, A.M.; Mann, D.A.; Vacca, M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J. Hepatol. 2022, 77, 219–236. [Google Scholar] [CrossRef]
- Stephenne, X.; Foretz, M.; Taleux, N.; van der Zon, G.C.; Sokal, E.; Hue, L.; Viollet, B.; Guigas, B. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011, 54, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.C.; Kuo, H.T.; Hung, C.H.; Tseng, K.C.; Lai, H.C.; Peng, C.Y.; Wang, J.H.; Chen, J.J.; Lee, P.L.; Chien, R.N.; et al. Metformin reduces hepatocellular carcinoma incidence after successful antiviral therapy in patients with diabetes and chronic hepatitis C in Taiwan. J. Hepatol. 2023, 78, 281–292. [Google Scholar] [CrossRef]
- Shimada, S.; Kamiyama, T.; Orimo, T.; Nagatsu, A.; Kamachi, H.; Taketomi, A. High HbA1c is a risk factor for complications after hepatectomy and influences for hepatocellular carcinoma without HBV and HCV infection. Hepatobiliary Surg. Nutr. 2021, 10, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Reddy, V.; Osman, H.; Lopez, A.; Koksal, A.R.; Rhadhi, S.M.; Dash, S.; Aydin, Y. Additional Inhibition of Wnt/β-Catenin Signaling by Metformin in DAA Treatments as a Novel Therapeutic Strategy for HCV-Infected Patients. Cells 2021, 10, 790. [Google Scholar] [CrossRef] [PubMed]
- Berk, J.; Lorigiano, T.J.; Sulkowski, M.; Mixter, S. Replacing Insulin with Anti-Virals: A Clinical Vignette on Diabetes and HCV Treatment. AACE Clin. Case Rep. 2020, 6, e59–e61. [Google Scholar] [CrossRef] [PubMed]
- Abdel Monem, M.S.; Farid, S.F.; Abbassi, M.M.; Youssry, I.; Andraues, N.G.; Hassany, M.; Selim, Y.M.M.; El-Sayed, M.H. The potential hepatoprotective effect of metformin in hepatitis C virus-infected adolescent patients with beta thalassemia major: Randomised clinical trial. Int. J. Clin. Pract. 2021, 75, e14104. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Pelusi, S.; Aghemo, A.; Gritti, S.; Pasulo, L.; Bianco, C.; Iegri, C.; Cologni, G.; Degasperi, E.; D’Ambrosio, R.; et al. Dysmetabolism, Diabetes and Clinical Outcomes in Patients Cured of Chronic Hepatitis C: A Real-Life Cohort Study. Hepatol. Commun. 2022, 6, 867–877. [Google Scholar] [CrossRef]
- Rodríguez-Escaja, C.; Navascues, C.Á.; González-Diéguez, L.; Cadahía, V.; Varela, M.; de Jorge, M.; Castaño-García, A.; Rodríguez, M. Diabetes is not associated with an increased risk of hepatocellular carcinoma in patients with alcoholic or hepatitis C virus cirrhosis. Rev. Esp. De Enfermedades Dig. 2021, 113, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Thomaz, M.L.; Vieira, C.P.; Caris, J.A.; Marques, M.P.; Rocha, A.; Paz, T.A.; Rezende, R.E.F.; Lanchote, V.L. Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals 2024, 17, 865. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.; Wong, K.; Ravindranayagam, N.; Tang, L.; Grace, J.; Wong, D.; Con, D.; Sinclair, M.; Majumdar, A.; Kutaiba, N.; et al. Statin, aspirin and metformin use and risk of hepatocellular carcinoma related outcomes following liver transplantation: A retrospective study. World J. Transplant. 2024, 14, 94914. [Google Scholar] [CrossRef]
- Campbell, C.; Wang, T.; McNaughton, A.L.; Barnes, E.; Matthews, P.C. Risk factors for the development of hepatocellular carcinoma (HCC) in chronic hepatitis B virus (HBV) infection: A systematic review and meta-analysis. J. Viral Hepat. 2021, 28, 493–507. [Google Scholar] [CrossRef]
- Zhou, S.N.; Zhang, N.; Liu, H.H.; Xia, P.; Zhang, C.; Song, J.W.; Fan, X.; Shi, M.; Jin, L.; Zhang, J.Y.; et al. Skewed CD39/CD73/adenosine pathway contributes to B-cell hyperactivation and disease progression in patients with chronic hepatitis B. Gastroenterol. Rep. 2021, 9, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sahra, I.; Regazzetti, C.; Robert, G.; Laurent, K.; Marchand-Brustel, Y.; Auberger, P.; Tanti, J.-F.; Giorgetti-Peraldi, S.; Bost, F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011, 71, 4366–4372. [Google Scholar] [CrossRef]
- Suhail, M.; Sohrab, S.S.; Kamal, M.A.; Azhar, E.I. Role of hepatitis c virus in hepatocellular carcinoma and neurological disorders: An overview. Front. Oncol. 2022, 12, 913231. [Google Scholar] [CrossRef]
- Ferrín, G.; Guerrero, M.; Amado, V.; Rodríguez-Perálvarez, M.; De la Mata, M. Activation of mTOR Signaling Pathway in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 1266. [Google Scholar] [CrossRef] [PubMed]
- Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brûlé, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jin, W.; Jin, H.; Wang, X. mTOR in viral hepatitis and hepatocellular carcinoma: Function and treatment. BioMed Res. Int. 2014, 2014, 735672. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Maiers, J.L.; Chakraborty, S. The Cellular, Molecular, and Pathologic Consequences of Stress on the Liver. Am. J. Pathol. 2023, 193, 1353–1354. [Google Scholar] [CrossRef]
- Marycz, K.; Tomaszewski, K.A.; Kornicka, K.; Henry, B.M.; Wroński, S.; Tarasiuk, J.; Maredziak, M. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo. Oxidative Med. Cell. Longev. 2016, 2016, 9785890. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Yang, Q.; Xu, C.; Zheng, Y.; Wang, L.; Wu, J.; Zeng, M.; Luo, M. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis. 2022, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.; Kravos, N.A.; Jensterle, M.; Janež, A.; Dolžan, V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int. J. Mol. Sci. 2022, 23, 1264. [Google Scholar] [CrossRef] [PubMed]
- Hammerstad, S.S.; Grock, S.F.; Lee, H.J.; Hasham, A.; Sundaram, N.; Tomer, Y. Diabetes and Hepatitis C: A Two-Way Association. Front. Endocrinol. 2015, 6, 134. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Ballestri, S.; Guaraldi, G.; Nascimbeni, F.; Romagnoli, D.; Zona, S.; Targher, G. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease—Evidence from three different disease models: NAFLD, HCV and HIV. World J. Gastroenterol. 2016, 22, 9674–9693. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, L.E.; Rinaldi, L.; Guerrera, B.; Restivo, L.; Marrone, A.; Giordano, M.; Zampino, R. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. Int. J. Mol. Sci. 2016, 17, 803. [Google Scholar] [CrossRef]
- Perazza, F.; Leoni, L.; Colosimo, S.; Musio, A.; Bocedi, G.; D’Avino, M.; Agnelli, G.; Nicastri, A.; Rossetti, C.; Sacilotto, F.; et al. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024, 14, 186. [Google Scholar] [CrossRef]
- Hyun, B.; Shin, S.; Lee, A.; Lee, S.; Song, Y.; Ha, N.J.; Cho, K.H.; Kim, K. Metformin Down-regulates TNF-α Secretion via Suppression of Scavenger Receptors in Macrophages. Immune Netw. 2013, 13, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, W.A.H.; Rajab, A.A.H.; Abu Lila, A.S.; Abbas, H.A. Anti-diabetics and antimicrobials: Harmony of mutual interplay. World J. Diabetes 2021, 12, 1832–1855. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, P.; Xu, Y.; Wang, Y.; Chen, J.; Tang, F.; Hu, Z.; Zhou, J.; Liu, L.; Qiu, W.; et al. Metformin induces tolerogenicity of dendritic cells by promoting metabolic reprogramming. Cell. Mol. Life Sci. CMLS 2023, 80, 283. [Google Scholar] [CrossRef]
- Urbanowicz, A.; Zagożdżon, R.; Ciszek, M. Modulation of the Immune System in Chronic Hepatitis C and During Antiviral Interferon-Free Therapy. Arch. Immunol. Ther. Exp. 2019, 67, 79–88. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Q.; Ling, L.P.; Wu, Y.; Meng, D.X.; Li, X.; Zhang, C.Q. Metformin attenuates motility, contraction, and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase. World J. Gastroenterol. 2018, 24, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, S.; Liu, S.; Zhang, Y.; Shen, D.; Wang, P.; Dang, X. Metformin ameliorates liver fibrosis induced by congestive hepatopathy via the mTOR/HIF-1α signaling pathway. Ann. Hepatol. 2023, 28, 101135. [Google Scholar] [CrossRef]
- Kong, L.; Ma, J.; Dong, L.; Zhu, C.; Zhang, J.; Li, J. Metformin exerts anti-liver fibrosis effect based on the regulation of gut microbiota homeostasis and multi-target synergy. Heliyon 2024, 10, e24610. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, M.B.; Fofana, I.; Fafi-Kremer, S.; Baumert, T.F. Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. J. Hepatol. 2011, 54, 566–576. [Google Scholar] [CrossRef]
- Tsai, W.L.; Chang, T.H.; Sun, W.C.; Chan, H.H.; Wu, C.C.; Hsu, P.I.; Cheng, J.S.; Yu, M.L. Metformin activates type I interferon signaling against HCV via activation of adenosine monophosphate-activated protein kinase. Oncotarget 2017, 8, 91928–91937. [Google Scholar] [CrossRef] [PubMed]
- Shojaeian, A.; Nakhaie, M.; Amjad, Z.; Boroujeni, A.; Shokri, S.; Mahmoudvand, S. Leveraging metformin to combat hepatocellular carcinoma: Its therapeutic promise against hepatitis viral infections. J. Cancer Metastasis Treat. 2024, 10, 5. [Google Scholar] [CrossRef]
- Zheng, J.; Woo, S.L.; Hu, X.; Botchlett, R.; Chen, L.; Huo, Y.; Wu, C. Metformin and metabolic diseases: A focus on hepatic aspects. Front. Med. 2015, 9, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Guan, Q.; Shi, J.S.; Xu, Z.H.; Geng, Y. Metformin alleviates liver fibrosis in mice by enriching Lactobacillus sp. MF-1 in the gut microbiota. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166664. [Google Scholar] [CrossRef] [PubMed]
- Pavlo, P.; Kamyshna, I.; Kamyshnyi, A. Effects of metformin on the gut microbiota: A systematic review. Mol. Metab. 2023, 77, 101805. [Google Scholar] [CrossRef]
- Padilha, M.D.M.; Melo, F.T.V.; Laurentino, R.V.; da Silva, A.; Feitosa, R.N.M. Dysregulation in the microbiota by HBV and HCV infection induces an altered cytokine profile in the pathobiome of infection. Braz. J. Infect. Dis. 2024, 29, 104468. [Google Scholar] [CrossRef]
- Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The role of the gut microbiome in chronic liver disease: The clinical evidence revised. JHEP Rep. Innov. Hepatol. 2019, 1, 214–226. [Google Scholar] [CrossRef]
- Liang, H.; Song, H.; Zhang, X.; Song, G.; Wang, Y.; Ding, X.; Duan, X.; Li, L.; Sun, T.; Kan, Q. Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerg. Microbes Infect. 2022, 11, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, X.; Yu, X.; Novák, P.; Gui, Q.; Yin, K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front. Nutr. 2023, 10, 1120168. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Cong, B. Advances in the mechanism of metformin with wide-ranging effects on regulation of the intestinal microbiota. Front. Microbiol. 2024, 15, 1396031. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.A.; Lamos, E.M.; Davis, S.N. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin. Drug Saf. 2013, 12, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Sacco, M.; Ribaldone, D.G.; Saracco, G.M. Metformin and Hepatocellular Carcinoma Risk Reduction in Diabetic Patients with Chronic Hepatitis C: Fact or Fiction? Viruses 2023, 15, 2451. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.; Shahbaz, A.; Umair, M.; Sachmechi, I. Treatment of Hepatitis C with Sofosbuvir, Velpatasvir and Voxilaprevir Decreases Hemoglobin A1c and Dependence on Anti-Glycemic Medications. Biomed. J. Sci. Tech. Res. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Rosenthal, E.S.; Kottilil, S.; Polis, M.A. Sofosbuvir and ledipasvir for HIV/HCV co-infected patients. Expert Opin. Pharmacother. 2016, 17, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ke, Y.; Lei, X.; Wu, T.; Li, Y.; Bao, T.; Tang, H.; Zhang, C.; Wu, X.; Wang, G.; et al. Meta-analysis: The efficacy of metformin and other anti-hyperglycemic agents in prolonging the survival of hepatocellular carcinoma patients with type 2 diabetes. Ann. Hepatol. 2020, 19, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Iwama, H.; Miyoshi, H.; Tani, J.; Oura, K.; Tadokoro, T.; Sakamoto, T.; Nomura, T.; Morishita, A.; Yoneyama, H.; et al. Diabetes mellitus and metformin in hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 6100–6113. [Google Scholar] [CrossRef] [PubMed]
- Arbuthnot, P.; Kew, M. Hepatitis B virus and hepatocellular carcinoma. Int. J. Exp. Pathol. 2001, 82, 77–100. [Google Scholar] [CrossRef]
- Shah, N.J.; Aloysius, M.M.; Sharma, N.R.; Pallav, K. Advances in treatment and prevention of hepatitis B. World J. Gastrointest. Pharmacol. Ther. 2021, 12, 56–78. [Google Scholar] [CrossRef]
- Xun, Y.H.; Zhang, Y.J.; Pan, Q.C.; Mao, R.C.; Qin, Y.L.; Liu, H.Y.; Zhang, Y.M.; Yu, Y.S.; Tang, Z.H.; Lu, M.J.; et al. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J. Viral Hepat. 2014, 21, 597–603. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kim, S.Y.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 39, 26–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Xiao, H. Metformin Actions on the Liver: Protection Mechanisms Emerging in Hepatocytes and Immune Cells against NASH-Related HCC. Int. J. Mol. Sci. 2021, 22, 5016. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Wu, T.; Wu, Y.; Shao, C.; Li, F.; Lin, Y.; Feng, S.; Wang, W.; Zhong, B. Insulin resistance exhibits varied metabolic abnormalities in nonalcoholic fatty liver disease, chronic hepatitis B and the combination of the two: A cross-sectional study. Diabetol. Metab. Syndr. 2019, 11, 45. [Google Scholar] [CrossRef]
- Akter, S. Non-alcoholic Fatty Liver Disease and Steatohepatitis: Risk Factors and Pathophysiology. Middle East J. Dig. Dis. 2022, 14, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Taniguchi, E.; Itou, M.; Sakata, M.; Sumie, S.; Sata, M. Insulin resistance and chronic liver disease. World J. Hepatol. 2011, 3, 99–107. [Google Scholar] [CrossRef]
- García-Compeán, D.; Orsi, E.; Kumar, R.; Gundling, F.; Nishida, T.; Villarreal-Pérez, J.Z.; Del Cueto-Aguilera, Á.N.; González-González, J.A.; Pugliese, G. Clinical implications of diabetes in chronic liver disease: Diagnosis, outcomes and management, current and future perspectives. World J. Gastroenterol. 2022, 28, 775–793. [Google Scholar] [CrossRef] [PubMed]
- Pinyopornpanish, K.; Leerapun, A.; Pinyopornpanish, K.; Chattipakorn, N. Effects of Metformin on Hepatic Steatosis in Adults with Nonalcoholic Fatty Liver Disease and Diabetes: Insights from the Cellular to Patient Levels. Gut Liver 2021, 15, 827–840. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol. 2019, 70, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Malaekeh-Nikouei, A.; Shokri-Naei, S.; Karbasforoushan, S.; Bahari, H.; Baradaran Rahimi, V.; Heidari, R.; Askari, V.R. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed. Pharmacother. 2023, 165, 115263. [Google Scholar] [CrossRef]
- Nevola, R.; Beccia, D.; Rosato, V.; Ruocco, R.; Mastrocinque, D.; Villani, A.; Perillo, P.; Imbriani, S.; Delle Femine, A.; Criscuolo, L.; et al. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int. J. Mol. Sci. 2023, 24, 7651. [Google Scholar] [CrossRef]
- Zheng, P.; Dou, Y.; Wang, Q. Immune response and treatment targets of chronic hepatitis B virus infection: Innate and adaptive immunity. Front. Cell. Infect. Microbiol. 2023, 13, 1206720. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Chen, Y.; Soong, L.; Chen, Y.; Cai, J.; Liang, Y.; Sun, J. Metformin Modulates T Cell Function and Alleviates Liver Injury Through Bioenergetic Regulation in Viral Hepatitis. Front. Immunol. 2021, 12, 638575. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.; Park, S.Y.; Le, C.T.; Park, W.S.; Choi, D.H.; Cho, E.H. Metformin ameliorates activation of hepatic stellate cells and hepatic fibrosis by succinate and GPR91 inhibition. Biochem. Biophys. Res. Commun. 2018, 495, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lu, S.; Hou, C.; Ren, K.; Wang, M.; Liu, X.; Zhao, S.; Liu, X. Mitigation of liver fibrosis via hepatic stellate cells mitochondrial apoptosis induced by metformin. Int. Immunopharmacol. 2022, 108, 108683. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Hou, C.; Wang, M.; Ren, K.; Zhou, D.; Liu, X.; Zhao, S.; Liu, X. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int. J. Biochem. Cell Biol. 2023, 157, 106375. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Gao, P. Diabetes Mellitus and Risk of Hepatocellular Carcinoma. BioMed Res. Int. 2017, 2017, 5202684. [Google Scholar] [CrossRef] [PubMed]
- Parikh, P.; Ryan, J.D.; Tsochatzis, E.A. Fibrosis assessment in patients with chronic hepatitis B virus (HBV) infection. Ann. Transl. Med. 2017, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Song, M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023, 15, 3970. [Google Scholar] [CrossRef]
- Ouyang, J.; Zaongo, S.D.; Zhang, X.; Qi, M.; Hu, A.; Wu, H.; Chen, Y. Microbiota-Meditated Immunity Abnormalities Facilitate Hepatitis B Virus Co-Infection in People Living With HIV: A Review. Front. Immunol. 2021, 12, 755890. [Google Scholar] [CrossRef]
- Rosell-Díaz, M.; Petit-Gay, A.; Molas-Prat, C.; Gallardo-Nuell, L.; Ramió-Torrentà, L.; Garre-Olmo, J.; Pérez-Brocal, V.; Moya, A.; Jové, M.; Pamplona, R.; et al. Metformin-induced changes in the gut microbiome and plasma metabolome are associated with cognition in men. Metab. Clin. Exp. 2024, 157, 155941. [Google Scholar] [CrossRef] [PubMed]
- Rosell-Díaz, M.; Fernández-Real, J.M. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr. Rev. 2024, 45, 210–226. [Google Scholar] [CrossRef]
- Ohtani, N.; Kawada, N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatol. Commun. 2019, 3, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.H.; Lee, C.H.; Cheng, Y.D.; Gau, S.Y.; Tsai, T.H.; Chung, N.J.; Lee, C.Y. Correlation between long-term use of metformin and incidence of NAFLD among patients with type 2 diabetes mellitus: A real-world cohort study. Front. Endocrinol. 2022, 13, 1027484. [Google Scholar] [CrossRef]
- Ma, S.J.; Zheng, Y.X.; Zhou, P.C.; Xiao, Y.N.; Tan, H.Z. Metformin use improves survival of diabetic liver cancer patients: Systematic review and meta-analysis. Oncotarget 2016, 7, 66202–66211. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Koufakis, T.; Kalopitas, G.; Papadakos, S.P.; Kotsa, K.; Germanidis, G. Management of type 2 diabetes in patients with compensated liver cirrhosis: Short of evidence, plenty of potential. Diabetes Metab. Syndr. 2024, 18, 102935. [Google Scholar] [CrossRef]
- Huang, S.C.; Kao, J.-H. The interplay between chronic hepatitis B and diabetes mellitus: A narrative and concise review. Kaohsiung J. Med. Sci. 2023, 40, 6–10. [Google Scholar] [CrossRef]
- Farfan Morales, C.; Cordero, C.; Osuna-Ramos, J.; Monroy Muñoz, I.; De Jesús-González, L.; Muñoz-Medina, J.; Hurtado Monzón, A.; Reyes-Ruiz, J.; Del Angel, R. The antiviral effect of metformin on zika and dengue virus infection. Sci. Rep. 2021, 11, 8743. [Google Scholar] [CrossRef] [PubMed]
- Poglitsch, M.; Weichhart, T.; Hecking, M.; Werzowa, J.; Katholnig, K.; Antlanger, M.; Krmpotic, A.; Jonjic, S.; Hörl, W.H.; Zlabinger, G.J.; et al. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 2012, 12, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.; Tennant, P. Replication and Expression Strategies of Viruses. Viruses 2018, 3, 55–82. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, J.; Chen, H.; Liang, J.; Xie, C.; Gu, X.; Wang, R.; Mao, Z.; Zhang, Y.; Li, Q.; et al. Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4. Clin. Transl. Med. 2022, 12, e574. [Google Scholar] [CrossRef]
- Combs, J.A.; Monk, C.H.; Harrison, M.A.A.; Norton, E.B.; Morris, C.A.; Sullivan, D.E.; Zwezdaryk, K.J. Inhibiting cytomegalovirus replication through targeting the host electron transport chain. Antivir. Res. 2021, 194, 105159. [Google Scholar] [CrossRef] [PubMed]
- Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A.; et al. Dysfunction of CD8+ PD-1+ T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep. 2020, 10, 14928. [Google Scholar] [CrossRef]
- Poorghobadi, S.; Hosseini, S.Y.; Sadat, S.M.; Abdoli, A.; Irani, S.; Baesi, K. The Combinatorial Effect of Ad-IL-24 and Ad-HSV-tk/GCV on Tumor Size, Autophagy, and UPR Mechanisms in Multiple Myeloma Mouse Model. Biochem. Genet. 2024. [Google Scholar] [CrossRef] [PubMed]
- Berber, E.; Rouse, B.T. Controlling Herpes Simplex Virus-Induced Immunoinflammatory Lesions Using Metabolic Therapy: A Comparison of 2-Deoxy-d-Glucose with Metformin. J. Virol. 2022, 96, e0068822. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.; Yi, P.; Baker, C.; Casey, G.; Xie, X.; Luo, H.; Cai, J.; Fan, X.; Soong, L.; et al. Metformin restrains ZIKV replication and alleviates virus-induced inflammatory responses in microglia. Int. Immunopharmacol. 2023, 121, 110512. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, P.K.; Suhail, H.; Arumugaswami, V.; Pellett, P.E.; Giri, S.; Kumar, A. AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. J. Immunol. 2020, 204, 1810–1824. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Cervantes, M.A.; López-Ortega, O.; Cruz-Holguín, V.J.; Herrera Moro-Huitron, L.; Flores-Pliego, A.; Lara-Hernandez, I.; Comas-García, M.; Villavicencio-Carrisoza, O.; Helguera-Reppeto, A.C.; Arévalo-Romero, H.; et al. Metformin Inhibits Zika Virus Infection in Trophoblast Cell Line. Curr. Microbiol. 2024, 81, 133. [Google Scholar] [CrossRef] [PubMed]
- Cheang, N.; Ting, H.; Koh, H.; Alonso, S. In vitro and in vivo efficacy of Metformin against dengue. Antivir. Res. 2021, 195, 105186. [Google Scholar] [CrossRef]
- Bonglack, E.N.; Messinger, J.E.; Cable, J.M.; Ch’ng, J.; Parnell, K.M.; Reinoso-Vizcaíno, N.M.; Barry, A.P.; Russell, V.S.; Dave, S.S.; Christofk, H.R.; et al. Monocarboxylate transporter antagonism reveals metabolic vulnerabilities of viral-driven lymphomas. Proc. Natl. Acad. Sci. USA 2021, 118, e2022495118. [Google Scholar] [CrossRef]
- Hoppe-Seyler, K.; Herrmann, A.L.; Däschle, A.; Kuhn, B.J.; Strobel, T.D.; Lohrey, C.; Bulkescher, J.; Krijgsveld, J.; Hoppe-Seyler, F. Effects of Metformin on the virus/host cell crosstalk in human papillomavirus-positive cancer cells. Int. J. Cancer 2021, 149, 1137–1149. [Google Scholar] [CrossRef]
- Hsu, A.T.; Hung, Y.C.; Fang, S.H.; D’Adamo, C.R.; Mavanur, A.A.; Svoboda, S.M.; Wolf, J.H. Metformin use and the risk of anal intraepithelial neoplasia in type II diabetic patients. Color. Dis. 2021, 23, 3220–3226. [Google Scholar] [CrossRef]
- Veeramachaneni, R.; Yu, W.; Newton, J.M.; Kemnade, J.O.; Skinner, H.D.; Sikora, A.G.; Sandulache, V.C. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J. Immunother. Cancer 2021, 9, e002773. [Google Scholar] [CrossRef]
- Wilkie, M.D.; Anaam, E.A.; Lau, A.S.; Rubbi, C.P.; Vlatkovic, N.; Jones, T.M.; Boyd, M.T. Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines. Cancers 2021, 13, 4836. [Google Scholar] [CrossRef]
- Sharma, S.; Munger, K. KDM6A-Mediated Expression of the Long Noncoding RNA DINO Causes TP53 Tumor Suppressor Stabilization in Human Papillomavirus 16 E7-Expressing Cells. J. Virol. 2020, 94, e02178-19. [Google Scholar] [CrossRef]
- Curry, J.; Alnemri, A.; Philips, R.; Fiorella, M.; Sussman, S.; Stapp, R.; Solomides, C.; Harshyne, L.; South, A.; Luginbuhl, A.; et al. CD8+ and FoxP3+ T-Cell Cellular Density and Spatial Distribution After Programmed Death-Ligand 1 Check Point Inhibition. Laryngoscope 2023, 133, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Wong, M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed. J. 2013, 36, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Bachman, L.O.; Zwezdaryk, K.J. Targeting the Host Mitochondria as a Novel Human Cytomegalovirus Antiviral Strategy. Viruses 2023, 15, 1083. [Google Scholar] [CrossRef]
- Li, H.; Ning, X.; Liu, H.; Chen, Y.; Ding, X.; Zhang, H.; Leng, S. Metformin suppressed human cytomegalovirus (hCMV) replication and its potential molecular mechanisms in human fibroblasts. J. Immunol. 2017, 198, 158.23. [Google Scholar] [CrossRef]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J.; et al. Aging and chronic inflammation: Highlights from a multidisciplinary workshop. Immun. Ageing I A 2023, 20, 25. [Google Scholar] [CrossRef]
- Samaniego, L.A.; Neiderhiser, L.; DeLuca, N.A. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 1998, 72, 3307–3320. [Google Scholar] [CrossRef]
- Movaqar, A.; Abdoli, A.; Aryan, E.; Jazaeri, E.O.; Meshkat, Z. Metformin promotes autophagy activity and constrains HSV-1 replication in neuroblastoma cells. Gene Rep. 2021, 25, 101370. [Google Scholar] [CrossRef]
- Vink, E.I.; Smiley, J.R.; Mohr, I. Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Nadhan, R.; Patra, D.; Krishnan, N.; Rajan, A.; Gopala, S.; Ravi, D.; Srinivas, P. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur. J. Pharmacol. 2021, 890, 173621. [Google Scholar] [CrossRef] [PubMed]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Adamska, A. Examining the clinical relevance of metformin as an antioxidant intervention. Front. Pharmacol. 2024, 15, 1330797. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Chanh, H.Q.; Tam, D.T.H.; Vuong, N.L.; Chau, N.T.X.; Chau, N.V.V.; Phong, N.T.; Trieu, H.T.; Luong Thi Hue, T.; Cao Thi, T.; et al. Metformin as adjunctive therapy for dengue in overweight and obese patients: A protocol for an open-label clinical trial (MeDO). Wellcome Open Res. 2020, 5, 160. [Google Scholar] [CrossRef]
- Htun, H.L.; Yeo, T.W.; Tam, C.C.; Pang, J.; Leo, Y.S.; Lye, D.C. Metformin Use and Severe Dengue in Diabetic Adults. Sci. Rep. 2018, 8, 3344. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xie, L.; Shi, F.; Tang, M.; Li, Y.; Hu, J.; Zhao, L.; Zhao, L.; Yu, X.; Luo, X.; et al. Targeting the signaling in Epstein-Barr virus-associated diseases: Mechanism, regulation, and clinical study. Signal Transduct. Target. Ther. 2021, 6, 15. [Google Scholar] [CrossRef]
- Ruiz-Pablos, M.; Paiva, B.; Zabaleta, A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J. Transl. Med. 2023, 21, 633. [Google Scholar] [CrossRef]
- Chakravorty, S.; Afzali, B.; Kazemian, M. EBV-associated diseases: Current therapeutics and emerging technologies. Front. Immunol. 2022, 13, 1059133. [Google Scholar] [CrossRef]
- Yang, T.; You, C.; Meng, S.; Lai, Z.; Ai, W.; Zhang, J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front. Cell. Infect. Microbiol. 2022, 12, 935205. [Google Scholar] [CrossRef]
- Adamson, A.L.; Le, B.T.; Siedenburg, B.D. Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner. Virol. J. 2014, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Liu, C.; He, Z.; Cai, Y.; Chen, J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J. Exp. Clin. Cancer Res. CR 2020, 39, 127. [Google Scholar] [CrossRef]
- Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [Google Scholar] [CrossRef]
- Kim, H.M.; Kang, M.J.; Song, S.O. Metformin and Cervical Cancer Risk in Patients with Newly Diagnosed Type 2 Diabetes: A Population-Based Study in Korea. Endocrinol. Metab. 2022, 37, 929–937. [Google Scholar] [CrossRef]
- Kim, K. Rethinking about Metformin: Promising Potentials. Korean J. Fam. Med. 2024, 45, 258–267. [Google Scholar] [CrossRef]
- Kondo, S.; Yoshida, K.; Suzuki, M.; Saito, I.; Kanegae, Y. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication. PLoS ONE 2014, 9, e108627. [Google Scholar] [CrossRef]
- Jiang, H.; Gomez-Manzano, C.; Rivera-Molina, Y.; Lang, F.F.; Conrad, C.A.; Fueyo, J. Oncolytic adenovirus research evolution: From cell-cycle checkpoints to immune checkpoints. Curr. Opin. Virol. 2015, 13, 33–39. [Google Scholar] [CrossRef]
- Prusinkiewicz, M.; Tu, J.; Dodge, M.; MacNeil, K.; Radko-Juettner, S.; Fonseca, G.; Pelka, P.; Mymryk, J. Differential Effects of Human Adenovirus E1A Protein Isoforms on Aerobic Glycolysis in A549 Human Lung Epithelial Cells. Viruses 2020, 12, 610. [Google Scholar] [CrossRef] [PubMed]
- Lion, T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 2014, 27, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; He, M.; Jung, J.U.; Lu, C.; Gao, S.J. Suppression of Kaposi’s Sarcoma-Associated Herpesvirus Infection and Replication by 5′-AMP-Activated Protein Kinase. J. Virol. 2016, 90, 6515–6525. [Google Scholar] [CrossRef]
- Yin, H.C.; Shao, S.L.; Jiang, X.J.; Xie, P.Y.; Sun, W.S.; Yu, T.F. Interactions between Autophagy and DNA Viruses. Viruses 2019, 11, 776. [Google Scholar] [CrossRef]
Author and Year | Type of Study | Key Findings |
---|---|---|
Fu-Shun Yen et al., 2022 [52] | Cohort Study | Pre-influenza vaccination metformin use in older adults with T2DM significantly reduced the risks of severe influenza-related complications and mortality, with greater benefits observed with longer usage. |
Han Sol Lee et al., 2023 [23] | Experimental and Statistical Analysis | Metformin reduced influenza A virus-related cardiovascular risks by inhibiting viral replication and cytokine expression (MCP-1, IP-10) through AKT/MAPK signaling regulation. |
Dominique E. Martin et al., 2023 [58] | Pilot Double-Blinded Placebo-Controlled Trial | Metformin may enhance immune resilience in older adults by improving specific flu vaccine responses and reducing markers of T-cell exhaustion. |
Elizabeth Greene et al., 2024 [54] | Retrospective Observational Study | Metformin use in diabetic patients significantly reduces the likelihood of hospitalization following an emergency department visit for influenza. |
Tammy H. Cummings et al., 2022 [53] | Retrospective Cohort Study | Metformin use is associated with reduced influenza mortality in patients with obesity, likely due to its effects on T-cell function and immune response. |
Paola Brandi et al., 2022 [56] | Experimental Study (Mouse Model) | The inactivated mucosal vaccine MV130 induces trained immunity, offering protection against viral respiratory infections, but this protection is negated by metformin. |
Robert E. Brown et al., 2022 [60] | Case Study with Morphoproteomics | Morphoproteomic analysis suggests metformin and vitamin D3 could serve as adjunctive therapies to improve immune response and prevent severe outcomes in pulmonary H1N1 influenza. |
Daniela Frasca et al., 2021 [61] | Experimental Study | Metformin improves B-cell function and enhances antibody responses in elderly individuals with T2DM, supporting its potential as an anti-aging agent for immune function. |
Wen-Rui Hao et al., 2023 [62] | Retrospective Study | Influenza vaccination reduces the risk of chronic kidney disease and the need for dialysis in patients with hypertension, with a dose-dependent protective effect observed across both influenza and non-influenza seasons. |
Wipawee Saenwongsa et al., 2020 [63] | Observational Study | Metformin treatment in T2DM impairs the antibody response and interferon-alpha (IFN-α) expression following seasonal influenza vaccination, potentially hindering long-term protection. This finding suggests that the standard influenza vaccine may not be fully effective for T2DM patients and highlights the need for improved vaccine strategies for this group. |
Aimin Yang et al., 2021 [64] | Cohort Study (Registry-based) | Long-term metformin use in T2DM individuals is associated with a lower risk of pneumonia hospitalisation and related mortality. |
Author and Year | Type of Study | Key Findings |
---|---|---|
Malhotra et al., 2020 [115] | Preclinical/Clinical | Metformin may enhance ACE2 expression, potentially offering cardiopulmonary protection in COVID-19 by regulating the renin–angiotensin–aldosterone system (RAAS). |
Bramante et al., 2022 [116] | Randomized, Placebo-Controlled Trial | No significant reduction in primary composite endpoint (hypoxemia, ED visit, hospitalization, or death) for metformin (OR 0.84, p = 0.19), ivermectin (OR 1.05, p = 0.78), or fluvoxamine (OR 0.94, p = 0.75). Secondary analysis showed metformin reduced ED visits, hospitalization, or death (OR 0.58, p = 0.02), but not significantly for ivermectin or fluvoxamine. |
Pavlo Petakh et al., 2023 [117] | Observational Study | COVID-19 patients with T2DM have reduced gut microbiota alpha-diversity. |
Jean-Daniel Lalau, Abdallah Al-Salameh, Samy Hadjadj, et al., 2021 [118] | Observational Study | Metformin use in patients with T2DM hospitalized for COVID-19 was associated with a lower 28-day mortality rate (16.0% vs. 28.6%, p < 0.0001) and reduced odds of death (OR 0.710, 95% CI [0.537−0.938]) compared to non-users. |
Pavlo Petakh et al., 2024 [119] | Single-center Prospective Observational Study | Metformin therapy was associated with reduced expression of key genes (PRKAA1, SLC2A1, MTOR) involved in Th1/Th17 cell differentiation and inflammatory pathways. |
Carolyn T Bramante et al., 2023 [113] | Randomised Phase 3 Trial | Metformin reduced long COVID incidence by 41% compared to placebo, with the greatest effect when started early. |
Carolyn T Bramante et al., 2024 [120] | Randomised Clinical Trial | Metformin reduced SARS-CoV-2 viral load by 3.6-fold, hospitalizations by 58%, and long COVID by 42%. |
David R Boulware et al., 2023 [121] | Secondary Analysis of RCT Data | Vaccine-boosted participants experienced the least severe and shortest-lasting COVID-19 symptoms (p < 0.001). |
Pavlo Petakh et al., 2022 [122] | Retrospective Study | COVID-19 patients with T2DM who used metformin before hospitalization had significantly lower CRP levels, suggesting anti-inflammatory benefits |
Claudia Ventura-López et al., 2022 [24] | In vitro study & Phase IIb RCT | Metformin glycinate inhibited viral replication in vitro without cytotoxicity and reduced viral load and oxygen needs in vivo. |
Fabio Petrelli et al., 2023 [123] | Meta-Analysis | Metformin use in diabetic patients with COVID-19 reduced the risk of severity, complications, and mortality compared to other treatments. |
Giovanni Antonio Silverii et al., 2024 [124] | Retrospective Study | Metformin use was associated with a reduction in in-hospital mortality in people with diabetes, but the effect did not persist after adjusting for confounding factors using the COVID-19 Mortality Risk Score. |
Pavlo Petakh et al., 2023 [125] | Observational Study | The Firmicutes/Bacteroidetes (F/B) ratio in gut microbiota was higher in patients with both T2D and COVID-19. F/B ratio positively correlated with CRP levels, and metformin treatment modified this relationship. The F/B ratio may serve as a biomarker for inflammation. |
Verónica Miguel et al., 2023 [126] | Experimental Study | Metformin and baicalin enhanced fatty acid oxidation, improving mitochondrial function, reducing inflammation, fibrosis, and improving outcomes in COVID-19 patients and animal models with lung and kidney damage. |
Pavlo Petakh et al., 2023 [127] | Observational Study | T2D patients with COVID-19 showed increased Clostridium and Candida, and decreased Bifidobacterium and Lactobacillus. Metformin use without antibiotics increased Bacteroides and Lactobacillus, while decreasing Enterococcus and Clostridium. |
Yongwang Hou et al., 2024 [128] | Bioinformatics and Preclinical Study | Metformin may treat COVID-19/LUAD by regulating glucose metabolism and key signaling pathways like AMPK and mTOR, inhibiting cell proliferation. |
H M Al-Kuraishy et al., 2023 [129] | Prospective Cohort Study | Metformin was more effective than other diabetic treatments in reducing inflammation, oxidative stress, and improving radiological and clinical outcomes in T2DM patients with COVID-19. |
Pavlo Petakh et al., 2024 [130] | Observational Study | Metformin modulates T-cell mRNA expression: FOXP3 (Treg marker) upregulated 1.96-fold, RORC (Th17 marker) downregulated 1.84-fold, and TBX21 (Th1 marker) downregulated 11.4-fold. Patients not using metformin showed dysregulated immune profiles. |
Muhilvannan Somasundaram et al., 2024 [131] | Retrospective Cohort Study | Metformin use was associated with shorter hospitalization, reduced mortality risk, and improved levels of LDH, CRP, and D-dimer in COVID-19 patients with diabetes. |
Sky Qiu et al., 2024 [132] | Retrospective Cohort Study | Improved adherence to metformin (by 5% or 10%) was associated with a reduction in mortality risk from COVID-19, with a 1.26% absolute decrease in risk for a 10% adherence increase. |
Thomas D Lockwood, 2024 [133] | Coordination Chemistry Analysis | Metformin and Zn2+ are suggested to have a mechanistic relationship in improving COVID-19 outcomes. Metformin enhances Zn2+ bioavailability and coordination, which may synergistically inhibit viral proteases and reduce inflammation, potentially improving outcomes when used together. |
David C Harmon et al., 2024 [134] | Retrospective Cohort Study | Pre-admission metformin use was associated with reduced in-hospital mortality, lower risk of ICU admission, and less need for mechanical ventilation in hospitalized COVID-19 patients with diabetes. The effect was particularly notable in reducing mortality from respiratory causes. |
Łukasz Lewandowski et al., 2024 [135] | Retrospective Cohort Study | Insulin and metformin showed weak associations with mortality, but their interactions with other treatments and factors like remdesivir, low-molecular-weight heparin, age, and hsCRP influenced death risk. RDW-SD was strongly associated with mortality, with a significant increase in death risk with higher RDW-SD. |
Author and Year | Type of Study | Key Findings |
---|---|---|
Fert et al., 2024 [94] | Experimental study | Metformin decreased virion release, increased productively infected CD4lowHIV-p24+ T cells, enhanced tetherin and Bcl-2 expression, and improved recognition of infected cells by HIV-1 antibodies. |
McCabe et al., 2024 [166] | Open-label, randomized trial | Neither maraviroc (MVC), metformin, nor their combination significantly reduced liver fat compared to ART alone in PWH with MAFLD. |
Rezaei et al., 2024 [167] | Experimental study | Metformin increased HIV transcription, gene expression, and production via CREB phosphorylation and recruitment to the HIV LTR promoter. |
McCrea et al., 2024 [168] | Phase 1, open-label study | Coadministration of islatravir with atorvastatin and metformin did not have a clinically meaningful effect on the pharmacokinetics of either drug. |
Corley et al., 2024 [169] | Retrospective analysis, randomized and single-arm trials | Metformin reduced epigenetic age in monocytes but not in CD8+ T cells, suggesting cell-type-specific effects. Larger studies are needed to validate findings. |
Nguyen et al., 2024 [170] | Physiologically based pharmacokinetic (PBPK) modeling study | Fostemsavir (a gp120-directed attachment inhibitor) and its active moiety temsavir showed no clinically relevant impact on metformin concentrations or inhibition of OCT1, OCT2, or MATE1/2K transporters. PBPK modeling confirmed no significant drug–drug interaction, supporting that no dose adjustment of metformin is required during coadministration with fostemsavir, despite initial in vitro data indicating potential transporter inhibition. |
Mhlanga et al., 2024 [171] | Qualitative multi-method study | The study identified key interventions to reduce T2DM among older people living with HIV in Harare, including improved screening and health education. It also highlighted the use of metformin as a pharmacological intervention when lifestyle changes fail. |
Hurbans et al., 2024 [172] | Prospective cohort study | Dolutegravir was generally safe and effective, but concomitant use of metformin led to increased blood glucose levels. Drug interactions were minimal, with only 0.7% of participants discontinuing dolutegravir due to interactions with supplements and antacids. Further investigation into dolutegravir-induced hyperglycemia is needed. |
Author and Year | Type of Study | Virus | Key Findings |
---|---|---|---|
Tsai et al., 2023 [205] | Cohort Study | HCV | Metformin significantly reduced HCC risk in patients with diabetes and chronic hepatitis C after successful antiviral therapy. The 5-year cumulative HCC incidence was 10.9% in non-metformin users vs. 2.6% in metformin users. A risk model identified cirrhosis and T2DM non-metformin use as the most critical factors for HCC prediction. Metformin also reduced liver-related complications. |
Shimada et al., 2021 [206] | Cohort Study | HCV | Patients with high HbA1c (≥7.0%) had worse overall survival (55% vs. 71%) and relapse-free survival (13 vs. 26 months) in NBNC-HCC. High HbA1c was also associated with increased postoperative complications. Metformin use was linked to better survival and recurrence outcomes. |
Lin et al., 2021 [207] | Experimental Study | HCV | Metformin inhibited Wnt/β-catenin signaling in chronic HCV-infected cells after DAA treatment, leading to decreased proliferation, increased apoptosis, and reversal of HCV-induced HCC. |
Berk et al., 2020 [208] | Case Study | HCV | Successful treatment of HCV led to significant improvement in glycemic control in a patient with uncontrolled T2DM, with HbA1c dropping from 11.6% to 5.7% without any other interventions, suggesting potential benefits of HCV treatment on insulin sensitivity. |
Abdel Monem et al., 2021 [209] | Randomized clinical trial | HCV | Metformin used in HCV-infected adolescents with beta thalassemia major led to significant improvement in oxidative stress markers, liver fibrosis, and liver enzyme levels, suggesting its potential as a hepatoprotective agent. |
Valenti et al., 2022 [210] | Cohort Study | HCV | In patients treated with direct-acting antivirals for HCV, higher BMI and diabetes were linked to advanced fibrosis. Diabetes was also associated with poor liver stiffness improvement and increased risk of de novo HCC and cardiovascular events. Statin use was protective, and metformin showed a protective association against HCC. |
Rodríguez-Escaja et al., 2021 [211] | Cohort Study | HCV | In patients with alcoholic or HCV cirrhosis, diabetes was not a risk factor for developing HCC. No significant differences in HCC incidence were found between diabetic and non-diabetic patients, even after adjusting for co-factors and excluding metformin use. |
Thomaz et al., 2024 [212] | Clinical Pharmacology Study | HCV | Liver fibrosis stages affected the in vivo activity of organic cation transporters (OCT1/2) in HCV-infected patients. Advanced fibrosis and cirrhosis were associated with a 25% reduction in OCT1/2 activity after achieving sustained virologic response. No significant changes were observed in the early stages of treatment. |
Chung et al., 2024 [213] | Retrospective Study | HBV | In a retrospective study of liver transplant recipients for HCC, statin, aspirin, and metformin use did not show a statistically significant association with improved HCC-related outcomes (recurrence or mortality). The study suggests no benefit for these drugs in post-LT HCC recurrence prevention, indicating the need for further prospective, multicenter studies to clarify any potential benefit. |
Campbell et al., 2021 [214] | Meta-Analysis | HBV | This meta-analysis found that T2DM is a significant risk factor for HCC in individuals with chronic HBV infection, increasing the hazard of HCC by over 25%. The association was weakened in studies adjusted for metformin use, suggesting that further research on the impact of antidiabetic drugs and glycemic control is needed. Enhanced screening for HCC in individuals with HBV and diabetes is recommended. |
Zhou et al., 2020 [215] | Experimental Study | HBV | CD39 and CD73 expression on B cells was reduced in chronic hepatitis B patients with high HBV DNA, HBeAg positivity, and active liver inflammation. This was linked to B-cell hyperactivation. Metformin reduced activation markers by regulating AMPK. Targeting the CD39/CD73/adenosine pathway using metformin could help reverse HBV-induced immune dysfunction. |
Author and Year | Type of Study | Virus | Key Findings |
---|---|---|---|
Chen et al., 2022 [287] | Experimental study on mice and human myocardium | CMV | Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy (SA-PCH) by promoting selective autophagic degradation of GATA4. Autophagy activators like metformin or rapamycin may serve as therapeutic options to prevent SA-PCH and cardiac dysfunction. |
Combs et al., 2021 [288] | In vitro experimental study | CMV | CMV replication depends on functional host mitochondria, and drugs targeting the electron transport chain, such as metformin, inhibit viral replication. Repurposing metformin as an antiviral is promising due to its established safety profile and ability to reduce CMV titers. |
Nojima et al., 2020 [289] | Experimental study | CMV | T2DM impairs the multifunctionality of CD8⁺ PD-1⁺ T cells and links metabolic dysfunction to immune suppression. Metformin restores CD8⁺ T-cell function by enhancing glycolysis, improving cytokine production, and reducing tumor growth and viral susceptibility. |
Poorghobadi et al., 2024 [290] | Mouse model experimental study | Herpes simplex virus 1 (HSV-1) | Ad-HSV-tk/GCV reduced tumor size and increased LC3B expression, promoting autophagy in multiple myeloma. Ad-IL-24 enhanced UPR gene expression but had a less pronounced effect on tumor reduction, and co-administration of Ad-HSV-tk and Ad-IL-24 showed no synergistic effect. |
Berber & Rouse, 2022 [291] | Experimental study on HSV-1 in ocular infection | HSV-1 | Metformin and 2-deoxy-d-glucose (2DG) reduced herpetic stromal keratitis (HSK) severity, but 2DG increased the risk of herpetic encephalitis due to enhanced HSV reactivation. Metformin was safer, maintaining inflammatory cell functionality, including IFN-γ-producing Th1 and CD8 T cells in the trigeminal ganglion. |
Farfan-Morales et al., 2021 [284] | In vitro and in vivo studies on DENV and ZIKV | Dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) | Metformin inhibited in vitro replication of DENV, ZIKV, and YFV, showing the strongest effect on DENV. MET reduced disease severity and increased survival in DENV-infected mice but failed to protect immunodeficient mice against ZIKV in vivo. |
Wang et al., 2023 [292] | In vitro study on ZIKV infection in microglia | ZIKV | Metformin reduced ZIKV replication in microglia in a dose- and time-dependent manner. It modulated inflammatory responses, upregulating type I and III interferons (IFNα2, IFNβ1, IFNλ3) and downregulating ISGs like GBP4, OAS1, MX1, and ISG15. The findings suggest metformin may have therapeutic potential for ZIKV infection in microglia. |
Singh et al., 2020 [293] | In vitro study on endothelial cells | ZIKV | The study explores how AMPK restricts ZIKV replication in endothelial cells. AMPK activation (via metformin or other activators) potentiates innate antiviral responses (e.g., IFNs, OAS2, ISG15) and inhibits glycolysis, which reduces viral replication. In contrast, inhibition of AMPK or increased glycolysis promoted virus replication. |
Velazquez-Cervantes et al., 2024 [294] | In vitro study on trophoblast cell line | ZIKV | The study investigates the effects of metformin on ZIKV infection in a trophoblast cell line (JEG3). Metformin reduces viral replication and protein synthesis, reverses cytoskeletal changes, and reduces lipid droplet formation associated with the infection, suggesting metformin as a potential antiviral agent for ZIKV. |
Cheang et al., 2021 [295] | In vitro and in vivo study | DENV | Metformin showed poor anti-DENV activity in vitro, with pro-DENV effects observed in certain cell lines (Vero cells). In vivo, oral administration of metformin did not reduce viral titers or improve disease severity in mouse models, and high doses worsened the outcome (higher viremia, mortality, and hyper-inflammation). The study suggests AMPK activation could be a potential host target. |
Bonglack et al., 2021 [296] | In vitro study | Epstein–Barr virus (EBV) | EBV infection upregulates MCT1 and MCT4, supporting glycolysis. Dual inhibition of both transporters halts cell growth, causes lactate accumulation, decreases oxygen consumption, depletes glutathione, and enhances sensitivity to phenformin and metformin. |
Hoppe-Seyler et al., 2021 [297] | In vitro study | Human papillomavirus (HPV) | Metformin downregulates E6/E7 oncogene expression in HPV-positive cervical and head/neck cancer cells through glucose and PI3K pathways. Despite E6/E7 repression, Metformin causes a reversible proliferative stop and prevents senescence induced by E6/E7 inhibition or chemotherapy, suggesting potential for repurposing metformin in cancer therapy. |
Hsu et al., 2021 [298] | Nested case-control study | HPV | Metformin use was associated with a 56% lower likelihood of anal intraepithelial neoplasia (AIN) in type 2 diabetic patients. This suggests that metformin may offer protective effects against AIN, a precursor to anal cancer, potentially due to its influence on HPV-related pathways. |
Veeramachaneni et al., 2021 [299] | Preclinical mouse model study | HPV | Long-term metformin treatment significantly reduced tumor growth, increased CD8+ T cells, and upregulated immune responses in head and neck cancer models. Acute metformin exposure, however, had limited antitumor effects. Combinatorial approaches with immune checkpoint inhibitors (ICIs) may enhance its therapeutic potential. |
Wilkie et al., 2021 [300] | In vitro study on HPV-positive SCCHN | HPV | HPV-positive head and neck cancer cells exhibited a metabolically diverse phenotype. Sensitization to ionizing radiation (IR) required a combination of 2-deoxy-D-glucose and metformin, targeting both mitochondrial respiration and glycolysis. This approach could reduce radiation doses and minimize treatment impact on long-term function. |
Sharma and Munger, 2020 [301] | In vitro study on HPV16 E7-expressing cells | Human papillomavirus 16 (HPV-16) | HPV16 E7 stabilizes the tumor suppressor TP53 via the long noncoding RNA (lncRNA) DINO, which is regulated by KDM6A. DINO levels increase in HPV16 E7-expressing cells and further stabilize TP53. Cells are sensitized to metabolic stress (e.g., by metformin) and chemotherapy (e.g., doxorubicin) in a DINO-dependent manner, linking DINO to TP53 activation and cell death response. |
Curry et al., 2023 [302] | Clinical trial, analysis of tumor samples | HPV | After treatment with durvalumab and metformin, significant changes were observed in CD8+ and FoxP3+ T-cell densities and spatial distributions in head and neck squamous cell carcinoma (HNSCC). HPV-positive tumors had greater intercellular distances (ID) than HPV-negative ones. Pathologic responders showed higher CD8+ density and ID. These findings suggest that T-cell distribution patterns may predict response to immune checkpoint inhibitors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halabitska, I.; Petakh, P.; Lushchak, O.; Kamyshna, I.; Oksenych, V.; Kamyshnyi, O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024, 16, 1938. https://doi.org/10.3390/v16121938
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses. 2024; 16(12):1938. https://doi.org/10.3390/v16121938
Chicago/Turabian StyleHalabitska, Iryna, Pavlo Petakh, Oleh Lushchak, Iryna Kamyshna, Valentyn Oksenych, and Oleksandr Kamyshnyi. 2024. "Metformin in Antiviral Therapy: Evidence and Perspectives" Viruses 16, no. 12: 1938. https://doi.org/10.3390/v16121938
APA StyleHalabitska, I., Petakh, P., Lushchak, O., Kamyshna, I., Oksenych, V., & Kamyshnyi, O. (2024). Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses, 16(12), 1938. https://doi.org/10.3390/v16121938