Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screen for Iridovirus-Infected Stickleback
2.2. Genome Assembly and Annotation
2.3. Phylogenetic Analysis
2.4. Collinearity Analysis
2.5. Detection of TSIV in Stormy Lake and Wik Lake
3. Results
3.1. Screen for Iridovirus-Infected Stickleback
3.2. TSIV Genome Assembly and Annotations
3.3. Relationship of TSIV to Other Megalocytiviruses
3.4. B22 Phylogeny
3.5. Detection of TSIV in Stormy Lake and Wik Lake
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinchar, V.G.; Hick, P.; Ince, I.A.; Jancovich, J.K.; Marschang, R.; Qin, Q.; Subramaniam, K.; Waltzek, T.B.; Whittington, R.; Williams, T.; et al. ICTV Virus Taxonomy Profile: Iridoviridae. J. Gen. Virol. 2017, 98, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Goorha, R.; Murti, K.G. The Genome of Frog Virus 3, an Animal DNA Virus, is Circularly Permuted and Terminally Redundant. Proc. Natl. Acad. Sci. USA 1982, 79, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Eaton, H.E.; Metcalf, J.; Penny, E.; Tcherepanov, V.; Upton, C.; Brunetti, C.R. Comparative Genomic Analysis of the Family Iridoviridae: Re-Annotating and Defining the Core Set of Iridovirus Genes. Virol. J. 2007, 4, 11. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Lü, L.; Weng, S.P.; Huang, J.N.; Chan, S.-M.; He, J.G. Molecular Epidemiology and Phylogenetic Analysis of a Marine Fish Infectious Spleen and Kidney Necrosis Virus-like (ISKNV-like) Virus. Arch. Virol. 2007, 152, 763–773. [Google Scholar] [CrossRef]
- Inouye, K.; Yamano, K.; Maeno, Y.; Nakajima, H.; Matsuoka, M.; Wada, Y.; Antimachi, M. Iridovirus Infection of Cultured Red Sea Bream. Pagrus Major. Fish Pathol. 1992, 27, 19–27. [Google Scholar] [CrossRef]
- Chua, F.H.C.; Ng, M.L.; Ng, K.L.; Loo, J.J.; Wee, J.Y. Investigation of Outbreaks of a Novel Disease, ‘Sleepy Grouper Disease’, Affecting the Brown-Spotted Grouper, Epinephelus tauvina Forskal. J. Fish Dis. 1994, 17, 417–427. [Google Scholar] [CrossRef]
- He, J.G.; Wang, S.P.; Zeng, K.; Huang, Z.J.; Chan, S.-M. Systemic Disease Caused by an Iridovirus-like Agent in Cultured Mandarinfish, Siniperca chuatsi (Basilewsky), in China. J. Fish Dis. 2000, 23, 219–222. [Google Scholar] [CrossRef]
- Sudthongkong, C.; Miyata, M.; Miyazaki, T. Iridovirus Disease in Two Ornamental Tropical Freshwater Fishes: African Lampeye and Dwarf Gourami. Dis. Aquat. Org. 2002, 48, 163–173. [Google Scholar] [CrossRef]
- Chou, H.-Y.; Hsu, C.-C.; Peng, T.-Y. Isolation and Characterization of a Pathogenic Iridovirus from Cultured Grouper (Epinephelus sp.) in Taiwan. Fish Pathol. 1998, 33, 201–206. [Google Scholar] [CrossRef]
- Johan, C.A.C.; Zainathan, S.C. Megalocytiviruses in Ornamental Fish: A Review. Vet. World 2020, 13, 2565–2577. [Google Scholar] [CrossRef]
- Lopez-Porras, A.; Morales, J.A.; Alvarado, G.; Koda, S.A.; Camus, A.; Subramaniam, K.; Waltzek, T.B.; Soto, E. Red Seabream Iridovirus Associated with Cultured Florida Pompano Trachinotus carolinus Mortality in Central America. Dis. Aquat. Org. 2018, 130, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Koda, S.A.; Subramaniam, K.; Francis-Floyd, R.; Yanong, R.P.; Frasca, S.; Groff, J.M.; Popov, V.L.; Fraser, W.A.; Yan, A.; Mohan, S.; et al. Phylogenomic Characterization of Two Novel Members of the Genus Megalocytivirus from Archived Ornamental Fish Samples. Dis. Aquat. Org. 2018, 130, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Koda, S.A.; Subramaniam, K.; Groff, J.M.; Yanong, R.P.; Pouder, D.B.; Pedersen, M.; Pelton, C.; Garner, M.M.; Phelps, N.B.D.; Armien, A.G.; et al. Genetic Characterization of Infectious Spleen and Kidney Necrosis Virus in Banggai Cardinalfish Pterapogon kauderni Identified from Eight Separate Cases between 2000 and 2017. J. Fish Dis. 2023, 46, 795–802. [Google Scholar] [CrossRef]
- Anderson, I.; Prior, H.; Rodwell, B.; Harris, G. Iridovirus-like Virions in Imported Dwarf Gourami (Colisa lalia) with Systemic Amoebiasis. Aust. Vet. J. 1993, 70, 66–67. [Google Scholar] [CrossRef]
- Sriwanayos, P.; Francis-Floyd, R.; Stidworthy, M.F.; Petty, B.D.; Kelley, K.; Waltzek, T.B. Megalocytivirus Infection in Orbiculate Batfish Platax orbicularis. Dis. Aquat. Org. 2013, 105, 1–8. [Google Scholar] [CrossRef]
- Jung-Schroers, V.; Adamek, M.; Wohlsein, P.; Wolter, J.; Wedekind, H.; Steinhagen, D. First Outbreak of an Infection with Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Ornamental Fish in Germany. Dis. Aquat. Org. 2016, 119, 239–244. [Google Scholar] [CrossRef]
- Rodger, H.D.; Kobs, M.; Macartney, A.; Frerichs, G.N. Systemic Iridovirus Infection in Freshwater Angelfish, Pterophyllum scalare (Lichtenstein). J. Fish Dis. 1997, 20, 69–72. [Google Scholar] [CrossRef]
- Waltzek, T.B.; Marty, G.D.; Alfaro, M.E.; Bennett, W.R.; Garver, K.A.; Haulena, M.; Weber, E.S.; Hedrick, R.P. Systemic Iridovirus from Threespine Stickleback Gasterosteus aculeatus Represents a New Megalocytivirus Species (Family Iridoviridae). Dis. Aquat. Org. 2012, 98, 41–56. [Google Scholar] [CrossRef]
- Marcos-López, M.; Feist, S.W.; Hicks, R.; Noguera, P.A. Systemic Megalocytivirus Infection in Three-Spined Stickleback Gasterosteus aculeatus. Bull. Eur. Assoc. Fish Pathol. 2011, 31, 227–234. [Google Scholar]
- Bell, M.A.; Foster, S.A. The Evolutionary Biology of the Threespine Stickleback; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Reid, K.; Bell, M.A.; Veeramah, K.R. Threespine Stickleback: A Model System For Evolutionary Genomics. Annu. Rev. Genom. Hum. Genet. 2021, 22, 357–383. [Google Scholar] [CrossRef]
- Hahn, M.A.; Dheilly, N.M. Genome Characterization, Prevalence, and Transmission Mode of a Novel Picornavirus Associated with the Threespine Stickleback Fish (Gasterosteus aculeatus). J. Virol. 2019, 93, e02277-18. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.L.; Traxler, G.S.; Kieser, D.; Richard, J.; Dawe, S.C.; Shaw, R.W.; Prosperi-Porta, G.; Ketcheson, J.; Evelyn, T.P.T. Survey of Salmonid Pathogens in Ocean-Caught Fishes in British Columbia, Canada. J. Aquat. Anim. Health 1998, 10, 211–219. [Google Scholar] [CrossRef]
- Gagné, N.; MacKinnon, A.M.; Boston, L.; Souter, B.; Cook-Versloot, M.; Griffiths, S.; Olivier, G. Isolation of Viral Haemorrhagic Septicaemia Virus from Mummichog, Stickleback, Striped Bass and Brown Trout in Eastern Canada. J. Fish Dis. 2007, 30, 213–223. [Google Scholar] [CrossRef]
- Mao, J.; Green, D.E.; Fellers, G.; Chinchar, V.G. Molecular Characterization of Iridoviruses Isolated from Sympatric Amphibians and Fish. Virus Res. 1999, 63, 45–52. [Google Scholar] [CrossRef]
- Kurita, J.; Nakajima, K. Megalocytiviruses. Viruses 2012, 4, 521–538. [Google Scholar] [CrossRef] [PubMed]
- He, J.G.; Deng, M.; Weng, S.P.; Li, Z.; Zhou, S.Y.; Long, Q.X.; Wang, X.Z.; Chan, S.-M. Complete Genome Analysis of the Mandarin Fish Infectious Spleen and Kidney Necrosis Iridovirus. Virology 2001, 291, 126–139. [Google Scholar] [CrossRef]
- Kurita, J.; Nakajima, K.; Hirono, I.; Aoki, T. Complete Genome Sequencing of Red Sea Bream Iridovirus (RSIV). Fish. Sci. 2002, 68, 1113–1115. [Google Scholar] [CrossRef]
- Shi, C.-Y.; Wang, Y.-G.; Yang, S.-L.; Huang, J.; Wang, Q.-Y. The First Report of an Iridovirus-like Agent Infection in Farmed Turbot, Scophthalmus maximus, in China. Aquaculture 2004, 236, 11–25. [Google Scholar] [CrossRef]
- Song, J.-Y.; Kitamura, S.-I.; Jung, S.-J.; Miyadai, T.; Tanaka, S.; Fukuda, Y.; Kim, S.-R.; Oh, M.-J. Genetic Variation and Geographic Distribution of Megalocytiviruses. J. Microbiol. 2008, 46, 29–33. [Google Scholar] [CrossRef]
- de Groof, A.; Guelen, L.; Deijs, M.; van der Wal, Y.; Miyata, M.; Ng, K.S.; van Grinsven, L.; Simmelink, B.; Biermann, Y.; Grisez, L.; et al. A Novel Virus Causes Scale Drop Disease in Lates calcarifer. PLoS Pathog. 2015, 11, e1005074. [Google Scholar] [CrossRef]
- Halaly, M.A.; Subramaniam, K.; Koda, S.A.; Popov, V.L.; Stone, D.; Way, K.; Waltzek, T.B. Characterization of a Novel Megalocytivirus Isolated from European Chub (Squalius cephalus). Viruses 2019, 11, 440. [Google Scholar] [CrossRef] [PubMed]
- Roberts Kingman, G.A.; Vyas, D.N.; Jones, F.C.; Brady, S.D.; Chen, H.I.; Reid, K.; Milhaven, M.; Bertino, T.S.; Aguirre, W.E.; Heins, D.C.; et al. Predicting Future from Past: The Genomic Basis of Recurrent and Rapid Stickleback Evolution. Sci. Adv. 2021, 7, eabg5285. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A Self-Training Method for Prediction of Gene Starts in Microbial Genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Sipos, B.; Zhao, L. SeqKit2: A Swiss Army Knife for Sequence and Alignment Processing. iMeta 2024, 3, e191. [Google Scholar] [CrossRef]
- Noé, L.; Kucherov, G. YASS: Enhancing the Sensitivity of DNA Similarity Search. Nucleic Acids Res. 2005, 33, W540–W543. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Bianchini, G.; Sánchez-Baracaldo, P. TreeViewer: Flexible, Modular Software to Visualise and Manipulate Phylogenetic Trees. Ecol. Evol. 2024, 14, e10873. [Google Scholar] [CrossRef]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef]
- Hackl, T.; Ankenbrand, M.J.; van Adrichem, B. Gggenomes: A Grammar of Graphics for Comparative Genomics. R Package Version 1.0.1. 2024. Available online: https://github.com/thackl/gggenomes (accessed on 6 September 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Massengill, R. Stormy Lake Restoration: Invasive Northern Pike Eradication, 2012; Special Publication No. 17–18; Alaska Department of Fish and Game: Anchorage, Alaska, 2017. [Google Scholar]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval Estimation for a Binomial Proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
- Alzhanova, D.; Hammarlund, E.; Reed, J.; Meermeier, E.; Rawlings, S.; Ray, C.A.; Edwards, D.M.; Bimber, B.; Legasse, A.; Planer, S.; et al. T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence. PLoS Pathog. 2014, 10, e1004123. [Google Scholar] [CrossRef]
- Forsyth, K.S.; Roy, N.H.; Peauroi, E.; DeHaven, B.C.; Wold, E.D.; Hersperger, A.R.; Burkhardt, J.K.; Eisenlohr, L.C. Ectromelia-Encoded Virulence Factor C15 Specifically Inhibits Antigen Presentation to CD4+ T Cells Post Peptide Loading. PLoS Pathog. 2020, 16, e1008685. [Google Scholar] [CrossRef]
- Peauroi, E.M.; Carro, S.D.; Pei, L.; Reynoso, G.V.; Hickman, H.D.; Eisenlohr, L.C. The Ectromelia Virus Virulence Factor C15 Facilitates Early Viral Spread by Inhibiting NK Cell Contact. iScience 2022, 25, 105510. [Google Scholar] [CrossRef]
- Kim, B.; Nesvizhskii, A.I.; Rani, P.G.; Hahn, S.; Aebersold, R.; Ranish, J.A. The Transcription Elongation Factor TFIIS Is a Component of RNA Polymerase II Preinitiation Complexes. Proc. Natl. Acad. Sci. USA 2007, 104, 16068–16073. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, C.; Zou, X.; Zhao, M.; Xiao, W.; He, M.; He, L.; Yang, Q.; Geng, Y.; Yu, Z. Comparative Genomic Analysis Reveals New Evidence of Genus Boundary for Family Iridoviridae and Explores Qualified Hallmark Genes. Comput. Struct. Biotechnol. J. 2022, 20, 3493–3502. [Google Scholar] [CrossRef]
- Filée, J.; Pouget, N.; Chandler, M. Phylogenetic Evidence for Extensive Lateral Acquisition of Cellular Genes by Nucleocytoplasmic Large DNA Viruses. BMC Evol. Biol. 2008, 8, 320. [Google Scholar] [CrossRef]
- Irwin, N.A.T.; Pittis, A.A.; Richards, T.A.; Keeling, P.J. Systematic Evaluation of Horizontal Gene Transfer between Eukaryotes and Viruses. Nat. Microbiol. 2022, 7, 327–336. [Google Scholar] [CrossRef]
- Caprari, S.; Metzler, S.; Lengauer, T.; Kalinina, O.V. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses. Viruses 2015, 7, 5388–5409. [Google Scholar] [CrossRef]
- Kinsella, C.M.; van der Hoek, L. Vertebrate-Tropism of a Cressdnavirus Lineage Implicated by Poxvirus Gene Capture. Proc. Natl. Acad. Sci. USA 2023, 120, e2303844120. [Google Scholar] [CrossRef]
- Thomson, B.J.; Efstathiou, S.; Honess, R.W. Acquisition of the Human Adeno-Associated Virus Type-2 Rep Gene by Human Herpesvirus Type-6. Nature 1991, 351, 78–80. [Google Scholar] [CrossRef]
- Micheau, O.; Tschopp, J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef]
- Chung, J.Y.; Park, Y.C.; Ye, H.; Wu, H. All TRAFs Are Not Created Equal: Common and Distinct Molecular Mechanisms of TRAF-Mediated Signal Transduction. J. Cell Sci. 2002, 115, 679–688. [Google Scholar] [CrossRef]
- He, B.-L.; Yuan, J.-M.; Yang, L.-Y.; Xie, J.-F.; Weng, S.-P.; Yu, X.-Q.; He, J.-G. The Viral TRAF Protein (ORF111L) from Infectious Spleen and Kidney Necrosis Virus Interacts with TRADD and Induces Caspase 8-Mediated Apoptosis. PLoS ONE 2012, 7, e37001. [Google Scholar] [CrossRef]
- Chinchar, V.G.; Hyatt, A.; Miyazaki, T.; Williams, T. Family Iridoviridae: Poor Viral Relations No Longer. In Lesser Known Large dsDNA Viruses; Van Etten, J.L., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 328, pp. 123–170. ISBN 978-3-540-68618-7. [Google Scholar]
- Chinchar, V.G.; Bryan, L.; Wang, J.; Long, S.; Chinchar, G.D. Induction of Apoptosis in Frog Virus 3-Infected Cells. Virology 2003, 306, 303–312. [Google Scholar] [CrossRef]
- Tamošiūnaitė, A.; Weber, S.; Schippers, T.; Franke, A.; Xu, Z.; Jenckel, M.; Pfaff, F.; Hoffmann, D.; Newell, M.; Tischer, B.K.; et al. What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J. Virol. 2020, 94, e01625-19. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.E.; Earl, P.L.; Minai, M.; Moore, I.; Moss, B. A Homolog of the Variola Virus B22 Membrane Protein Contributes to Ectromelia Virus Pathogenicity in the Mouse Footpad Model. Virology 2017, 501, 107–114. [Google Scholar] [CrossRef]
- Johnson, P. Stormy and Daniels Lake Elodea Eradication Project: Supplemental Environmental Assessment; Alaska Department of Natural Resources: Palmer, Alaska, 2017. Available online: https://dnr.alaska.gov/ag/akpmc/invasives/pdf/Sport_supplementalEA_with_appendix_April2017.pdf (accessed on 20 October 2024).
- McKinnon, J.S.; Kitano, J.; Aubin-Horth, N. Gasterosteus, Anolis, Mus, and More: The Changing Roles of Vertebrate Models in Evolution and Behaviour. Evol. Ecol. Res. 2019, 20, 1–25. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoxsimer, A.M.; Offenberg, E.G.; Katzer, A.W.; Bell, M.A.; Massengill, R.L.; Kingsley, D.M. Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska. Viruses 2024, 16, 1663. https://doi.org/10.3390/v16111663
Yoxsimer AM, Offenberg EG, Katzer AW, Bell MA, Massengill RL, Kingsley DM. Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska. Viruses. 2024; 16(11):1663. https://doi.org/10.3390/v16111663
Chicago/Turabian StyleYoxsimer, Alyssa M., Emma G. Offenberg, Austin Wolfgang Katzer, Michael A. Bell, Robert L. Massengill, and David M. Kingsley. 2024. "Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska" Viruses 16, no. 11: 1663. https://doi.org/10.3390/v16111663
APA StyleYoxsimer, A. M., Offenberg, E. G., Katzer, A. W., Bell, M. A., Massengill, R. L., & Kingsley, D. M. (2024). Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska. Viruses, 16(11), 1663. https://doi.org/10.3390/v16111663