PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses
Abstract
1. Main Text
2. PANoptosis and PANoptosome Regulation
3. The Immune Biology of Reservoir Hosts
4. PANoptosome Machinery Expression and Activation in Bats and Birds
PANoptosome Component | Abbreviation |
---|---|
Apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (CARD) domain 2 | ASC2 [64] |
Caspase-1 | CASP1 [62] |
Gasdermin D | GSDMD [63] |
Interferon regulatory factor-1 | IRF1 [66] |
Mixed lineage kinase domain-like pseudokinase | MLKL [65,67] |
NOD-like receptor (NLR)family CARD-domain containing 5 (NLRC5) | NLRC5 (Not Characterized) [46,48] |
NLR-family pyrin domain (PYD)-containing 3 | NLRP3 [61] |
Receptor-interacting serine/threonine protein kinase 1 | RIPK1 [65,67] |
Receptor-interacting serine/threonine protein kinase 3 | RIPK3 [65,67] |
Z-nucleic acid binding protein-1 | ZBP1 [65,67] |
5. Do Bats and Birds Execute PANoptosis?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Osorio, J.E.; Yuill, T.M. Zoonoses. In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 485–495. [Google Scholar]
- Agrawal, A.; Gindodiya, A.; Deo, K.; Kashikar, S.; Fulzele, P.; Khatib, N. A Comparative Analysis of the Spanish Flu 1918 and COVID-19 Pandemics. Open Public Health J. 2021, 14, 128–134. [Google Scholar] [CrossRef]
- Han, H.-J.; Wen, H.; Zhou, C.-M.; Chen, F.-F.; Luo, L.-M.; Liu, J.; Yu, X.-J. Bats as Reservoirs of Severe Emerging Infectious Diseases. Virus Res. 2015, 205, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.L.; Ly, H. Understanding the Prevalence of SARS-CoV-2 (COVID-19) Exposure in Companion, Captive, Wild, and Farmed Animals. Virulence 2021, 12, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Kawaoka, Y. Cross Talk between Animal and Human Influenza Viruses. Annu. Rev. Anim. Biosci. 2013, 1, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.; Rapin, N.; Misra, V. Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019, 11, 192. [Google Scholar] [CrossRef]
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-Borne Virus Diversity, Spillover and Emergence. Nat. Rev. Microbiol. 2020, 18, 461–471. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- Escudero-Pérez, B.; Lalande, A.; Mathieu, C.; Lawrence, P. Host-Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023, 15, 599. [Google Scholar] [CrossRef]
- Bhatia, R. Addressing Challenge of Zoonotic Diseases through One Health Approach. Indian J. Med. Res. 2021, 153, 249. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Principles of Innate and Adaptive Immunity, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed Cell Death as a Defence against Infection. Nat. Rev. Immunol. 2017, 17, 151–164. [Google Scholar] [CrossRef]
- Park, W.; Wei, S.; Kim, B.-S.; Kim, B.; Bae, S.-J.; Chae, Y.C.; Ryu, D.; Ha, K.-T. Diversity and Complexity of Cell Death: A Historical Review. Exp. Mol. Med. 2023, 55, 1573–1594. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Kepp, O.; Krautwald, S.; Kroemer, G.; Linkermann, A. Molecular Mechanisms of Regulated Necrosis. Semin. Cell Dev. Biol. 2014, 35, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.B. Apoptosis in the Pathogenesis and Treatment of Disease. Science 1995, 267, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Malireddi, R.K.S.; Kesavardhana, S.; Kanneganti, T.-D. ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-Optosis). Front. Cell. Infect. Microbiol. 2019, 9, 406. [Google Scholar] [CrossRef]
- Christgen, S.; Zheng, M.; Kesavardhana, S.; Karki, R.; Malireddi, R.K.S.; Banoth, B.; Place, D.E.; Briard, B.; Sharma, B.R.; Tuladhar, S.; et al. Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020, 10, 237. [Google Scholar] [CrossRef]
- Pandeya, A.; Kanneganti, T.-D. Therapeutic Potential of PANoptosis: Innate Sensors, Inflammasomes, and RIPKs in PANoptosomes. Trends Mol. Med. 2024, 30, 74–88. [Google Scholar] [CrossRef]
- Place, D.E.; Lee, S.; Kanneganti, T.-D. PANoptosis in Microbial Infection. Curr. Opin. Microbiol. 2021, 59, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Flerlage, T.; Boyd, D.F.; Meliopoulos, V.; Thomas, P.G.; Schultz-Cherry, S. Influenza Virus and SARS-CoV-2: Pathogenesis and Host Responses in the Respiratory Tract. Nat. Rev. Microbiol. 2021, 19, 425–441. [Google Scholar] [CrossRef]
- Weinberg, M.; Yovel, Y. Revising the Paradigm: Are Bats Really Pathogen Reservoirs or Do They Possess an Efficient Immune System? iScience 2022, 25, 104782. [Google Scholar] [CrossRef]
- Mandl, J.N.; Ahmed, R.; Barreiro, L.B.; Daszak, P.; Epstein, J.H.; Virgin, H.W.; Feinberg, M.B. Reservoir Host Immune Responses to Emerging Zoonotic Viruses. Cell 2015, 160, 20–35. [Google Scholar] [CrossRef]
- Wang, Y.; Pandian, N.; Han, J.-H.; Sundaram, B.; Lee, S.; Karki, R.; Guy, C.S.; Kanneganti, T.-D. Single Cell Analysis of PANoptosome Cell Death Complexes through an Expansion Microscopy Method. Cell. Mol. Life Sci. 2022, 79, 531. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Karki, R.; Wang, Y.; Nguyen, L.N.; Kalathur, R.C.; Kanneganti, T.-D. AIM2 Forms a Complex with Pyrin and ZBP1 to Drive PANoptosis and Host Defence. Nature 2021, 597, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Malireddi, R.K.S.; Kesavardhana, S.; Karki, R.; Kancharana, B.; Burton, A.R.; Kanneganti, T.-D. RIPK1 Distinctly Regulates Yersinia -Induced Inflammatory Cell Death, PANoptosis. ImmunoHorizons 2020, 4, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, B.; Pandian, N.; Mall, R.; Wang, Y.; Sarkar, R.; Kim, H.J.; Malireddi, R.K.S.; Karki, R.; Janke, L.J.; Vogel, P.; et al. NLRP12-PANoptosome Activates PANoptosis and Pathology in Response to Heme and PAMPs. Cell 2023, 186, 2783–2801. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, B.; Pandian, N.; Kim, H.J.; Abdelaal, H.M.; Mall, R.; Indari, O.; Sarkar, R.; Tweedell, R.E.; Alonzo, E.Q.; Klein, J.; et al. NLRC5 Senses NAD+ Depletion, Forming a PANoptosome and Driving PANoptosis and Inflammation. Cell 2024, 187, 4061–4077.e17. [Google Scholar] [CrossRef]
- Kuriakose, T.; Man, S.M.; Subbarao Malireddi, R.K.; Karki, R.; Kesavardhana, S.; Place, D.E.; Neale, G.; Vogel, P.; Kanneganti, T.-D. ZBP1/DAI Is an Innate Sensor of Influenza Virus Triggering the NLRP3 Inflammasome and Programmed Cell Death Pathways. Sci. Immunol. 2016, 1, aag2045. [Google Scholar] [CrossRef]
- Malik, A.; Kanneganti, T.-D. Inflammasome Activation and Assembly at a Glance. J. Cell Sci. 2017, 130, 3955–3963. [Google Scholar] [CrossRef]
- Malireddi, R.K.S.; Gurung, P.; Kesavardhana, S.; Samir, P.; Burton, A.; Mummareddy, H.; Vogel, P.; Pelletier, S.; Burgula, S.; Kanneganti, T.-D. Innate Immune Priming in the Absence of TAK1 Drives RIPK1 Kinase Activity–Independent Pyroptosis, Apoptosis, Necroptosis, and Inflammatory Disease. J. Exp. Med. 2020, 217, e20191644. [Google Scholar] [CrossRef]
- Gurung, P.; Anand, P.K.; Malireddi, R.K.S.; Vande Walle, L.; Van Opdenbosch, N.; Dillon, C.P.; Weinlich, R.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.-D. FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. J. Immunol. 2014, 192, 1835–1846. [Google Scholar] [CrossRef]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019, 50, 1352–1364. [Google Scholar] [CrossRef]
- Kim, S.I.; Choi, M.E. TGF-β-Activated Kinase-1: New Insights into the Mechanism of TGF-β Signaling and Kidney Disease. Kidney Res. Clin. Pract. 2012, 31, 94–105. [Google Scholar] [CrossRef]
- Malireddi, R.K.S.; Gurung, P.; Mavuluri, J.; Dasari, T.K.; Klco, J.M.; Chi, H.; Kanneganti, T.-D. TAK1 Restricts Spontaneous NLRP3 Activation and Cell Death to Control Myeloid Proliferation. J. Exp. Med. 2018, 215, 1023–1034. [Google Scholar] [CrossRef]
- Hsu, H.; Huang, J.; Shu, H.-B.; Baichwal, V.; Goeddel, D.V. TNF-Dependent Recruitment of the Protein Kinase RIP to the TNF Receptor-1 Signaling Complex. Immunity 1996, 4, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy Drugs Induce Pyroptosis through Caspase-3 Cleavage of a Gasdermin. Nature 2017, 547, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, J.; Liu, B.C.; Muendlein, H.I.; Li, P.; Nilson, R.; Tang, A.Y.; Rongvaux, A.; Bunnell, S.C.; Shao, F.; Green, D.R.; et al. Caspase-8 Induces Cleavage of Gasdermin D to Elicit Pyroptosis during Yersinia Infection. Proc. Natl. Acad. Sci. USA 2018, 115, E10888–E10897. [Google Scholar] [CrossRef] [PubMed]
- Van Opdenbosch, N.; Van Gorp, H.; Verdonckt, M.; Saavedra, P.H.V.; de Vasconcelos, N.M.; Gonçalves, A.; Vande Walle, L.; Demon, D.; Matusiak, M.; Van Hauwermeiren, F.; et al. Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4. Cell Rep. 2017, 21, 3427–3444. [Google Scholar] [CrossRef]
- Kaiser, W.J.; Upton, J.W.; Long, A.B.; Livingston-Rosanoff, D.; Daley-Bauer, L.P.; Hakem, R.; Caspary, T.; Mocarski, E.S. RIP3 Mediates the Embryonic Lethality of Caspase-8-Deficient Mice. Nature 2011, 471, 368–372. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; McQuade, T.; Li, J.; Chan, F.K.-M.; Zhang, J. Functional Complementation between FADD and RIP1 in Embryos and Lymphocytes. Nature 2011, 471, 373–376. [Google Scholar] [CrossRef]
- Rebsamen, M.; Heinz, L.X.; Meylan, E.; Michallet, M.; Schroder, K.; Hofmann, K.; Vazquez, J.; Benedict, C.A.; Tschopp, J. DAI/ZBP1 Recruits RIP1 and RIP3 through RIP Homotypic Interaction Motifs to Activate NF-κB. EMBO Rep. 2009, 10, 916–922. [Google Scholar] [CrossRef]
- Thapa, R.J.; Ingram, J.P.; Ragan, K.B.; Nogusa, S.; Boyd, D.F.; Benitez, A.A.; Sridharan, H.; Kosoff, R.; Shubina, M.; Landsteiner, V.J.; et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe 2016, 20, 674–681. [Google Scholar] [CrossRef]
- Basavaraju, S.; Mishra, S.; Jindal, R.; Kesavardhana, S. Emerging Role of ZBP1 in Z-RNA Sensing, Influenza Virus-Induced Cell Death, and Pulmonary Inflammation. MBio 2022, 13, e00401-22. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kanneganti, T.-D. PANoptosis in Viral Infection: The Missing Puzzle Piece in the Cell Death Field. J. Mol. Biol. 2022, 434, 167249. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.M.; Sarkar, R.; Karki, R.; Kanneganti, T.-D. A Comparative Study of Apoptosis, Pyroptosis, Necroptosis, and PANoptosis Components in Mouse and Human Cells. PLoS ONE 2024, 19, e0299577. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Baker, M.L.; Kulcsar, K.; Misra, V.; Plowright, R.; Mossman, K. Novel Insights Into Immune Systems of Bats. Front. Immunol. 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Rapin, N.; Bollinger, T.; Misra, V. Lack of Inflammatory Gene Expression in Bats: A Unique Role for a Transcription Repressor. Sci. Rep. 2017, 7, 2232. [Google Scholar] [CrossRef]
- Papenfuss, A.T.; Baker, M.L.; Feng, Z.-P.; Tachedjian, M.; Crameri, G.; Cowled, C.; Ng, J.; Janardhana, V.; Field, H.E.; Wang, L.-F. The Immune Gene Repertoire of an Important Viral Reservoir, the Australian Black Flying Fox. BMC Genom. 2012, 13, 261. [Google Scholar] [CrossRef]
- Xie, J.; Li, Y.; Shen, X.; Goh, G.; Zhu, Y.; Cui, J.; Wang, L.-F.; Shi, Z.-L.; Zhou, P. Dampened STING-Dependent Interferon Activation in Bats. Cell Host Microbe 2018, 23, 297–301.e4. [Google Scholar] [CrossRef]
- Banerjee, A.; Falzarano, D.; Rapin, N.; Lew, J.; Misra, V. Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses 2019, 11, 152. [Google Scholar] [CrossRef]
- Zhou, P.; Cowled, C.; Mansell, A.; Monaghan, P.; Green, D.; Wu, L.; Shi, Z.; Wang, L.-F.; Baker, M.L. IRF7 in the Australian Black Flying Fox, Pteropus Alecto: Evidence for a Unique Expression Pattern and Functional Conservation. PLoS ONE 2014, 9, e103875. [Google Scholar] [CrossRef]
- Feng, H.; Sander, A.-L.; Moreira-Soto, A.; Yamane, D.; Drexler, J.F.; Lemon, S.M. Hepatovirus 3ABC Proteases and Evolution of Mitochondrial Antiviral Signaling Protein (MAVS). J. Hepatol. 2019, 71, 25–34. [Google Scholar] [CrossRef]
- Zhou, P.; Tachedjian, M.; Wynne, J.W.; Boyd, V.; Cui, J.; Smith, I.; Cowled, C.; Ng, J.H.J.; Mok, L.; Michalski, W.P.; et al. Contraction of the Type I IFN Locus and Unusual Constitutive Expression of IFN-α in Bats. Proc. Natl. Acad. Sci. USA 2016, 113, 2696–2701. [Google Scholar] [CrossRef] [PubMed]
- Pavlovich, S.S.; Lovett, S.P.; Koroleva, G.; Guito, J.C.; Arnold, C.E.; Nagle, E.R.; Kulcsar, K.; Lee, A.; Thibaud-Nissen, F.; Hume, A.J.; et al. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 2018, 173, 1098–1110.e18. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz-Rivera, P.C.; Kanchwala, M.; Liang, H.; Kumar, A.; Wang, L.-F.; Xing, C.; Schoggins, J.W. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J. Immunol. 2018, 200, 209–217. [Google Scholar] [CrossRef]
- Ahn, M.; Cui, J.; Irving, A.T.; Wang, L.-F. Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci. Rep. 2016, 6, 21722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cowled, C.; Shi, Z.; Huang, Z.; Bishop-Lilly, K.A.; Fang, X.; Wynne, J.W.; Xiong, Z.; Baker, M.L.; Zhao, W.; et al. Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science 2013, 339, 456–460. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, A.; Wang, M. Innate Sensing of Viruses by Pattern Recognition Receptors in Birds. Vet. Res. 2013, 44, 82. [Google Scholar] [CrossRef]
- Xiang, C.; Yang, Z.; Xiong, T.; Wang, T.; Yang, J.; Huang, M.; Liu, D.; Chen, R. Avian IRF1 and IRF7 Play Overlapping and Distinct Roles in Regulating IFN-Dependent and -Independent Antiviral Responses to Duck Tembusu Virus Infection. Viruses 2022, 14, 1506. [Google Scholar] [CrossRef] [PubMed]
- Springer, M.S. Phylogenetics: Bats United, Microbats Divided. Curr. Biol. 2013, 23, R999–R1001. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Anderson, D.E.; Zhang, Q.; Tan, C.W.; Lim, B.L.; Luko, K.; Wen, M.; Chia, W.N.; Mani, S.; Wang, L.C.; et al. Dampened NLRP3-Mediated Inflammation in Bats and Implications for a Special Viral Reservoir Host. Nat. Microbiol. 2019, 4, 789–799. [Google Scholar] [CrossRef]
- Goh, G.; Ahn, M.; Zhu, F.; Lee, L.B.; Luo, D.; Irving, A.T.; Wang, L.-F. Complementary Regulation of Caspase-1 and IL-1β Reveals Additional Mechanisms of Dampened Inflammation in Bats. Proc. Natl. Acad. Sci. USA 2020, 117, 28939–28949. [Google Scholar] [CrossRef]
- Nagaraja, S.; Jain, D.; Kesavardhana, S. Inflammasome Regulation in Driving COVID-19 Severity in Humans and Immune Tolerance in Bats. J. Leukoc. Biol. 2022, 111, 497–508. [Google Scholar] [CrossRef]
- Ahn, M.; Chen, V.C.W.; Rozario, P.; Ng, W.L.; Kong, P.S.; Sia, W.R.; Kang, A.E.Z.; Su, Q.; Nguyen, L.H.; Zhu, F.; et al. Bat ASC2 Suppresses Inflammasomes and Ameliorates Inflammatory Diseases. Cell 2023, 186, 2144–2159.e22. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jain, D.; Dey, A.A.; Nagaraja, S.; Khatun, O.; Balamurugan, K.; Anand, M.; Ganji, M.; Kesavardhana, S. Bat RNA Viruses Employ Viral RHIMs Orchestrating Species-Specific Cell Death Programs Linked to Z-RNA Sensing and ZBP1-RIPK3 Signaling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Irving, A.T.; Zhang, Q.; Kong, P.-S.; Luko, K.; Rozario, P.; Wen, M.; Zhu, F.; Zhou, P.; Ng, J.H.J.; Sobota, R.M.; et al. Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Rep. 2020, 33, 108345. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.N.; Chappidi, S.; Pinkham, C.; Hancks, D.C. Evolutionary Profile for (Host and Viral) MLKL Indicates Its Activities as a Battlefront for Extensive Counteradaptation. Mol. Biol. Evol. 2021, 38, 5405–5422. [Google Scholar] [CrossRef]
- Lees, A.C.; Haskell, L.; Allinson, T.; Bezeng, S.B.; Burfield, I.J.; Renjifo, L.M.; Rosenberg, K.V.; Viswanathan, A.; Butchart, S.H.M. State of the World’s Birds. Annu. Rev. Environ. Resour. 2022, 47, 231–260. [Google Scholar] [CrossRef]
- Billman, Z.P.; Hancks, D.C.; Miao, E.A. Unanticipated Loss of Inflammasomes in Birds. Genome Biol. Evol. 2024, 16, evae138. [Google Scholar] [CrossRef]
- Broz, P.; Pelegrín, P.; Shao, F. The Gasdermins, a Protein Family Executing Cell Death and Inflammation. Nat. Rev. Immunol. 2020, 20, 143–157. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Wang, X.; Wang, J.; Ma, Y.; Cao, Y.; Zhang, W. Chicken Gasdermins Mediate Pyroptosis after the Cleavage by Caspases. Int. J. Biol. Macromol. 2024, 270, 132476. [Google Scholar] [CrossRef]
- Vasconcelos, A.C. Expression of VP2, Caspase 3 and Caspase 8 genes in IBDV infected chicks. In Proceedings of the Western Poultry Disease Conference, Sacramento, CA, USA, 5–8 March 2006; pp. 103–104. [Google Scholar]
- Lin, H.Y.; Chuang, S.T.; Chen, Y.T.; Shih, W.L.; Chang, C.D.; Liu, H.J. Avian Reovirus-Induced Apoptosis Related to Tissue Injury. Avian Pathol. 2007, 36, 155–159. [Google Scholar] [CrossRef]
- Ito, T.; Kobayashi, Y.; Morita, T.; Horimoto, T.; Kawaoka, Y. Virulent Influenza A Viruses Induce Apoptosis in Chickens. Virus Res. 2002, 84, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Miao, Z.; Shi, X.; Wu, H.; Yao, Y.; Xu, S. The Antagonistic Effect of Selenium on Lead-Induced Apoptosis and Necroptosis via P38/JNK/ERK Pathway in Chicken Kidney. Ecotoxicol. Environ. Saf. 2022, 231, 113176. [Google Scholar] [CrossRef] [PubMed]
- Zhirong, Z.; Qiaojian, Z.; Chunjing, X.; Shengchen, W.; Jiahe, L.; Zhaoyi, L.; Shu, L. Methionine Selenium Antagonizes LPS-induced Necroptosis in the Chicken Liver via the MiR-155/TRAF3/MAPK Axis. J. Cell. Physiol. 2021, 236, 4024–4035. [Google Scholar] [CrossRef]
- Wilkinson, B.; Elam, J.; Fadool, D.; Hyson, R. Afferent Regulation of Cytochrome-c and Active Caspase-9 in the Avian Cochlear Nucleus. Neuroscience 2003, 120, 1071–1079. [Google Scholar] [CrossRef]
- Dondelinger, Y.; Hulpiau, P.; Saeys, Y.; Bertrand, M.J.M.; Vandenabeele, P. An Evolutionary Perspective on the Necroptotic Pathway. Trends Cell Biol. 2016, 26, 721–732. [Google Scholar] [CrossRef]
- Johnson, A.L.; Bridgham, J.T. Caspase-3 and -6 Expression and Enzyme Activity in Hen Granulosa Cells1. Biol. Reprod. 2000, 62, 589–598. [Google Scholar] [CrossRef]
- Samir, P.; Malireddi, R.K.S.; Kanneganti, T.-D. The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020, 10, 238. [Google Scholar] [CrossRef]
- Castiglione, G.M.; Xu, Z.; Zhou, L.; Duh, E.J. Adaptation of the Master Antioxidant Response Connects Metabolism, Lifespan and Feather Development Pathways in Birds. Nat. Commun. 2020, 11, 2476. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.D.; Mena Canata, D.A.; Salomon, T.B.; Hackenhaar, F.S.; Pereira, M.J.R.; Benfato, M.S.; Rampelotto, P.H. Oxidative Stress and Antioxidant Defense in the Heart, Liver, and Kidney of Bat Species with Different Feeding Habits. Int. J. Mol. Sci. 2023, 24, 16369. [Google Scholar] [CrossRef]
- Munshi-South, J.; Wilkinson, G.S. Bats and Birds: Exceptional Longevity despite High Metabolic Rates. Ageing Res. Rev. 2010, 9, 12–19. [Google Scholar] [CrossRef]
- Hickey, A.J.R.; Jüllig, M.; Aitken, J.; Loomes, K.; Hauber, M.E.; Phillips, A.R.J. Birds and Longevity: Does Flight Driven Aerobicity Provide an Oxidative Sink? Ageing Res. Rev. 2012, 11, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Danthi, P. Viruses and the Diversity of Cell Death. Annu. Rev. Virol. 2016, 3, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Águeda-Pinto, A.; Alves, L.Q.; Neves, F.; McFadden, G.; Jacobs, B.L.; Castro, L.F.C.; Rahman, M.M.; Esteves, P.J. Convergent Loss of the Necroptosis Pathway in Disparate Mammalian Lineages Shapes Viruses Countermeasures. Front. Immunol. 2021, 12, 747737. [Google Scholar] [CrossRef] [PubMed]
PANoptosome Component | Abbreviation |
---|---|
Absent in melanoma-2 | AIM2 |
Apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (CARD) domain | ASC |
Caspase-1 | CASP1 |
Caspase-3 | CASP3 |
Caspase-4 | CASP4 |
Caspase-5 | CASP5 |
Caspase-6 | CASP6 |
Caspase-7 | CASP7 |
Caspase-8 | CASP8 |
Caspase-9 | CASP9 |
Fas-associated Death Domain | FADD |
Gasdermin D | GSDMD |
Gasdermin E | GSDME |
Interferon regulatory factor-1 | IRF1 |
Mixed lineage kinase domain-like pseudokinase | MLKL |
NLR family PYD-containing 12 | NLRP12 |
NLR family CARD-domain containing 5 (NLRC5) | NLRC5 |
NOD-like receptor (NLR) family pyrin domain (PYD)-containing 3 | NLRP3 |
Receptor-interacting serine/threonine protein kinase 1 | RIPK1 |
Receptor-interacting serine/threonine protein kinase 3 | RIPK3 |
Z-nucleic acid binding protein-1 | ZBP1 |
PANoptosome Component | Abbreviation |
---|---|
Caspase-1 | CASP1 [71] |
Caspase-3 | CASP3 [75] |
Caspase-6 | CASP6 [79] |
Caspase-8 | CASP8 [75,76] |
Caspase-9 | CASP9 [77] |
Gasdermin A | GSDMA [71] |
Gasdermin E | GSDME [71] |
Interferon regulatory factor-1 | IRF1 [59] |
Mixed lineage kinase domain-like pseudokinase | MLKL [78] |
NLR family PYD-containing 12 | NLRP12 [69] |
NLR family CARD-domain containing 4 | NLRC4 [69] |
NOD-like receptor (NLR) family pyrin domain (PYD)-containing 1 | NLRP1 [69] |
NOD-like receptor (NLR) family pyrin domain (PYD)-containing 3 | NLRP3 [69] |
Receptor-interacting serine/threonine protein kinase 1 | RIPK1 [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, A.; Kesavardhana, S. PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses. Viruses 2024, 16, 1733. https://doi.org/10.3390/v16111733
Chandra A, Kesavardhana S. PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses. Viruses. 2024; 16(11):1733. https://doi.org/10.3390/v16111733
Chicago/Turabian StyleChandra, Anantika, and Sannula Kesavardhana. 2024. "PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses" Viruses 16, no. 11: 1733. https://doi.org/10.3390/v16111733
APA StyleChandra, A., & Kesavardhana, S. (2024). PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses. Viruses, 16(11), 1733. https://doi.org/10.3390/v16111733