Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Cells
2.1.2. Plasmids
2.1.3. Antibodies
2.1.4. Virus
2.2. Cell Expansion and Transfection
2.3. In Vitro Assay of Mx1 Anti-SBV Activity
2.4. Data Analysis
3. Results
3.1. Effect of V5-Mx1 Proteins on Schmallenberg Virus NP Synthesis
3.2. Comparative Anti-SBV Activity among Different V5-Mx1 Proteins
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazear, H.; Schoggins, J.; Diamond, M. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef]
- Gao, S.; von der Malsburg, A.; Dick, A.; Faelber, K.; Schröder, G.F.; Haller, O.; Kochs, G.; Daumke, O. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 2011, 35, 514–525. [Google Scholar] [CrossRef]
- Lindenmann, J. Resistance of mice to mouse-adapted influenza A virus. Virology 1962, 16, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, J.; Hulpiau, P.; Saelens, X. Mx proteins: Antiviral gatekeepers that restrain the uninvited. Microbiol. Mol. Biol. Rev. 2013, 77, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Zav’yalov, V.; Hämäläinen-Laanaya, H.; Korpela, T.; Wahlroos, T. Interferon-Inducible Myxovirus Resistance Proteins: Potential Biomarkers for Differentiating Viral from Bacterial Infections. Clin. Chem. 2019, 65, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Calisher, C.H. History, Classification, and Taxonomy of Viruses in the Family Bunyaviridae. In The Bunyaviridae. The Viruses; Elliott, R.M., Ed.; Springer: Boston, MA, USA, 1996; pp. 1–17. [Google Scholar]
- King, A.; Adams, M.; Carstens, E.; Lefkowitz, E. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier Academic Press: San Diego, CA, USA, 2012; p. 651. [Google Scholar]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef]
- Ashique, S.; Sandhu, N.; Das, S.; Haque, S.; Koley, K. Global Comprehensive Outlook of Hantavirus Contagion on Humans: A Review. Infect. Disord. Drug Targets 2022, 22, e050122199975. [Google Scholar] [CrossRef]
- Odendaal, L.; Davis, S.; Venter, E. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021, 13, 709. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, N.; Charrel, N. An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin. Microbiol. Infect. 2020, 26, 1017–1023. [Google Scholar] [CrossRef]
- Soldan, S.S.; González-Scarano, F. Emerging infectious diseases: The Bunyaviridae. J. Neurovirol. 2005, 11, 412–423. [Google Scholar] [CrossRef]
- Hawman, D.; Feldmann, H. Crimean-Congo haemorrhagic fever virus. Nat. Rev. Microbiol. 2023, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Andersson, I.; Bladh, L.; Mousavi-Jazi, M.; Magnusson, K.E.; Lundkvist, A.; Haller, O.; Mirazimi, A. Human MxA protein inhibits the replication of Crimean-Congo hemorrhagic fever virus. J. Virol. 2004, 78, 4323–4329. [Google Scholar] [CrossRef] [PubMed]
- Bridgen, A.; Dalrymple, D.A.; Weber, F.; Elliott, R.M. Inhibition of Dugbe nairovirus replication by human MxA protein. Virus Res. 2004, 99, 47–50. [Google Scholar] [CrossRef]
- Frese, M.; Kochs, G.; Feldmann, H.; Hertkorn, C.; Haller, O. Inhibition of bunyaviruses, phleboviruses, and hantaviruses by human MxA protein. J. Virol. 1996, 70, 915–923. [Google Scholar] [CrossRef]
- Kanerva, M.; Melén, K.; Vaheri, A.; Julkunen, I. Inhibition of puumala and tula hantaviruses in Vero cells by MxA protein. Virology 1996, 224, 55–62. [Google Scholar] [CrossRef]
- Kochs, G.; Janzen, C.; Hohenberg, H.; Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl. Acad. Sci. USA 2002, 99, 3153–3158. [Google Scholar] [CrossRef]
- Hefti, H.P.; Frese, M.; Landis, H.; Di Paolo, C.; Aguzzi, A.; Haller, O.; Pavlovic, J. Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections. J. Virol. 1999, 73, 6984–6991. [Google Scholar] [CrossRef]
- Jin, H.K.; Yoshimatsu, K.; Takada, A.; Ogino, M.; Asano, A.; Arikawa, J.; Watanabe, T. Mouse Mx2 protein inhibits hantavirus but not influenza virus replication. Arch. Virol. 2001, 146, 41–49. [Google Scholar] [CrossRef]
- Sandrock, M.; Frese, M.; Haller, O.; Kochs, G. Interferon-induced rat Mx proteins confer resistance to Rift Valley fever virus and other arthropod-borne viruses. J. Interf. Cytokine Res. 2001, 21, 663–668. [Google Scholar] [CrossRef]
- Stertz, S.; Dittmann, J.; Blanco, J.C.G.; Pletneva, L.M.; Haller, O.; Kochs, G. The antiviral potential of interferon-induced cotton rat Mx proteins against orthomyxovirus (influenza), rhabdovirus, and bunyavirus. J. Interf. Cytokine Res. 2007, 27, 847–855. [Google Scholar] [CrossRef]
- Fuchs, J.; Hölzer, M.; Schilling, M.; Patzina, C.; Schoen, A.; Hoenen, T.; Zimmer, G.; Marz, M.; Weber, F.; Müller, M.A.; et al. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses. J. Virol. 2017, 91, e00361-17. [Google Scholar] [CrossRef] [PubMed]
- Wernike, K.; Aebischer, A.; Audonnet, J.C.; Beer, M. Vaccine development against Schmallenberg virus: From classical inactivated to modified-live to scaffold particle vaccines. One Health Outlook 2022, 4, 13. [Google Scholar] [CrossRef]
- Rasekh, M.; Sarani, A.; Jafari, A. First detection of Schmallenberg virus antibody in cattle population of eastern Iran. Vet. Res. Forum Int. Q. J. 2022, 13, 443–446. [Google Scholar]
- Balinandi, S.; Hayer, J.; Cholleti, H.; Wille, M.; Lutwama, J.J.; Malmberg, M.; Mugisha, L. Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda. Virus Res. 2022, 313, 198739. [Google Scholar] [CrossRef]
- Bayrou, C.; Garigliany, M.-M.; Sarlet, M.; Sartelet, A.; Cassart, D.; Desmecht, D. Natural intrauterine infection with Schmallenberg virus in malformed newborn calves. Emerg. Infect. Dis. 2014, 20, 1327–1330. [Google Scholar] [CrossRef]
- Martinelle, L.; Dal Pozzo, F.; Gauthier, B.; Kirschvink, N.; Saegerman, C. Field veterinary survey on clinical and economic impact of Schmallenberg virus in Belgium. Transbound. Emerg. Dis. 2014, 61, 285–288. [Google Scholar] [CrossRef]
- Tilston-Lunel, N.L.; Shi, X.; Elliott, R.M.; Acrani, G.O. The Potential for Reassortment between Oropouche and Schmallenberg Orthobunyaviruses. Viruses 2017, 9, 220. [Google Scholar] [CrossRef]
- Dam Van, P.; Desmecht, D.; Garigliany, M.-M.; Bui Tran Anh, D.; Van Laere, A.-S. Anti-Influenza A Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. J. Interf. Cytokine Res. 2019, 39, 274–282. [Google Scholar] [CrossRef]
- Babiker, H.a.E.; Nakatsu, Y.; Yamada, K.; Yoneda, A.; Takada, A.; Ueda, J.; Hata, H.; Watanabe, T. Bovine and water buffalo Mx2 genes: Polymorphism and antiviral activity. Immunogenetics 2007, 59, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Baise, E.; Pire, G.; Leroy, M.; Gérardin, J.; Goris, N.; De Clercq, K.; Kerkhofs, P.; Desmecht, D. Conditional expression of type I interferon-induced bovine Mx1 GTPase in a stable transgenic vero cell line interferes with replication of vesicular stomatitis virus. J. Interf. Cytokine Res. 2004, 24, 513–521. [Google Scholar] [CrossRef]
- Yamada, K.; Nakatsu, Y.; Onogi, A.; Ueda, J.; Watanabe, T. Specific intracellular localization and antiviral property of genetic and splicing variants in bovine Mx1. Viral Immunol. 2009, 22, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Leroy, M.; Pire, G.; Baise, E.; Desmecht, D. Expression of the interferon- alpha/beta-inducible bovine Mx1 dynamin interferes with replication of rabies virus. Neurobiol. Dis. 2006, 21, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Leroy, M.; Baise, E.; Pire, G.; Gérardin, J.; Desmecht, D. Resistance of paramyxoviridae to type I interferon-induced Bos taurus Mx1 dynamin. J. Interf. Cytokine Res. 2005, 25, 192–201. [Google Scholar] [CrossRef]
- Dermine, M.; Desmecht, D. In Vivo modulation of the innate response to pneumovirus by type-I and -III interferon-induced Bos taurus Mx1. J. Interf. Cytokine Res. 2012, 32, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Piras, I.M.; Mullan, C.; Shi, X.; Tilston-Lunel, N.L.; Pinto, R.M.; Taggart, A.; Welch, S.R.; Neil, S.J.D.; Kreher, F.; et al. Sensitivity to BST-2 restriction correlates with Orthobunyavirus host range. Virology 2017, 509, 121–130. [Google Scholar] [CrossRef]
- Lear, T.L.; Breen, M.; Ponce de Leon, F.A.; Coogle, L.; Ferguson, E.M.; Chambers, T.M.; Bailey, E. Cloning and chromosomal localization of MX1 and ETS2 to chromosome 26 of the horse (Equus caballus). Chromosome Res. 1998, 6, 333–335. [Google Scholar] [CrossRef]
- Heinz, H.; Marquardt, J.; Schuberth, H.J.; Adolf, G.R.; Leibold, W. Proteins induced by recombinant equine interferon-beta 1 within equine peripheral blood mononuclear cells and polymorphonuclear neutrophilic granulocytes. Vet. Immunol. Immunopathol. 1994, 42, 221–235. [Google Scholar] [CrossRef]
- Wagner, V.; Sabachvili, M.; Bendl, E.; Fuchs, J. The Antiviral Activity of Equine Mx1 against Thogoto Virus Is Determined by the Molecular Structure of Its Viral Specificity Region. J. Virol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Thomas, A.V.; Palm, M.; Broers, A.D.; Zezafoun, H.; Desmecht, D. Genomic structure, promoter analysis, and expression of the porcine (Sus scrofa) Mx1 gene. Immunogenetics 2006, 58, 383–389. [Google Scholar] [CrossRef]
- Nakajima, E.; Morozumi, T.; Tsukamoto, K.; Watanabe, T.; Plastow, G.; Mitsuhashi, T. A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro. Biochem. Genet. 2007, 45, 11–24. [Google Scholar] [CrossRef]
- Palm, M.; Leroy, M.; Thomas, A.; Linden, A.; Desmecht, D. Differential anti-influenza activity among allelic variants at the Sus scrofa Mx1 locus. J. Interf. Cytokine Res. 2007, 27, 147–155. [Google Scholar] [CrossRef]
- Palm, M.; Garigliany, M.-M.; Cornet, F.; Desmecht, D. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles. Vet. Res. 2010, 41, 29. [Google Scholar] [CrossRef]
- Chen, J.; Hu, J.H.; Sun, R.C.; Li, X.H.; Zhou, J.; Zhou, B. Porcine Mx proteins inhibit pseudorabies virus replication through interfering with early gene synthesis. Vet. Microbiol. 2023, 280, 109706. [Google Scholar] [CrossRef]
- Gao, H.; Xiang, Z.; Ge, X.; Zhou, L.; Han, J.; Guo, X.; Chen, Y.; Zhang, Y.; Yang, H. Comparative Proteomic Analysis Reveals Mx1 Inhibits Senecavirus A Replication in PK-15 Cells by Interacting with the Capsid Proteins VP1, VP2 and VP3. Viruses 2022, 14, 863. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.; Zhang, X.M.; Gao, Z.C.; Liu, C.C.; Zhang, Y.N.; Hou, J.X.; Li, Z.Y.; Kan, L.; Li, W.L.; et al. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B. J. Virol. 2018, 92, e02147-17. [Google Scholar] [CrossRef]
- Shi, H.; Fu, Q.; Ren, Y.; Wang, D.; Qiao, J.; Wang, P.; Zhang, H.; Chen, C. Both foot-and-mouth disease virus and bovine viral diarrhea virus replication are inhibited by Mx1 protein originated from porcine. Anim. Biotechnol. 2015, 26, 73–79. [Google Scholar] [CrossRef]
- Nakamura, T.; Asano, A.; Okano, S.; Ko, J.-H.; Kon, Y.; Watanabe, T.; Agui, T. Intracellular localization and antiviral property of canine Mx proteins. J. Interf. Cytokine Res. 2005, 25, 169–173. [Google Scholar] [CrossRef]
- Frensing, T.; Seitz, C.; Heynisch, B.; Patzina, C.; Kochs, G.; Reichl, U. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK cells. Vaccine 2011, 29, 7125–7129. [Google Scholar] [CrossRef]
- Seitz, C.; Frensing, T.; Höper, D.; Kochs, G.; Reichl, U. High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J. Gen. Virol. 2010, 91, 1754–1763. [Google Scholar] [CrossRef]
- Frese, M.; Prins, M.; Ponten, A.; Goldbach, R.W.; Haller, O.; Zeltz, P. Constitutive expression of interferon-induced human MxA protein in transgenic tobacco plants does not confer resistance to a variety of RNA viruses. Transgenic Res. 2000, 9, 429–438. [Google Scholar] [CrossRef]
- Reichelt, M.; Stertz, S.; Krijnse-Locker, J.; Haller, O.; Kochs, G. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes: Membrane association of antivirally active MxA GTPase. Traffic 2004, 5, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Hacker, D.; Raju, R.; Kolakofsky, D. La Crosse virus nucleocapsid protein controls its own synthesis in mosquito cells by encapsidating its mRNA. J. Virol. 1989, 63, 5166–5174. [Google Scholar] [CrossRef] [PubMed]
- Schmaljohn, C.; Nichol, S.T. Hantaviruses; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Habjan, M.; Penski, N.; Wagner, V.; Spiegel, M.; Overby, A.K.; Kochs, G.; Huiskonen, J.T.; Weber, F. Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 2009, 385, 400–408. [Google Scholar] [CrossRef]
- Hollidge, B.; Nedelsky, N.; Salzano, M.; Fraser, J.; González-Scarano, F.; Soldan, S. Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J. Virol. 2012, 86, 7988–8001. [Google Scholar] [CrossRef]
- Hinshaw, J.E. Dynamin and its Role in Membrane Fission. Annu. Rev. Cell Dev. Biol. 2000, 16, 483–519. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayrou, C.; Van Laere, A.-S.; Dam Van, P.; Moula, N.; Garigliany, M.-M.; Desmecht, D. Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. Viruses 2023, 15, 1055. https://doi.org/10.3390/v15051055
Bayrou C, Van Laere A-S, Dam Van P, Moula N, Garigliany M-M, Desmecht D. Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. Viruses. 2023; 15(5):1055. https://doi.org/10.3390/v15051055
Chicago/Turabian StyleBayrou, Calixte, Anne-Sophie Van Laere, Phai Dam Van, Nassim Moula, Mutien-Marie Garigliany, and Daniel Desmecht. 2023. "Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species" Viruses 15, no. 5: 1055. https://doi.org/10.3390/v15051055
APA StyleBayrou, C., Van Laere, A.-S., Dam Van, P., Moula, N., Garigliany, M.-M., & Desmecht, D. (2023). Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. Viruses, 15(5), 1055. https://doi.org/10.3390/v15051055