Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Protocol
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.2.3. Participants
2.2.4. Context
2.2.5. Types of Sources
2.3. Information Sources
2.4. Research Strategy
2.5. Studies Selection
2.6. Data Extraction from Included Studies
2.7. Risk of Bias Assessment
3. Results
3.1. Study Characteristics
3.2. Impact of COVID-19 on Bone Mineral Density
3.3. Impact of COVID-19 on Bone Turnover Markers
3.4. Impact of COVID-19 on Joints
3.5. Risk of Bias
4. Discussion
5. Implication for Practice and Research
6. Limitations
7. Conclusions
Funding
Conflicts of Interest
References
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. 2023. Available online: https://covid19.who.int/ (accessed on 10 September 2023).
- GOV.UK. Cases in United Kingdom. GOV.UK Coronavirus (COVID-19) in the UK 2023. Available online: https://coronavirus.data.gov.uk/details/cases?areaType=overview&areaName=United%20Kingdom (accessed on 22 October 2023).
- Larsen, J.R.; Martin, M.R.; Martin, J.D.; Kuhn, P.; Hicks, J.B. Modeling the Onset of Symptoms of COVID-19. Front. Public Health 2020, 8, 473. [Google Scholar] [CrossRef] [PubMed]
- Harapan, B.N.; Yoo, H.J. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J. Neurol. 2021, 268, 3059–3071. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.W.; Vaduganathan, M.; Claggett, B.L.; Jering, K.S.; Bhatt, A.S.; Rosenthal, N.; Solomon, S.D. Clinical Outcomes in Young US Adults Hospitalized with COVID-19. JAMA Intern. Med. 2021, 181, 379–381. [Google Scholar] [CrossRef]
- Del Rio, C.; Collins, L.F.; Malani, P. Long-term health consequences of COVID-19. JAMA 2020, 324, 1723–1724. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Long-Term Effects of Coronavirus (Long COVID): What Is It? October 2022. Available online: https://cks.nice.org.uk/topics/long-term-effects-of-coronavirus-long-covid/background-information/definition/ (accessed on 9 September 2023).
- Xu, W.; Sun, N.-N.; Gao, H.-N.; Chen, Z.-Y.; Yang, Y.; Ju, B.; Tang, L.-L. Risk factors analysis of COVID-19 patients with ARDS and prediction based on machine learning. Sci. Rep. 2021, 11, 2933. [Google Scholar] [CrossRef]
- Hussain, M.; Khurram Syed, S.; Fatima, M.; Shaukat, S.; Saadullah, M.; Alqahtani, A.M.; Alqahtani, T.; Bin Emran, T.; Alamri, A.H.; Barkat, M.Q. Acute respiratory distress syndrome and COVID-19: A literature review. J. Inflamm. Res. 2021, 14, 7225–7242. [Google Scholar] [CrossRef]
- Dong, Y.; Peng, R.; Kang, H.; Song, K.; Guo, Q.; Zhao, H.; Zhu, M.; Zhang, Y.; Guan, H.; Li, F. Global incidence, prevalence, and disability of vertebral fractures: A systematic analysis of the global burden of disease study 2019. Spine J. 2022, 22, 857–868. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Wang, L.; Yu, W.; Yin, X.; Cui, L.; Tang, S.; Jiang, N.; Cui, L.; Zhao, N.; Lin, Q.; Chen, L. Prevalence of osteoporosis and fracture in China: The China osteoporosis prevalence study. JAMA Netw. Open 2021, 4, e2121106. [Google Scholar] [CrossRef]
- Bolton, C.E.; Ionescu, A.A.; Shiels, K.M.; Pettit, R.J.; Edwards, P.H.; Stone, M.D.; Nixon, L.S.; Evans, W.D.; Griffiths, T.L.; Shale, D.J. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004, 170, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Gluck, O.; Colice, G. Recognizing and treating glucocorticoid-induced osteoporosis in patients with pulmonary diseases. Chest 2004, 125, 1859–1876. [Google Scholar] [CrossRef] [PubMed]
- Lorentzon, M.; Cummings, S.R. Osteoporosis: The evolution of a diagnosis. J. Intern. Med. 2015, 277, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Watanabe, R.; Okazaki, R. COPD and osteoporosis: Links, risks, and treatment challenges. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 637–648. [Google Scholar] [CrossRef]
- Orford, N.R.; Bailey, M.; Bellomo, R.; Pasco, J.A.; Cattigan, C.; Elderkin, T.; Brennan-Olsen, S.L.; Cooper, D.J.; Kotowicz, M.A. The association of time and medications with changes in bone mineral density in the 2 years after critical illness. Crit. Care 2017, 21, 69. [Google Scholar] [CrossRef]
- Sapra, L.; Saini, C.; Garg, B.; Gupta, R.; Verma, B.; Mishra, P.K.; Srivastava, R.K. Long-term implications of COVID-19 on bone health: Pathophysiology and therapeutics. Inflamm. Res. 2022, 71, 1025–1040. [Google Scholar] [CrossRef]
- Di Filippo, L.; Compagnone, N.; Frara, S.; Allora, A.; Doga, M.; Rovere Querini, P.; Cremona, G.; Giustina, A. Vertebral fractures at hospitalization predict impaired respiratory function during follow-up of COVID-19 survivors. Endocrine 2022, 77, 392–400. [Google Scholar] [CrossRef]
- Battisti, S.; Napoli, N.; Pedone, C.; Lombardi, M.; Leanza, G.; Tramontana, F.; Faraj, M.; Agnoletti, V.; Verna, M.; Viola, L. Vertebral fractures and mortality risk in hospitalised patients during the COVID-19 pandemic emergency. Endocrine 2021, 74, 461–469. [Google Scholar] [CrossRef]
- Joo, Y.B.; Lim, Y.-H.; Kim, K.-J.; Park, K.-S.; Park, Y.-J. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res. Ther. 2019, 21, 199. [Google Scholar] [CrossRef]
- Cipollaro, L.; Giordano, L.; Padulo, J.; Oliva, F.; Maffulli, N. Musculoskeletal symptoms in SARS-CoV-2 (COVID-19) patients. BioMed Cent. 2020, 15, 178. [Google Scholar] [CrossRef]
- Joob, B.; Wiwanitkit, V. Arthralgia as an initial presentation of COVID-19: Observation. Rheumatol. Int. 2020, 40, 823. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Manger, B.; Simon, D.; Caporali, R. COVID-19 revisiting inflammatory pathways of arthritis. Nat. Rev. Rheumatol. 2020, 16, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Derksen, V.F.; Kissel, T.; Lamers-Karnebeek, F.B.; van der Bijl, A.E.; Venhuizen, A.C.; Huizinga, T.W.; Toes, R.E.; Roukens, A.H.; van der Woude, D. Onset of rheumatoid arthritis after COVID-19: Coincidence or connected? Ann. Rheum. Dis. 2021, 80, 1096–1098. [Google Scholar] [CrossRef] [PubMed]
- Metyas, S.; Chen, C.; Aung, T.; Ballester, A.; Cheav, S. Rheumatologic manifestations of post SARS-CoV-2 infection: A case series. Curr. Rheumatol. Rev. 2022, 18, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Slouma, M.; Abbes, M.; Mehmli, T.; Dhahri, R.; Metoui, L.; Gharsallah, I.; Louzir, B. Reactive arthritis occurring after COVID-19 infection: A narrative review. Infection 2023, 51, 37–45. [Google Scholar] [CrossRef]
- Karaarslan, F.; Güneri, F.D.; Kardeş, S. Long COVID: Rheumatologic/musculoskeletal symptoms in hospitalized COVID-19 survivors at 3 and 6 months. Clin. Rheumatol. 2022, 41, 289–296. [Google Scholar] [CrossRef]
- Ciaffi, J.; Vanni, E.; Mancarella, L.; Brusi, V.; Lisi, L.; Pignatti, F.; Naldi, S.; Assirelli, E.; Neri, S.; Reta, M. Post-acute COVID-19 joint pain and new onset of rheumatic musculoskeletal diseases: A systematic review. Diagnostics 2023, 13, 1850. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2000. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 November 2023).
- Herzog, R.; Álvarez-Pasquin, M.J.; Díaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Kerschan-Schindl, K.; Dovjak, P.; Butylina, M.; Rainer, A.; Mayr, B.; Röggla, V.; Haslacher, H.; Weber, M.; Jordakieva, G.; Pietschmann, P. Moderate COVID-19 disease is associated with reduced bone turnover. J. Bone Miner. Res. 2023, 38, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Elmedany, S.H.; Badr, O.I.; Abu-Zaid, M.H.; Tabra, S.A.A. Bone mineral density changes in osteoporotic and osteopenic patients after COVID-19 infection. Egypt. Rheumatol. Rehabil. 2022, 49, 64. [Google Scholar] [CrossRef]
- Berktaş, B.; Gökçek, A.; Hoca, N.; Koyuncu, A. COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3046–3056. [Google Scholar] [PubMed]
- Moga, T.D.; Nistor-Cseppento, C.D.; Bungau, S.G.; Tit, D.M.; Sabau, A.M.; Behl, T.; Nechifor, A.C.; Bungau, A.F.; Negrut, N. The effects of the ‘catabolic crisis’ on patients’ prolonged immobility after COVID-19 Infection. Medicina 2022, 58, 828. [Google Scholar] [CrossRef]
- Al-Azzawi, I.S.; Mohammed, N.S.; Saad, I. The impact of angiotensin converting enzyme-2 (ACE-2) on bone remodeling marker osteoprotegerin (OPG) in post-COVID-19 Iraqi patients. Cureus 2022, 14, e29926. [Google Scholar] [CrossRef]
- Palmisano, A.; Gnasso, C.; Cereda, A.; Vignale, D.; Leone, R.; Nicoletti, V.; Barbieri, S.; Toselli, M.; Giannini, F.; Loffi, M. Chest CT opportunistic biomarkers for phenotyping high-risk COVID-19 patients: A retrospective multicentre study. Eur. Radiol. 2023, 33, 7756–7768. [Google Scholar] [CrossRef]
- Bakhsh, N.; Banjar, M.; Baig, M. Correlation of bone density measured on CT chest with the severity of COVID-19 infection: A retrospective study. PLoS ONE 2023, 18, e0286395. [Google Scholar] [CrossRef]
- Kottlors, J.; Hokamp, N.G.; Fervers, P.; Bremm, J.; Fichter, F.; Persigehl, T.; Safarov, O.; Maintz, D.; Tritt, S.; Abdullayev, N. Early extrapulmonary prognostic features in chest computed tomography in COVID-19 pneumonia: Bone mineral density is a relevant predictor for the clinical outcome-A multicenter feasibility study. Bone 2021, 144, 115790. [Google Scholar] [CrossRef]
- Subasi, M.; Duger, M.; Erol, C.; Durur-Subasi, I. Opportunistic retrospective assessment of HUAC, bone density, SFT and breast density on CT images and relationship with severity of COVID-19. J. Mind Med. Sci. 2023, 10, 148–155. [Google Scholar] [CrossRef]
- do Amaral E Castro, A.; Yokoo, P.; Fonseca, E.K.U.N.; Otoni, J.C.; Haiek, S.L.; Shoji, H.; Chate, R.C.; Pereira, A.Z.; Queiroz, M.R.G.d.; Batista, M.C. Prognostic factors of worse outcome for hospitalized COVID-19 patients, with emphasis on chest computed tomography data: A retrospective study. Einstein 2022, 20, eAO6953. [Google Scholar] [CrossRef] [PubMed]
- Emekli, E.; Bostancı Can, E.Z. Prognostic Value of Diaphragm Diameter, Muscle Volume, and Bone Mineral Density in Critically Ill COVID-19 Patients. J. Intensive Care Med. 2023, 38, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Del Toro, R.; Palmese, F.; Feletti, F.; Zani, G.; Minguzzi, M.T.; Maddaloni, E.; Napoli, N.; Bedogni, G.; Domenicali, M. Relationship between Muscle Mass, Bone Density and Vascular Calcifications in Elderly People with SARS-CoV-2 Pneumonia. J. Clin. Med. 2023, 12, 2372. [Google Scholar] [CrossRef] [PubMed]
- Tahtabasi, M.; Kilicaslan, N.; Akin, Y.; Karaman, E.; Gezer, M.; Icen, Y.K.; Sahiner, F. The prognostic value of vertebral bone density on chest CT in hospitalized COVID-19 patients. J. Clin. Densitom. 2021, 24, 506–515. [Google Scholar] [CrossRef]
- Arrieta, F.; Martinez-Vaello, V.; Bengoa, N.; Rosillo, M.; de Pablo, A.; Voguel, C.; Pintor, R.; Belanger-Quintana, A.; Mateo-Lobo, R.; Candela, A. Stress hyperglycemia and osteocalcin in COVID-19 critically ill patients on artificial nutrition. Nutrients 2021, 13, 3010. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Wang, H.; Gao, Y.; Hu, X.; Li, X.; Zhang, S.; Xu, Y.; Wei, W. Characteristics of laboratory indexes in COVID-19 patients with non-severe symptoms in Hefei City, China: Diagnostic value in organ injuries. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2447–2455. [Google Scholar] [CrossRef]
- Vogler, D.; Ruscitti, P.; Navarini, L.; Giacomelli, R.; Iagnocco, A.; Hoff, P.; Burmester, G.-R.; Ohrndorf, S. Diagnosis of COVID-19 associated arthritis in patients with or without underlying rheumatic and musculoskeletal disease supported by musculoskeletal ultrasound: A case series from three European centres. Clin. Exp. Rheumatol. 2023, 41, 656–666. [Google Scholar] [CrossRef]
- Namakin, K.; Sadeghzadeh, S.; Tamimi, A.; Abdolzadeh, A.; Khanjani, Z.; Ebrahimi, N.; Abdolmohammadi, G.; Golshan, A.; Fardoost, S.; Masrouri, S. The association between COVID-19 and reactive arthritis: A systematic review of case reports and case series. Curr. Rheumatol. Rev. 2023, 19, 420–438. [Google Scholar] [CrossRef]
- Liu, J.; Wu, H.; Xia, S.-L. New-onset arthritis following COVID-19 vaccination: A systematic review of case reports. Vaccines 2023, 11, 665. [Google Scholar] [CrossRef]
- Bandinelli, F.; Pagano, M.; Vallecoccia, M.S. Post-COVID-19 and Post-COVID-19 Vaccine Arthritis, Polymyalgia Rheumatica and Horton’s Arteritis: A Single-Center Assessment of Clinical, Serological, Genetic, and Ultrasonographic Biomarkers. J. Clin. Med. 2023, 12, 7563. [Google Scholar] [CrossRef]
- Pal, A.; Roongta, R.; Mondal, S.; Sinha, D.; Sinhamahapatra, P.; Ghosh, A.; Chattopadhyay, A. Does post-COVID reactive arthritis exist? Experience of a tertiary care centre with a review of the literature. Reumatol. Clínica 2023, 19, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Creecy, A.; Awosanya, O.D.; Harris, A.; Qiao, X.; Ozanne, M.; Toepp, A.J.; Kacena, M.A.; McCune, T. COVID-19 and bone loss: A review of risk factors, mechanisms, and future directions. Curr. Osteoporos. Rep. 2024, 22, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Nurkovic, J. COVID-19 impact on bone mineral density. In Osteoporosis International; Springer: London, UK, 2021. [Google Scholar]
- Awosanya, O.D.; Dalloul, C.E.; Blosser, R.J.; Dadwal, U.C.; Carozza, M.; Boschen, K.; Klemsz, M.J.; Johnston, N.A.; Bruzzaniti, A.; Robinson, C.M. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone 2022, 154, 116227. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Lau, H.E.; Xie, H.; Poon, V.K.-M.; Chan, C.C.-S.; Chu, H.; Yuan, S.; Yuen, T.T.-T.; Chik, K.K.-H.; Tsang, J.O.-L. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat. Commun. 2022, 13, 2539. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Junior, C.M.; Santos, A.C.; Gonçalves, M.R.; Brito, C.B.; Barrioni, B.; Almeida, P.J.; Gonçalves-Pereira, M.H.; Silva, T.; Oliveira, S.R.; Pereira, M.M. Acute coronavirus infection triggers a TNF-dependent osteoporotic phenotype in mice. Life Sci. 2023, 324, 121750. [Google Scholar] [CrossRef]
- Meduri, G.U.; Marik, P.E.; Annane, D. Prolonged glucocorticoid treatment in acute respiratory distress syndrome: Evidence supporting effectiveness and safety. Crit. Care Med. 2009, 37, 1800–1803. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Q.; Huang, L.; Shi, Q.; Zhao, S.; Wang, Z.; Li, W.; Tang, Y.; Ma, Y.; Luo, X. Effectiveness and safety of glucocorticoids to treat COVID-19: A rapid review and meta-analysis. Ann. Transl. Med. 2020, 8, 627. [Google Scholar] [CrossRef]
- Tang, J. COVID-19 pandemic and osteoporosis in elderly patients. Aging Dis. 2022, 13, 960. [Google Scholar] [CrossRef]
- Celenk, C.; Celenk, P. Bone density measurement using computed tomography. Comput. Tomogr. Clin. Appl. 2012, 5, 123–136. [Google Scholar]
- Marshall, D.; Johnell, O.; Wedel, H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996, 312, 1254–1259. [Google Scholar] [CrossRef]
- Knapp, K. Dual energy X-ray absorptiometry: Beyond bone mineral density. Imaging Ther. Pract. 2015, 1, 5. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Osteoporosis–Prevention of Fragility Fractures. July 2021. Available online: https://cks.nice.org.uk/topics/osteoporosis-prevention-of-fragility-fractures/ (accessed on 15 March 2022).
- Blake, G.M.; Fogelman, I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med. J. 2007, 83, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000, 21, 115–137. [Google Scholar]
- Frost, H.M. Dynamics of bone remodeling. In Bone Biodynamics; Little: Boston, MA, USA, 1964; pp. 315–334. [Google Scholar]
- Christenson, R.H. Biochemical markers of bone metabolism: An overview. Clin. Biochem. 1997, 30, 573–593. [Google Scholar] [CrossRef]
- Adachi, J. The correlation of bone mineral density and biochemical markers to fracture risk. Calcif. Tissue Int. 1996, 59, S16–S19. [Google Scholar] [CrossRef]
- Melton III, L.J.; Crowson, C.S.; O’Fallon, W.M.; Wahner, H.W.; Riggs, B.L. Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J. Bone Miner. Res. 2003, 18, 312–318. [Google Scholar] [CrossRef]
- Vasikaran, S.; Cooper, C.; Eastell, R.; Griesmacher, A.; Morris, H.A.; Trenti, T.; Kanis, J.A. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 2011, 49, 1271–1274. [Google Scholar] [CrossRef]
- Yang, N.; Liu, Y. The role of the immune microenvironment in bone regeneration. Int. J. Med. Sci. 2021, 18, 3697. [Google Scholar] [CrossRef]
- Sponholtz, T.R.; Zhang, X.; Fontes, J.D.; Meigs, J.B.; Cupples, L.A.; Kiel, D.P.; Hannan, M.T.; McLean, R.R. Association between inflammatory biomarkers and bone mineral density in a community-based cohort of men and women. Arthritis Care Res. 2014, 66, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Salamone, L.; Whiteside, T.; Friberg, D.; Epstein, R.; Kuller, L.; Cauley, J. Cytokine production and bone mineral density at the lumbar spine and femoral neck in premenopausal women. Calcif. Tissue Int. 1998, 63, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-S.; Park, Y.-H.; Kim, S.-K. Relationship between serum inflammatory marker and bone mineral density in healthy adults. J. Bone Metab. 2016, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lee, S.; Knoll, J.; Rauch, A.; Ostermay, S.; Luther, J.; Malkusch, N.; Lerner, U.H.; Zaiss, M.M.; Neven, M. Loss of menin in osteoblast lineage affects osteocyte–osteoclast crosstalk causing osteoporosis. Cell Death Differ. 2017, 24, 672–682. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol. 2006, 6, 271–276. [Google Scholar] [CrossRef]
- Raisz, L.G. Physiology and pathophysiology of bone remodeling. Clin. Chem. 1999, 45, 1353–1358. [Google Scholar]
- Feng, X.; McDonald, J.M. Disorders of bone remodeling. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 121–145. [Google Scholar] [CrossRef]
- Mi, B.; Xiong, Y.; Zhang, C.; Zhou, W.; Chen, L.; Cao, F.; Chen, F.; Geng, Z.; Panayi, A.C.; Sun, Y.; et al. SARS-CoV-2-induced Overexpression of miR-4485 Suppresses Osteogenic Differentiation and Impairs Fracture Healing. Int. J. Biol. Sci. 2021, 17, 1277–1288. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Lips, P.; Van Schoor, N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 585–591. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef]
- Kuchuk, N.O.; van Schoor, N.M.; Pluijm, S.M.; Chines, A.; Lips, P. Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal women with osteoporosis: Global perspective. J. Bone Miner. Res. 2009, 24, 693–701. [Google Scholar] [CrossRef]
- Di Rosa, M.; Malaguarnera, M.; Nicoletti, F.; Malaguarnera, L. Vitamin D3: A helpful immuno-modulator. Immunology 2011, 134, 123–139. [Google Scholar] [CrossRef]
- Greiller, C.L.; Martineau, A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015, 7, 4240–4270. [Google Scholar] [CrossRef]
- Laird, E.; Rhodes, J.; Kenny, R.A. Vitamin D and inflammation: Potential implications for severity of COVID-19. Ir. Med. J. 2020, 113, 81. [Google Scholar]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Bui, L.; Zhu, Z.; Hawkins, S.; Cortez-Resendiz, A.; Bellon, A. Vitamin D regulation of the immune system and its implications for COVID-19: A mini review. SAGE Open Med. 2021, 9, 20503121211014073. [Google Scholar] [CrossRef]
- Argano, C.; Mallaci Bocchio, R.; Natoli, G.; Scibetta, S.; Lo Monaco, M.; Corrao, S. Protective Effect of Vitamin D Supplementation on COVID-19-Related Intensive Care Hospitalization and Mortality: Definitive Evidence from Meta-Analysis and Trial Sequential Analysis. Pharmaceuticals 2023, 16, 130. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Thangappazham, B.; Vykunta, A.; Duggina, P.; Manne, M.; Raj, H.; Aloori, S. COVID-19 and vitamin D (Co-VIVID study): A systematic review and meta-analysis of randomized controlled trials. Expert Rev. Anti-Infect. Ther. 2022, 20, 907–913. [Google Scholar] [CrossRef]
- Di Filippo, L.; Uygur, M.; Locatelli, M.; Nannipieri, F.; Frara, S.; Giustina, A. Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 2023, 80, 669–683. [Google Scholar] [CrossRef]
- Collet, P.; Uebelhart, D.; Vico, L.; Moro, L.; Hartmann, D.; Roth, M.; Alexandre, C. Effects of 1-and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997, 20, 547–551. [Google Scholar] [CrossRef]
- Iwamoto, J.; Takeda, T.; Sato, Y. Interventions to prevent bone loss in astronauts during space flight. Keio J. Med. 2005, 54, 55–59. [Google Scholar] [CrossRef]
- Sibonga, J.D.; Spector, E.R.; Johnston, S.L.; Tarver, W.J. Evaluating bone loss in ISS astronauts. Aerosp. Med. Hum. Perform. 2015, 86, A38–A44. [Google Scholar] [CrossRef]
- Knapp, K.M.; Rowlands, A.V.; Welsman, J.R.; MacLeod, K.M. Prolonged unilateral disuse osteopenia 14 years post external fixator removal: A case history and critical review. Case Rep. Med. 2010, 2010, 629020. [Google Scholar] [CrossRef]
- Gundry, M.; Hopkins, S.; Knapp, K. A review on bone mineral density loss in total knee replacements leading to increased fracture risk. Clin. Rev. Bone Miner. Metab. 2017, 15, 162–174. [Google Scholar] [CrossRef]
- Poole, K.E.; Warburton, E.A.; Reeve, J. Rapid long-term bone loss following stroke in a man with osteoporosis and atherosclerosis. Osteoporos. Int. 2005, 16, 302–305. [Google Scholar] [CrossRef]
- Hopkins, S.; Toms, A.; Brown, M.; Welsman, J.; Ukoumunne, O.; Knapp, K. A study investigating short-and medium-term effects on function, bone mineral density and lean tissue mass post-total knee replacement in a Caucasian female post-menopausal population: Implications for hip fracture risk. Osteoporos. Int. 2016, 27, 2567–2576. [Google Scholar] [CrossRef]
- Evans, R.A.; Morgan, M.D. The systemic nature of chronic lung disease. Clin. Chest Med. 2014, 35, 283–293. [Google Scholar] [CrossRef]
- Kondo, T.; Otsuka, Y.; Aoki, H.; Goto, Y.; Kawaguchi, Y.; Waguri-Nagaya, Y.; Miyazawa, K.; Goto, S.; Aoyama, M. The inducible nitric oxide synthase pathway promotes osteoclastogenesis under hypoxic culture conditions. Am. J. Pathol. 2021, 191, 2072–2079. [Google Scholar] [CrossRef]
- Brouqui, P.; Amrane, S.; Million, M.; Cortaredona, S.; Parola, P.; Lagier, J.-C.; Raoult, D. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int. J. Infect. Dis. 2021, 102, 233–238. [Google Scholar] [CrossRef]
- Kwaan, H.C.; Lindholm, P.F. The central role of fibrinolytic response in COVID-19—A hematologist’s perspective. Int. J. Mol. Sci. 2021, 22, 1283. [Google Scholar] [CrossRef]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Bitar, A.N.; Sulaiman, S.A.S.; Ali, I.A.B.H.; Khan, A.H. Prevalence, risk assessment, and predictors of osteoporosis among chronic obstructive pulmonary disease patients. J. Adv. Pharm. Technol. Res. 2021, 12, 395. [Google Scholar] [CrossRef]
- Axelsson, K.F.; Litsne, H.; Lorentzon, M. Fractures and fall injuries after hospitalization for seasonal influenza—A national retrospective cohort study. Osteoporos. Int. 2022, 33, 47–56. [Google Scholar] [CrossRef]
- Glesby, M.J. Bone disorders in human immunodeficiency virus infection. Clin. Infect. Dis. 2003, 37, S91–S95. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Fang, W.-H.; Wang, C.-C.; Kao, T.-W.; Chang, Y.-W.; Yang, H.-F.; Wu, C.-J.; Sun, Y.-S.; Chen, W.-L. Crosssectional assessment of bone mass density in adults with hepatitis B virus and hepatitis C virus infection. Sci. Rep. 2019, 9, 5069. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020, 8, 8. [Google Scholar] [CrossRef]
- Lau, E.; Chan, F.; Hui, D.; Wu, A.; Leung, P. Reduced bone mineral density in male severe acute respiratory syndrome (SARS) patients in Hong Kong. Bone 2005, 37, 420–424. [Google Scholar] [CrossRef]
- Selmi, C.; Gershwin, M.E. Diagnosis and classification of reactive arthritis. Autoimmun. Rev. 2014, 13, 546–549. [Google Scholar] [CrossRef]
- Siva, C.; Velazquez, C.; Mody, A.; Brasington, R. Diagnosing acute monoarthritis in adults: A practical approach for the family physician. Am. Fam. Physician 2003, 68, 83–90. [Google Scholar]
- Parisi, S.; Borrelli, R.; Bianchi, S.; Fusaro, E. Viral arthritis and COVID-19. Lancet Rheumatol. 2020, 2, e655–e657. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Baimukhamedov, C.; Barskova, T.; Matucci-Cerinic, M. Arthritis after SARS-CoV-2 infection. Lancet Rheumatol. 2021, 3, e324–e325. [Google Scholar] [CrossRef]
- Xiong, Q.; Xu, M.; Li, J.; Liu, Y.; Zhang, J.; Xu, Y.; Dong, W. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin. Microbiol. Infect. 2021, 27, 89–95. [Google Scholar] [CrossRef]
- Mukarram, M.S.; Ishaq Ghauri, M.; Sethar, S.; Afsar, N.; Riaz, A.; Ishaq, K. COVID-19: An emerging culprit of inflammatory arthritis. Case Rep. Rheumatol. 2021, 2021, 6610340. [Google Scholar] [CrossRef]
- Grassi, M.; Giorgi, V.; Nebuloni, M.; Zerbi, P.; Gismondo, M.R.; Salaffi, F.; Sarzi-Puttini, P.; Rimoldi, S.G.; Manzotti, A. SARS-CoV-2 in the knee joint: A cadaver study. Clin. Exp. Rheumatol. 2021, 40, 608–612. [Google Scholar] [CrossRef]
- Liew, I.Y.; Mak, T.M.; Cui, L.; Vasoo, S.; Lim, X.R. A Case of Reactive Arthritis Secondary to Coronavirus Disease 2019 Infection. JCR J. Clin. Rheumatol. 2020, 26, 233. [Google Scholar] [CrossRef]
- Yokogawa, N.; Minematsu, N.; Katano, H.; Suzuki, T. Case of acute arthritis following SARS-CoV-2 infection. Ann. Rheum. Dis. 2021, 80, e101. [Google Scholar] [CrossRef]
- Ono, K.; Kishimoto, M.; Shimasaki, T.; Uchida, H.; Kurai, D.; Deshpande, G.A.; Komagata, Y.; Kaname, S. Reactive arthritis after COVID-19 infection. RMD Open 2020, 6, e001350. [Google Scholar] [CrossRef]
- Kaeley, G.S.; Bakewell, C.; Deodhar, A. The importance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: A narrative review. Arthritis Res. Ther. 2020, 22, 1. [Google Scholar] [CrossRef]
- Filippucci, E.; Cipolletta, E.; Mashadi Mirza, R.; Carotti, M.; Giovagnoni, A.; Salaffi, F.; Tardella, M.; Di Matteo, A.; Di Carlo, M. Ultrasound imaging in rheumatoid arthritis. La Radiol. Medica 2019, 124, 1087–1100. [Google Scholar] [CrossRef]
- Nazarian, L.N. The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. Am. J. Roentgenol. 2008, 190, 1621. [Google Scholar] [CrossRef]
- Knight, K.; Fordham, R.; Crabtree, N.; Knapp, K. Evaluating the impact of COVID-19 on DXA waiting lists and osteoporosis prescription trends in England 2019–2023. Osteoporos. Int. 2024, 35, 1451–1460. [Google Scholar] [CrossRef]
- Alghamdi, F.; Owen, R.; Ashton, R.; Obotiba, A.; Meertens, R.; Hyde, E.; Faghy, M.; Knapp, K.; Rogers, P.; Strain, W. Post-acute COVID syndrome (long COVID): What should radiographers know and the potential impact for imaging services. Radiography 2022, 28, S93–S99. [Google Scholar] [CrossRef]
- Office for National Statistics. Prevalence of Ongoing Symptoms Following Coronavirus (COVID-19) Infection in the UK: 30 March 2023. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/30march2023 (accessed on 1 November 2023).
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Liu, S.-H.; Manachevakul, S.; Lee, T.-A.; Kuo, C.-T.; Bello, D. Biomarkers in long COVID-19: A systematic review. Front. Med. 2023, 10, 1085988. [Google Scholar] [CrossRef]
- Espín, E.; Yang, C.; Shannon, C.P.; Assadian, S.; He, D.; Tebbutt, S.J. Cellular and molecular biomarkers of long COVID: A scoping review. Ebiomedicine 2023, 91, 104552. [Google Scholar] [CrossRef]
- di Filippo, L.; Frara, S.; Nannipieri, F.; Cotellessa, A.; Locatelli, M.; Rovere Querini, P.; Giustina, A. Low vitamin D levels are associated with long COVID syndrome in COVID-19 survivors. J. Clin. Endocrinol. Metab. 2023, 108, e1106–e1116. [Google Scholar] [CrossRef]
- An Open-Label, Clinical Feasibility Study of the Efficacy of Remdesivir for Long-COVID. (ERASE-LC). 2024. Available online: https://clinicaltrials.gov/study/NCT05911906 (accessed on 2 September 2024).
- Yang, W.; Zilov, A.; Soewondo, P.; Bech, O.M.; Sekkal, F.; Home, P.D. Observational studies: Going beyond the boundaries of randomized controlled trials. Diabetes Res. Clin. Pract. 2010, 88, S3–S9. [Google Scholar] [CrossRef]
Keywords | |
---|---|
“SARS-CoV-2” | OR |
“COVID 19” | |
“Long COVID” | |
“long-haulers COVID-19” | |
“post-acute COVID-19” | |
“post-COVID syndrome” | |
“post-acute COVID-19 syndrome” | |
“post-acute COVID-19 sequelae” | |
“Persistent COVID-19 symptoms” | |
“Prolonged COVID-19” | |
“post-COVID-19 manifestations” | |
“Post-acute sequelae of COVID-19” | |
“PASC” | |
“Chronic COVID syndrome” | |
AND | |
“Bone Health” | OR |
“Bone Biomarkers” | |
“P1NP” | |
“CTX” | |
“BSAP” | |
“Bone Health Biomarkers” | |
“Bone Turnover Markers” | |
“Bone Density” | |
“Bone Mineral Density” | |
“Bone Densitometry” | |
“DEXA” | |
“DXA” | |
“Ultrasound” | |
“Ultrasonography” | |
“Musculoskeletal Ultrasound” | |
“MSK Ultrasound” | |
“Joints Ultrasound” | |
“Articular Ultrasound” | |
“Hand Ultrasound” | |
“Knee Ultrasound” |
Author, Year, Country | Study Design | Aim | Participation (Case/Control) | Age Mean (SD) | Male (%) | Comorbidities | Assessment | Hospitalisation | COVID-19 Status at Assessment | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|
(Kerschan-Schindl et al.,2023) Austria [36] | Case–Control | Evaluate the BTMs in COVID-19 patients requiring hospitalisation | 50 (25/25) | Median C: (67 [52; 81]) NC: (66 [53; 80.5]) | C: 44 NC: 44 | N/A | BTMs | Yes | Acute | - |
(Elmedany et al., 2022) Saudi Arabia [37] | Single-Centre Retrospective | Study the impact of COVID-19 infection on BMD in osteoporotic and osteopenic patients | 100 (56/44) | C: 62.84 ± 9.05 NC: 61.64 ± 6.10 | C: 26.8 NC: 25 | patients diagnosed with osteoporosis or osteopenia | DXA | N/A | 3 mo. post-infection | 9 mo. and 1 year |
(Berktas et al., 2022) Turkey [38] | Single-Centre Retrospective | Evaluate the impact of COVID-19 illness and treatment on the bone health of surviving patients | 58 (58/N/A) | C: 63.2 ± 9.6 | C: 69 | N/A | CT | Yes | Acute | mean of 81 days (±48) |
(Moga et al., 2022) Romania [39] | Prospective Cross-Sectional | Compare the presence of sarcopenia and osteoporosis in patients with recent COVID-19 infection to that of the general population | 157 (86/71) | C: 55.67 ± 4.43 65.45 ± 2.66 75.96 ± 3.26 NC: 55.50 ± 4.10 65.46 ± 33.92 76.15 ± 3.34 | C: 45.35 NC: 42.26 | patients with various musculoskeletal disorders (neurological or degenerative) | (DXA) | Yes | 1 mo. post-infection | - |
(Al-Azzawi et al., 2022) Iraq [40] | Case–Control | Determine if there is a disruption of bone homeostasis balance in Iraqi post-COVID-19 patients | 130 (80/50) | Women: 18–45 Men: 18–60 Median W: ([18; 45] 31) M: ([18; 60] 39) | N/A | N/A | (DXA and BTMs) | No | 3 mo. post-infection | - |
Bone Mineral Density Changes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Body Site | Modality | Acute | After 1 Month | After 3 Months | After 9 Months | After 21 Months | |||||||
(Elmedany et al., 2022) [37] Mean ± SD g/cm2 | Femur and lumbar vertebra | DXA | - | - | Lumbar vertebra | C | 0.96 ± 0.11 | Lumbar vertebra | C | 0.91 ± 0.11 | Lumbar vertebra | C | 0.96 ± 0.11 | |
NC | 0.92 ± 0.11 | NC | 0.92 ± 0.10 | NC | 0.96 ± 0.11 | |||||||||
Femur | C | 0.88 ± 0.12 | Femur | C | 0.84 ± 0.11 | Femur | C | 0.89 ± 0.13 | ||||||
NC | 0.89 ± 0.11 | NC | 0.88 ± 0.13 | NC | 0.89 ± 0.13 | |||||||||
(Berktas et al., 2022) [38] Mean ± SD mg/cm3 | T11, T12, and L1 vertebrae | CT | 119.2 ± 36.8 | - | 110.1 ± 38.5 | - | - | |||||||
(Moga et al., 2022) [39] T score ± SD g/cm2 | Femur and lumbar vertebra | DXA | - | C | −3.55 ± 0.72 | - | - | |||||||
NC | −2.09 ± 1.06 | |||||||||||||
(Al-Azzawi et al., 2022) [40] T score % Mean ± SD g/cm2 | Not specified | DXA | - | - | C | −0.43 ± 0.94 | - | - | ||||||
NC | 0.45 ± 0.64 |
Study | COVID Phase | Bone Turnover Markers | ||||
---|---|---|---|---|---|---|
(Kerschan-Schindl et al.,2023) [36] Median [quartiles] | Acute | Biomarker | COVID (n = 25) | Control (n = 25) | p Value | |
Resorption | CTX-1 [ng/mL] | 0.172 [0.097; 0.375] | 0.462 [0.300; 0.649] | 0.011 | ||
TRAP [U/L] | 2.782 [2.129; 3.505] | 3.335 [2.535; 4.224] | 0.115 | |||
Formation | OC [ng/mL] | 10.50 [6.49; 16.26] | 15.33 [11.85; 19.63] | 0.025 | ||
BAP [µg/L] | 14.98 [10.67; 17.81] | 14.98 [12.08; 18.96] | 0.840 | |||
Regulatory | SOST [pmol/L] | 37.52 [25.30; 60.11] | 27.98 [24.05; 39.24] | 0.025 | ||
Dkk1 [pmol/L] (n = 24) | 23.16 [19.77; 34.73] | 21.31 [15.04; 24.69 | 0.026 | |||
OPG [pmol/L] | 4.94 [3.39; 7.30] | 5.07 [3.15; 6.62] | 0.638 | |||
(Al-Azzawi et al., 2022) [40] Mean ± SD | After 3 months | Biomarker | COVID (n = 80) | Control (n = 50) | p Value | |
Regulatory | OPG (ng/mL) | 2.24 ± 1.0 | 0.7 ± 0.21 | 0.001 |
Study | Selection | Comparability | Outcome/Exposure | Overall Score |
---|---|---|---|---|
(Kerschan-Schindl et al., 2023) [36] | ** | * | *** | 6 stars [Low Risk] |
(Elmedany et al., 2022) [37] | **** | * | *** | 8 stars [Low Risk] |
(Berktas et al., 2022) [38] | * | ** | 3 stars [High Risk] | |
‡ (Moga et al., 2022) [39] | **** | * | *** | 8 stars [Low Risk] |
(Al-Azzawi et al., 2022) [40] | ** | *** | 5 stars [Medium Risk] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, F.; Mokbel, K.; Meertens, R.; Obotiba, A.D.; Alharbi, M.; Knapp, K.M.; Strain, W.D. Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review. Viruses 2024, 16, 1694. https://doi.org/10.3390/v16111694
Alghamdi F, Mokbel K, Meertens R, Obotiba AD, Alharbi M, Knapp KM, Strain WD. Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review. Viruses. 2024; 16(11):1694. https://doi.org/10.3390/v16111694
Chicago/Turabian StyleAlghamdi, Fahad, Kinan Mokbel, Robert Meertens, Abasiama Dick Obotiba, Mansour Alharbi, Karen M. Knapp, and William David Strain. 2024. "Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review" Viruses 16, no. 11: 1694. https://doi.org/10.3390/v16111694
APA StyleAlghamdi, F., Mokbel, K., Meertens, R., Obotiba, A. D., Alharbi, M., Knapp, K. M., & Strain, W. D. (2024). Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review. Viruses, 16(11), 1694. https://doi.org/10.3390/v16111694