Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics Approval
2.3. Saliva Sampling and Processing
2.4. NMR-Based Metabolomics
2.4.1. Sample Preparation and NMR Acquisition
2.4.2. NMR Spectra Pre-Processing and Assignment
2.5. Statistical Analysis
3. Results
3.1. Subjects’ Demographic Characteristics and Clinical Parameters
3.2. Saliva NMR-Based Metabolomics Shows Specific Metabolite Fluctuation from the Acute to the Post-Acute Phase of COVID-19
3.3. Longitudinal Changes in Metabolites in the COVID-19 Group Were Associated with BMI and Vaccination Status, but Not with Biological Sex
3.4. Longitudinal Changes in Metabolites from the Acute to Post-Acute Phase Were Associated with SARS-CoV-2 Replication
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Morales, A.J.; Lopez-Echeverri, M.C.; Perez-Raga, M.F.; Quintero-Romero, V.; Valencia-Gallego, V.; Galindo-Herrera, N.; López-Alzate, S.; Sánchez-Vinasco, J.D.; Gutiérrez-Vargas, J.J.; Mayta-Tristan, P.; et al. The Global Challenges of the Long COVID-19 in Adults and Children. Travel Med. Infect. Dis. 2023, 54, 102606. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, N.D.; Mohan, J.; Kushwaha, B.; Ghazi, T.; Nwabuife, J.C.; Koorbanally, N.; Chuturgoon, A.A. A Comprehensive Review on the Global Efforts on Vaccines and Repurposed Drugs for Combating COVID-19. Eur. J. Med. Chem. 2023, 260, 115719. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A. A Review of SARS-CoV-2 Variants and Vaccines: Viral Properties, Mutations, Vaccine Efficacy, and Safety. Infect. Med. 2023, 2, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-Specific Manifestations of COVID-19 Infection. Clin. Exp. Med. 2020, 20, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 Pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Arjun, M.C.; Singh, A.K.; Pal, D.; Das, K.; G., A.; Venkateshan, M.; Mishra, B.; Patro, B.K.; Mohapatra, P.R.; Subba, S.H. Characteristics and Predictors of Long COVID among Diagnosed Cases of COVID-19. PLoS ONE 2022, 17, e0278825. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Cazé, A.B.; Cerqueira-Silva, T.; Bomfim, A.P.; de Souza, G.L.; Azevedo, A.C.; Brasil, M.Q.; Santos, N.R.; Khouri, R.; Dan, J.; Bandeira, A.C.; et al. Prevalence and Risk Factors for Long COVID after Mild Disease: A Cohort Study with a Symptomatic Control Group. J. Glob. Health 2023, 13, 06015. [Google Scholar] [CrossRef]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The Immunology of Long COVID. Nat. Rev. Immunol. 2023, 23, 618–634. [Google Scholar] [CrossRef]
- Scherer, P.E.; Kirwan, J.P.; Rosen, C.J. Post-Acute Sequelae of COVID-19: A Metabolic Perspective. Elife 2022, 11, e78200. [Google Scholar] [CrossRef] [PubMed]
- Gama-Almeida, M.C.; Pinto, G.D.A.; Teixeira, L.; Hottz, E.D.; Ivens, P.; Ribeiro, H.; Garrett, R.; Torres, A.G.; Carneiro, T.I.A.; Barbalho, B.d.O.; et al. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Karu, N.; Kindt, A.; van Gammeren, A.J.; Ermens, A.A.M.; Harms, A.C.; Portengen, L.; Vermeulen, R.C.H.; Dik, W.A.; Langerak, A.W.; van der Velden, V.H.J.; et al. Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with Immune Response Markers, and Linked to Inflammation and Oxidative Stress. Metabolites 2022, 12, 618. [Google Scholar] [CrossRef] [PubMed]
- Soares, N.C.; Hussein, A.; Muhammad, J.S.; Semreen, M.H.; ElGhazali, G.; Hamad, M. Plasma Metabolomics Profiling Identifies New Predictive Biomarkers for Disease Severity in COVID-19 Patients. PLoS ONE 2023, 18, e0289738. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Suleiman, M.; Pérez-López, A. Metabolomics in the Diagnosis and Prognosis of COVID-19. Front. Genet. 2021, 12, 721556. [Google Scholar] [CrossRef]
- López-Hernández, Y.; Monárrez-Espino, J.; López, D.A.G.; Zheng, J.; Borrego, J.C.; Torres-Calzada, C.; Elizalde-Díaz, J.P.; Mandal, R.; Berjanskii, M.; Martínez-Martínez, E.; et al. The Plasma Metabolome of Long COVID Patients Two Years after Infection. Sci. Rep. 2023, 13, 12420. [Google Scholar] [CrossRef]
- Montefusco, L.; Ben Nasr, M.; D’Addio, F.; Loretelli, C.; Rossi, A.; Pastore, I.; Daniele, G.; Abdelsalam, A.; Maestroni, A.; Dell’Acqua, M.; et al. Acute and Long-Term Disruption of Glycometabolic Control after SARS-CoV-2 Infection. Nat. Metab. 2021, 3, 774–785. [Google Scholar] [CrossRef]
- Xie, Y.; Al-Aly, Z. Risks and Burdens of Incident Diabetes in Long COVID: A Cohort Study. Lancet Diabetes Endocrinol. 2022, 10, 311–321. [Google Scholar] [CrossRef]
- Hyvärinen, E.; Savolainen, M.; Mikkonen, J.J.W.; Kullaa, A.M. Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021, 11, 587. [Google Scholar] [CrossRef]
- Costa dos Santos Junior, G.; Pereira, C.M.; Kelly da Silva Fidalgo, T.; Valente, A.P. Saliva NMR-Based Metabolomics in the War Against COVID-19. Anal. Chem. 2020, 92, 15688–15692. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Saliva Metabolomics Opens Door to Biomarker Discovery, Disease Diagnosis, and Treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Castineiras, T.M.P.P.; Nascimento, É.R.d.S.; Faffe, D.S.; Galliez, R.M.; Mariani, D.; Leitão, I.d.C.; de Melo, M.G.M.; Ferreira, O.C.; Tanuri, A. Performance of an Alternative RT-PCR Procedure Using Residual Sample from the PanbioTM Ag COVID-19 Test. Braz. J. Infect. Dis. 2021, 25, 101630. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.L.; Shaka, A.J. Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients. J. Magn. Reson. A 1995, 112, 275–279. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Ludwig, C.; Günther, U.L. MetaboLab—Advanced NMR Data Processing and Analysis for Metabolomics. BMC Bioinform. 2011, 12, 366. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S.B. Icoshift: A Versatile Tool for the Rapid Alignment of 1D NMR Spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef]
- Robinette, S.L.; Zhang, F.; Brüschweiler-Li, L.; Brüschweiler, R. Web Server Based Complex Mixture Analysis by NMR. Anal. Chem. 2008, 80, 3606–3611. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Atila, A.; Alay, H.; Yaman, M.E.; Akman, T.C.; Cadirci, E.; Bayrak, B.; Celik, S.; Atila, N.E.; Yaganoglu, A.M.; Kadioglu, Y.; et al. The Serum Amino Acid Profile in COVID-19. Amino Acids 2021, 53, 1569–1588. [Google Scholar] [CrossRef]
- Liptak, P.; Baranovicova, E.; Rosolanka, R.; Simekova, K.; Bobcakova, A.; Vysehradsky, R.; Duricek, M.; Dankova, Z.; Kapinova, A.; Dvorska, D.; et al. Persistence of Metabolomic Changes in Patients during Post-COVID Phase: A Prospective, Observational Study. Metabolites 2022, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- da Silva Fidalgo, T.K.; Freitas-Fernandes, L.B.; Marques, B.B.F.; de Araújo, C.S.; da Silva, B.J.; Guimarães, T.C.; Fischer, R.G.; Tinoco, E.M.B.; Valente, A.P. Salivary Metabolomic Analysis Reveals Amino Acid Metabolism Shift in SARS-CoV-2 Virus Activity and Post-Infection Condition. Metabolites 2023, 13, 263. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, Q.-P. Alterations of the Gut Microbiota in Coronavirus Disease 2019 and Its Therapeutic Potential. World J. Gastroenterol. 2022, 28, 6689–6701. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Levi, R.; Braga, D.; Carli, F.; Darwich, A.; Spadoni, I.; Oresta, B.; Dioguardi, C.C.; Peano, C.; Ubaldi, L.; et al. A ‘Multiomic’ Approach of Saliva Metabolomics, Microbiota, and Serum Biomarkers to Assess the Need of Hospitalization in Coronavirus Disease 2019. Gastro Hep Adv. 2022, 1, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Haran, J.P.; Bradley, E.; Zeamer, A.L.; Cincotta, L.; Salive, M.-C.; Dutta, P.; Mutaawe, S.; Anya, O.; Meza-Segura, M.; Moormann, A.M.; et al. Inflammation-Type Dysbiosis of the Oral Microbiome Associates with the Duration of COVID-19 Symptoms and Long COVID. JCI Insight 2021, 6, e152346. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Rohli, K.E.; Yang, S.; Jia, P. Impact of Obesity on COVID-19 Patients. J. Diabetes Complicat. 2021, 35, 107817. [Google Scholar] [CrossRef]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective Effect of COVID-19 Vaccination against Long COVID Syndrome: A Systematic Review and Meta-Analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef]
- Lam, I.C.H.; Zhang, R.; Man, K.K.C.; Wong, C.K.H.; Chui, C.S.L.; Lai, F.T.T.; Li, X.; Chan, E.W.Y.; Lau, C.S.; Wong, I.C.K.; et al. Persistence in Risk and Effect of COVID-19 Vaccination on Long-Term Health Consequences after SARS-CoV-2 Infection. Nat. Commun. 2024, 15, 1716. [Google Scholar] [CrossRef]
- Codo, A.C.; Davanzo, G.G.; de Brito Monteiro, L.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, 32, 437–446.e5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, C.; Xu, Y.; He, B.; Hu, M.; Cao, G.; Li, L.; Wu, S.; Wang, X.; Zhang, C.; et al. Hyperglycemia and Correlated High Levels of Inflammation Have a Positive Relationship with the Severity of Coronavirus Disease 2019. Mediat. Inflamm. 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Yan, R.; Lv, L.; Jiang, H.; Lu, Y.; Sheng, J.; Xie, J.; Wu, W.; Xia, J.; Xu, K.; et al. The Serum Metabolome of COVID-19 Patients Is Distinctive and Predictive. Metabolism 2021, 118, 154739. [Google Scholar] [CrossRef] [PubMed]
- Barreto, E.A.; Cruz, A.S.; Veras, F.P.; Martins, R.; Bernardelli, R.S.; Paiva, I.M.; Lima, T.M.; Singh, Y.; Guimarães, R.C.; Damasceno, S.; et al. COVID-19-Related Hyperglycemia Is Associated with Infection of Hepatocytes and Stimulation of Gluconeogenesis. Proc. Natl. Acad. Sci. USA 2023, 120, e2217119120. [Google Scholar] [CrossRef] [PubMed]
- Mahrooz, A.; Muscogiuri, G.; Buzzetti, R.; Maddaloni, E. The Complex Combination of COVID-19 and Diabetes: Pleiotropic Changes in Glucose Metabolism. Endocrine 2021, 72, 317–325. [Google Scholar] [CrossRef]
- Heald, A.H.; Stedman, M.; Horne, L.; Rea, R.; Whyte, M.; Gibson, J.M.; Anderson, S.G.; Ollier, W. The Change in Glycaemic Control Immediately after COVID-19 Vaccination in People with Type 1 Diabetes. Diabet. Med. 2022, 39, e14774. [Google Scholar] [CrossRef]
- Sánchez-García, F.J.; Pérez-Hernández, C.A.; Rodríguez-Murillo, M.; Moreno-Altamirano, M.M.B. The Role of Tricarboxylic Acid Cycle Metabolites in Viral Infections. Front. Cell. Infect. Microbiol. 2021, 11, 725043. [Google Scholar] [CrossRef]
- Timpani, C.A.; Rybalka, E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals 2020, 14, 15. [Google Scholar] [CrossRef]
- O’Carroll, S.M.; O’Neill, L.A.J. Targeting Immunometabolism to Treat COVID-19. Immunother. Adv. 2021, 1, ltab013. [Google Scholar] [CrossRef]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. SARS-CoV2-Mediated Suppression of NRF2-Signaling Reveals Potent Antiviral and Anti-Inflammatory Activity of 4-Octyl-Itaconate and Dimethyl Fumarate. Nat. Commun. 2020, 11, 4938. [Google Scholar] [CrossRef]
- Rahnavard, A.; Mann, B.; Giri, A.; Chatterjee, R.; Crandall, K.A. Metabolite, Protein, and Tissue Dysfunction Associated with COVID-19 Disease Severity. Sci. Rep. 2022, 12, 12204. [Google Scholar] [CrossRef] [PubMed]
- Páez-Franco, J.C.; Torres-Ruiz, J.; Sosa-Hernández, V.A.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Pérez-Fragoso, A.; Meza-Sánchez, D.E.; Germán-Acacio, J.M.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; et al. Metabolomics Analysis Reveals a Modified Amino Acid Metabolism That Correlates with Altered Oxygen Homeostasis in COVID-19 Patients. Sci. Rep. 2021, 11, 6350. [Google Scholar] [CrossRef] [PubMed]
- Guntur, V.P.; Nemkov, T.; de Boer, E.; Mohning, M.P.; Baraghoshi, D.; Cendali, F.I.; San-Millán, I.; Petrache, I.; D’Alessandro, A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; et al. COVID-19 Infection Alters Kynurenine and Fatty Acid Metabolism, Correlating with IL-6 Levels and Renal Status. JCI Insight 2020, 5, e140327. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136.e4. [Google Scholar] [CrossRef]
- Correia, B.S.B.; Ferreira, V.G.; Piagge, P.M.F.D.; Almeida, M.B.; Assunção, N.A.; Raimundo, J.R.S.; Fonseca, F.L.A.; Carrilho, E.; Cardoso, D.R. 1H QNMR-Based Metabolomics Discrimination of Covid-19 Severity. J. Proteome Res. 2022, 21, 1640–1653. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Xu, G.; Xie, Y.; Wang, X.; Wu, J.; Chen, H. Plasma Metabolomic Characterization of SARS-CoV-2 Omicron Infection. Cell Death Dis. 2023, 14, 276. [Google Scholar] [CrossRef]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72.e15. [Google Scholar] [CrossRef]
Non-COVID (n = 56) 1 | COVID-19 (n = 63) 1 | p Value 2 | |
---|---|---|---|
Age, years (median, min-max) | 32 (17–62) | 42 (20–70) | 0.0035 |
Sex, female; n (%) | 35 (62.5%) | 35 (55.5%) | 0.4423 |
Symptoms: n (%) | |||
Fever | 19 (33.9%) | 44 (69.8%) | 0.0001 |
Headache | 39 (69.6%) | 44 (69.8%) | 0.9812 |
Cough | 30 (53.5%) | 47 (74.6%) | 0.0166 |
Sore throat | 32 (57.1%) | 31 (49.2%) | 0.0491 |
Nasal congestion | 40 (71.4%) | 51 (80.9%) | 0.2215 |
Chills | 23 (41%) | 34 (53.9%) | 0.1598 |
Nausea or vomiting | 11 (19.6%) | 24 (38.1%) | 0.0275 |
Myalgia | 22 (39.2%) | 42 (66.6%) | 0.0028 |
Adynamia | 29 (51.7%) | 53 (84.1%) | 0.0028 |
Anosmia and ageusia | 6 (10.7%) | 24 (38%) | 0.0006 |
Comorbidities: n (%) | |||
Declared at least one | 31 (55.3%) | 41 (65%) | 0.2789 |
Overweight/obesity | 24 (42.8%) | 26 (41.2%) | 0.8610 |
Chronic respiratory disease | 6 (10.7%) | 4 (6.3%) | 0.3916 |
Hypertension | 8 (14.2%) | 11 (17.4%) | 0.6370 |
Diabetes mellitus | 4 (7.1%) | 2 (3.1%) | 0.3234 |
N/D 3 | 11 (19.6%) | 11 (17.4%) | 0.7595 |
Vaccination: n (%) | |||
Unvaccinated | 40 (71.4%) | 40 (63.5%) | 0.3572 |
Vaccinated (1 or 2 doses) | 15 (26.7%) | 19 (30.2%) | 0.6841 |
N/D 3 | 1 (1.8%) | 4 (6.3%) | 0.2155 |
Duration of symptoms: n (%) | |||
15 days | n.a | 28 (44.4%) | n.a |
More than 30 days | n.a | 12 (19%) | n.a |
N/D 3 | n.a | 23 (36.5%) | n.a |
Time of positivity for SARS-CoV-2 in the RT-PCR test (n = 52): n (%) | |||
2 weeks | n.a | 30 (57.7%) | n.a |
3 weeks or more | n.a | 22 (42.3%) | n.a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, L.T.; Gama-Almeida, M.C.; Reis, D.L.; Silva, A.C.P.e.; Neris, R.L.S.; Galliez, R.M.; Castiñeiras, T.M.P.P.; on behalf of the UFRJ COVID-19 Working Group; Ludwig, C.; Valente, A.P.; et al. Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection. Viruses 2024, 16, 1769. https://doi.org/10.3390/v16111769
Mendes LT, Gama-Almeida MC, Reis DL, Silva ACPe, Neris RLS, Galliez RM, Castiñeiras TMPP, on behalf of the UFRJ COVID-19 Working Group, Ludwig C, Valente AP, et al. Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection. Viruses. 2024; 16(11):1769. https://doi.org/10.3390/v16111769
Chicago/Turabian StyleMendes, Luiza Tomé, Marcos C. Gama-Almeida, Desirée Lopes Reis, Ana Carolina Pires e Silva, Rômulo Leão Silva Neris, Rafael Mello Galliez, Terezinha Marta Pereira Pinto Castiñeiras, on behalf of the UFRJ COVID-19 Working Group, Christian Ludwig, Ana Paula Valente, and et al. 2024. "Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection" Viruses 16, no. 11: 1769. https://doi.org/10.3390/v16111769
APA StyleMendes, L. T., Gama-Almeida, M. C., Reis, D. L., Silva, A. C. P. e., Neris, R. L. S., Galliez, R. M., Castiñeiras, T. M. P. P., on behalf of the UFRJ COVID-19 Working Group, Ludwig, C., Valente, A. P., Costa dos Santos Junior, G., El-Bacha, T., & Assunção-Miranda, I. (2024). Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection. Viruses, 16(11), 1769. https://doi.org/10.3390/v16111769