Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Patients (symptomatic or asymptomatic) diagnosed with COVID-19, confirmed by molecular technique (RT-PCR).
- The CP apheresis started at least 14 days after complete recovery or 14 days after a negative nasopharyngeal swab testing for the presence of SARS-CoV-2 RNA and with the donor having two negative tests within 24 h.
- The donors fulfilled the general criteria for whole blood donation or apheresis (age between 18 and 60 years, hemoglobin ≥12.5 g/dL for women and ≥13.5 g/dL for men, heart rate between 50 and 100/min with no irregularities, blood pressure—systolic 100–180 mm Hg and diastolic 50–100 mm Hg, temperature < 37.5 °C, body weight ≥ 50 kg and donor being in a healthy general condition both physically and mentally.
- In addition, the CP donors were required not to have a history of blood transfusion and women CP donors were required not to have a history of pregnancy. In other cases, tests for the presence of anti-HLA antibodies (anti-HLA), anti-human neutrophil antigens antibodies (anti-HNA) and anti-human platelet antigens antibodies (anti-HPA) were performed and were required to be negative.
- Donors were tested with ELISA for the presence of antibodies against SARS-CoV-2 and were also tested with serology and molecular testing for blood-borne pathogens (HIV, HBV, HCV, HTLV, syphilis) which was required to be negative.
2.2. Statistics
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in Persons with Haematological Cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef]
- Martín-Moro, F.; Marquet, J.; Piris, M.; Michael, B.M.; Sáez, A.J.; Corona, M.; Jiménez, C.; Astibia, B.; García, I.; Rodríguez, E.; et al. Survival Study of Hospitalised Patients with Concurrent COVID-19 and Haematological Malignancies. Br. J. Haematol. 2020, 190, e16–e20. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 Infection in Adult Patients with Hematological Malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef]
- Wang, L.; Kaelber, D.C.; Xu, R.; Berger, N.A. COVID-19 Breakthrough Infections, Hospitalizations and Mortality in Fully Vaccinated Patients with Hematologic Malignancies: A Clarion Call for Maintaining Mitigation and Ramping-up Research. Blood Rev. 2022, 54, 100931. [Google Scholar] [CrossRef]
- Jones, J.; Faruqi, A.; Sullivan, J.; Calabrese, C.; Calabrese, L. COVID-19 Outcomes in Patients Undergoing B Cell Depletion Therapy and Those with Humoral Immunodeficiency States: A Scoping Review. Pathog. Immun. 2021, 6, 76–103. [Google Scholar] [CrossRef]
- Bose, G.; Galetta, K. Reactivation of SARS-CoV-2 after Rituximab in a Patient with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 52, 102922. [Google Scholar] [CrossRef]
- van Kempen, Z.L.E.; Strijbis, E.M.M.; Al, M.M.C.T.; Steenhuis, M.; Uitdehaag, B.M.J.; Rispens, T.; Killestein, J. SARS-CoV-2 Antibodies in Adult Patients with Multiple Sclerosis in the Amsterdam MS Cohort. JAMA Neurol. 2021, 78, 880. [Google Scholar] [CrossRef]
- Yetmar, Z.A.; Khodadadi, R.B.; Seville, M.T.; Brumble, L.; O’Horo, J.C.; Ganesh, R.; Razonable, R.R. Outcomes of B-Cell-Depleted Patients with Coronavirus Disease 2019 Treated with Antispike Monoclonal Antibodies. Open Forum Infect. Dis. 2022, 9, ofac204. [Google Scholar] [CrossRef]
- Ormazabal Vélez, I.; Induráin Bermejo, J.; Espinoza Pérez, J.; Imaz Aguayo, L.; Delgado Ruiz, M.; García-Erce, J.A. Two Patients with Rituximab Associated Low Gammaglobulin Levels and Relapsed COVID-19 Infections Treated with Convalescent Plasma. Transfus. Apher. Sci. 2021, 60, 103104. [Google Scholar] [CrossRef]
- Cheng, Y.; Wong, R.; Soo, Y.O.Y.; Wong, W.S.; Lee, C.K.; Ng, M.H.L.; Chan, P.; Wong, K.C.; Leung, C.B.; Cheng, G. Use of Convalescent Plasma Therapy in SARS Patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 44–46. [Google Scholar] [CrossRef]
- Lanza, F.; Seghatchian, J. Reflection on Passive Immunotherapy in Those Who Need Most: Some Novel Strategic Arguments for Obtaining Safer Therapeutic Plasma or Autologous Antibodies from Recovered COVID-19 Infected Patients. Br. J. Haematol. 2020, 190, e27–e29. [Google Scholar] [CrossRef]
- Joyner, M.J.; Wright, R.S.; Fairweather, D.; Senefeld, J.W.; Bruno, K.A.; Klassen, S.A.; Carter, R.E.; Klompas, A.M.; Wiggins, C.C.; Shepherd, J.R.; et al. Early Safety Indicators of COVID-19 Convalescent Plasma in 5000 Patients. J. Clin. Investig. 2020, 130, 4791–4797. [Google Scholar] [CrossRef]
- Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am. J. Pathol. 2020, 190, 1680–1690. [Google Scholar] [CrossRef]
- Simonovich, V.A.; Burgos Pratx, L.D.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in COVID-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef]
- Dolscheid-Pommerich, R.; Bartok, E.; Renn, M.; Kümmerer, B.M.; Schulte, B.; Schmithausen, R.M.; Stoffel-Wagner, B.; Streeck, H.; Saschenbrecker, S.; Steinhagen, K.; et al. Correlation between a Quantitative Anti-SARS-CoV-2 IgG ELISA and Neutralization Activity. J. Med. Virol. 2022, 94, 388–392. [Google Scholar] [CrossRef]
- Richards, F.; Kodjamanova, P.; Chen, X.; Li, N.; Atanasov, P.; Bennetts, L.; Patterson, B.J.; Yektashenas, B.; Mesa-Frias, M.; Tronczynski, K.; et al. Economic Burden of COVID-19: A Systematic Review. ClinicoEcon. Outcomes Res. 2022, 14, 293–307. [Google Scholar] [CrossRef]
- An, X.; Xiao, L.; Yang, X.; Tang, X.; Lai, F.; Liang, X.-H. Economic Burden of Public Health Care and Hospitalisation Associated with COVID-19 in China. Public Health 2022, 203, 65–74. [Google Scholar] [CrossRef]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and Healthcare Burden of COVID-19 in the United States. Nat. Med. 2020, 26, 1212–1217. [Google Scholar] [CrossRef]
- Menges, D.; Ballouz, T.; Anagnostopoulos, A.; Aschmann, H.E.; Domenghino, A.; Fehr, J.S.; Puhan, M.A. Burden of Post-COVID-19 Syndrome and Implications for Healthcare Service Planning: A Population-Based Cohort Study. PLoS ONE 2021, 16, e0254523. [Google Scholar] [CrossRef]
- Belli, S.; Balbi, B.; Prince, I.; Cattaneo, D.; Masocco, F.; Zaccaria, S.; Bertalli, L.; Cattini, F.; Lomazzo, A.; Dal Negro, F.; et al. Low Physical Functioning and Impaired Performance of Activities of Daily Life in COVID-19 Patients Who Survived Hospitalisation. Eur. Respir. J. 2020, 56, 2002096. [Google Scholar] [CrossRef]
- Knight, S.C.; McCurdy, S.R.; Rhead, B.; Coignet, M.V.; Park, D.S.; Roberts, G.H.L.; Berkowitz, N.D.; Zhang, M.; Turissini, D.; Delgado, K.; et al. COVID-19 Susceptibility and Severity Risks in a Cross-Sectional Survey of over 500 000 US Adults. BMJ Open 2022, 12, e049657. [Google Scholar] [CrossRef]
- SeyedAlinaghi, S.; Mehrtak, M.; MohsseniPour, M.; Mirzapour, P.; Barzegary, A.; Habibi, P.; Moradmand-Badie, B.; Afsahi, A.M.; Karimi, A.; Heydari, M.; et al. Genetic Susceptibility of COVID-19: A Systematic Review of Current Evidence. Eur. J. Med. Res. 2021, 26, 46. [Google Scholar] [CrossRef]
- Kerner, G.; Quintana-Murci, L. The Genetic and Evolutionary Determinants of COVID-19 Susceptibility. Eur. J. Hum. Genet. 2022, 30, 915–921. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Eser, F.; Kalem, A.K.; Kaya, G.; Kaplan, B.; Kacar, D.; Hasanoglu, I.; Coskun, B.; Guner, R. Post-COVID Syndrome: A Single-Center Questionnaire Study on 1007 Participants Recovered from COVID-19. J. Med. Virol. 2021, 93, 6566–6574. [Google Scholar] [CrossRef]
- Levavi, H.; Lancman, G.; Gabrilove, J. Impact of Rituximab on COVID-19 Outcomes. Ann. Hematol. 2021, 100, 2805–2812. [Google Scholar] [CrossRef]
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Okwan-Duodu, D.; Basho, R.; Cui, X. COVID-19 in Cancer Patients: Risk, Clinical Features, and Management. Cancer Biol. Med. 2020, 17, 519–527. [Google Scholar] [CrossRef]
- Caillard, S.; Chavarot, N.; Francois, H.; Matignon, M.; Greze, C.; Kamar, N.; Gatault, P.; Thaunat, O.; Legris, T.; Frimat, L.; et al. Is COVID-19 Infection More Severe in Kidney Transplant Recipients? Am. J. Transplant. 2021, 21, 1295–1303. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, S.-H.; Yun, K.W. Risk Factors for Severe COVID-19 in Children: A Systematic Review and Meta-Analysis. J. Korean Med. Sci. 2022, 37, e35. [Google Scholar] [CrossRef]
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; et al. B-Cell Depletion with Rituximab in Relapsing-Remitting Multiple Sclerosis. N. Engl. J. Med. 2008, 358, 676–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnas, J.L.; Looney, R.J.; Anolik, J.H. B Cell Targeted Therapies in Autoimmune Disease. Curr. Opin. Immunol. 2019, 61, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadou, S.; Chowdhury, F.; Pontarini, E.; Tappuni, A.; Bowman, S.J.; Bombardieri, M. B Cell Depletion with Rituximab in the Treatment of Primary Sjögren’s Syndrome: What Have We Learnt? Clin. Exp. Rheumatol. 2019, 37 (Suppl. S118), 217–224. [Google Scholar] [PubMed]
- Gregersen, J.W.; Jayne, D.R.W. B-Cell Depletion in the Treatment of Lupus Nephritis. Nat. Rev. Nephrol. 2012, 8, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Sanz, I.; Anolik, J.H.; Looney, R.J. B Cell Depletion Therapy in Autoimmune Diseases. Front. Biosci. 2007, 12, 2546–2567. [Google Scholar] [CrossRef]
- Anolik, J.; Sanz, I.; Looney, R.J. B Cell Depletion Therapy in Systemic Lupus Erythematosus. Curr. Rheumatol. Rep. 2003, 5, 350–356. [Google Scholar] [CrossRef]
- Salles, G.; Barrett, M.; Foà, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S. Obinutuzumab: A Review in Rituximab-Refractory or -Relapsed Follicular Lymphoma. Target. Oncol. 2017, 12, 255–262. [Google Scholar] [CrossRef]
- Sacco, K.A.; Abraham, R.S. Consequences of B-Cell-Depleting Therapy: Hypogammaglobulinemia and Impaired B-Cell Reconstitution. Immunotherapy 2018, 10, 713–728. [Google Scholar] [CrossRef]
- Chen, X.; Jensen, P.E. The Role of B Lymphocytes as Antigen-Presenting Cells. Arch. Immunol. Ther. Exp. 2008, 56, 77–83. [Google Scholar] [CrossRef]
- Daoussis, D.; Leonidou, L.; Kalogeropoulou, C.; Paliogianni, F.; Tzouvelekis, A. Protracted Severe COVID-19 Pneumonia Following Rituximab Treatment: Caution Needed. Rheumatol. Int. 2021, 41, 1839–1843. [Google Scholar] [CrossRef]
- Loarce-Martos, J.; García-Fernández, A.; López-Gutiérrez, F.; García-García, V.; Calvo-Sanz, L.; Del Bosque-Granero, I.; Terán-Tinedo, M.A.; Boteanu, A.; Bachiller-Corral, J.; Vázquez-Díaz, M. High Rates of Severe Disease and Death Due to SARS-CoV-2 Infection in Rheumatic Disease Patients Treated with Rituximab: A Descriptive Study. Rheumatol. Int. 2020, 40, 2015–2021. [Google Scholar] [CrossRef]
- Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E.J.; Armistead, I.; Bennett, N.M.; Billing, L.; Como-Sabetti, K.; et al. Risk Factors for Intensive Care Unit Admission and In-Hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect. Dis. 2021, 72, e206–e214. [Google Scholar] [CrossRef]
- Gray, W.K.; Navaratnam, A.V.; Day, J.; Wendon, J.; Briggs, T.W.R. COVID-19 Hospital Activity and in-Hospital Mortality during the First and Second Waves of the Pandemic in England: An Observational Study. Thorax 2022, 77, 1113–1120. [Google Scholar] [CrossRef]
- Perazzo, H.; Cardoso, S.W.; Ribeiro, M.P.D.; Moreira, R.; Coelho, L.E.; Jalil, E.M.; Japiassú, A.M.; Gouvêa, E.P.; Nunes, E.P.; Andrade, H.B.; et al. In-Hospital Mortality and Severe Outcomes after Hospital Discharge Due to COVID-19: A Prospective Multicenter Study from Brazil. Lancet Reg. Health-Am. 2022, 11, 100244. [Google Scholar] [CrossRef]
- Naorungroj, T.; Viarasilpa, T.; Tongyoo, S.; Detkaew, A.; Pinpak, T.; Wimolwattanaphan, R.; Ratanarat, R.; Promsin, P.; Thamrongpiroj, P.; Phumpichet, A.; et al. Characteristics, Outcomes, and Risk Factors for in-Hospital Mortality of COVID-19 Patients: A Retrospective Study in Thailand. Front. Med. 2022, 9, 1061955. [Google Scholar] [CrossRef]
- Spanakis, M.; Ioannou, P.; Tzalis, S.; Papakosta, V.; Patelarou, E.; Tzanakis, N.; Patelarou, A.; Kofteridis, D.P. Drug-Drug Interactions among Patients Hospitalized with COVID-19 in Greece. J. Clin. Med. 2022, 11, 7172. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Blennow, O.; Gomes da Silva, M.; Glenthøj, A.; van Doesum, J.; Bilgin, Y.M.; López-García, A.; Itri, F.; et al. Breakthrough COVID-19 in Vaccinated Patients with Hematologic Malignancies: Results from the EPICOVIDEHA Survey. Blood 2022, 140, 2773–2787. [Google Scholar] [CrossRef]
- Ioannou, P.; Karakonstantis, S.; Kofteridis, D.P. Admissions in a Medical Ward and Factors Independently Associated with Mortality. Eur. J. Intern. Med. 2022, 98, 117–118. [Google Scholar] [CrossRef]
- Kenig, A.; Ishay, Y.; Kharouf, F.; Rubin, L. Treatment of B-Cell Depleted COVID-19 Patients with Convalescent Plasma and Plasma-Based Products. Clin. Immunol. 2021, 227, 108723. [Google Scholar] [CrossRef]
- Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; et al. Deployment of Convalescent Plasma for the Prevention and Treatment of COVID-19. J. Clin. Investig. 2020, 130, 2757–2765. [Google Scholar] [CrossRef] [Green Version]
- Clark, E.; Guilpain, P.; Filip, I.L.; Pansu, N.; Le Bihan, C.; Cartron, G.; Tchernonog, E.; Roubille, C.; Morquin, D.; Makinson, A.; et al. Convalescent Plasma for Persisting COVID-19 Following Therapeutic Lymphocyte Depletion: A Report of Rapid Recovery. Br. J. Haematol. 2020, 190, e154–e156. [Google Scholar] [CrossRef]
- Betrains, A.; Godinas, L.; Woei-A-Jin, F.J.S.H.; Rosseels, W.; Van Herck, Y.; Lorent, N.; Dierickx, D.; Compernolle, V.; Meyfroidt, G.; Vanderbeke, L.; et al. Convalescent Plasma Treatment of Persistent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in Patients with Lymphoma with Impaired Humoral Immunity and Lack of Neutralising Antibodies. Br. J. Haematol. 2021, 192, 1100–1105. [Google Scholar] [CrossRef]
- Kremer, A.E.; Kremer, A.N.; Willam, C.; Völkl, S.; Verhagen, J.; Achenbach, S.; Meijden, E.D.; Lang, V.; Aigner, M.; Maier, C.; et al. Successful Treatment of COVID-19 Infection with Convalescent Plasma in B-cell-depleted Patients May Promote Cellular Immunity. Eur. J. Immunol. 2021, 51, 2478–2484. [Google Scholar] [CrossRef]
- Libster, R.; Pérez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Korley, F.K.; Durkalski-Mauldin, V.; Yeatts, S.D.; Schulman, K.; Davenport, R.D.; Dumont, L.J.; El Kassar, N.; Foster, L.D.; Hah, J.M.; Jaiswal, S.; et al. Early Convalescent Plasma for High-Risk Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, 1951–1960. [Google Scholar] [CrossRef]
- Ljungquist, O.; Lundgren, M.; Iliachenko, E.; Månsson, F.; Böttiger, B.; Landin-Olsson, M.; Wikén, C.; Rosendal, E.; Överby, A.K.; Wigren, B.J.; et al. Convalescent Plasma Treatment in Severely Immunosuppressed Patients Hospitalized with COVID-19: An Observational Study of 28 Cases. Infect. Dis. 2022, 54, 283–291. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Klassen, S.A.; Ford, S.K.; Senese, K.A.; Wiggins, C.C.; Bostrom, B.C.; Thompson, M.A.; Baker, S.E.; Nicholson, W.T.; Johnson, P.W.; et al. Use of Convalescent Plasma in COVID-19 Patients with Immunosuppression. Transfusion 2021, 61, 2503–2511. [Google Scholar] [CrossRef]
- Fung, M.; Nambiar, A.; Pandey, S.; Aldrich, J.M.; Teraoka, J.; Freise, C.; Roberts, J.; Chandran, S.; Hays, S.R.; Bainbridge, E.; et al. Treatment of Immunocompromised COVID-19 Patients with Convalescent Plasma. Transpl. Infect. Dis. 2021, 23, e13477. [Google Scholar] [CrossRef]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. Association of Convalescent Plasma Therapy with Survival in Patients with Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167. [Google Scholar] [CrossRef]
- Iannizzi, C.; Chai, K.L.; Piechotta, V.; Valk, S.J.; Kimber, C.; Monsef, I.; Wood, E.M.; Lamikanra, A.A.; Roberts, D.J.; McQuilten, Z.; et al. Convalescent Plasma for People with COVID-19: A Living Systematic Review. Cochrane Database Syst. Rev. 2023, 2, CD013600. [Google Scholar] [CrossRef]
- Delgado-Fernández, M.; García-Gemar, G.M.; Fuentes-López, A.; Muñoz-Pérez, M.I.; Oyonarte-Gómez, S.; Ruíz-García, I.; Martín-Carmona, J.; Sanz-Cánovas, J.; Castaño-Carracedo, M.Á.; Reguera-Iglesias, J.M.; et al. Treatment of COVID-19 with Convalescent Plasma in Patients with Humoral Immunodeficiency—Three Consecutive Cases and Review of the Literature. Enferm. Infecc. Y Microbiol. Clín. 2022, 40, 507–516. [Google Scholar] [CrossRef]
- MacLennan, S.; Barbara, J.A.J. Risks and Side Effects of Therapy with Plasma and Plasma Fractions. Best Pract. Res. Clin. Haematol. 2006, 19, 169–189. [Google Scholar] [CrossRef]
- Luke, T.C.; Kilbane, E.M.; Jackson, J.L.; Hoffman, S.L. Meta-Analysis: Convalescent Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment? Ann. Intern. Med. 2006, 145, 599–609. [Google Scholar] [CrossRef]
- Bloch, E.M.; Focosi, D.; Shoham, S.; Senefeld, J.; Tobian, A.A.R.; Baden, L.R.; Tiberghien, P.; Sullivan, D.; Cohn, C.; Dioverti, V.; et al. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients with COVID-19. Clin. Infect. Dis. 2023, ciad066. [Google Scholar] [CrossRef]
- Joyner, M.J.; Bruno, K.A.; Klassen, S.A.; Kunze, K.L.; Johnson, P.W.; Lesser, E.R.; Wiggins, C.C.; Senefeld, J.W.; Klompas, A.M.; Hodge, D.O.; et al. Safety Update: COVID-19 Convalescent Plasma in 20,000 Hospitalized Patients. Mayo Clin. Proc. 2020, 95, 1888–1897. [Google Scholar] [CrossRef]
Characteristic | All Patients (n = 39) | Received Plasma (n = 21) | Did Not Receive Plasma (n = 18) | p |
---|---|---|---|---|
Age, years, mean (SD) | 66.3 (12.8) | 68.5 (13.5) | 63.7 (11.8) | 0.2461 |
Male gender, n (%) | 20 (51.3) | 10 (47.6) | 10 (55.6) | 0.7512 |
Diagnosed until December 2021 * | 17 (43.6) | 9 (42.9) | 8 (44.4) | 1 |
Diagnosed after December 2021 ** | 22 (56.4) | 12 (57.1) | 10 (55.6) | 1 |
Respiratory failure on presentation, n (%) *** | 10 (27) | 5 (26.3) | 4 (22.2) | 1 |
Fever, n (%) | 26 (66.7) | 11 (52.4) | 15 (83.3) | 0.0508 |
Infiltrates in chest X-ray, n (%) | 24 (61.5) | 12 (57.1) | 12 (66.7) | 0.7424 |
IgG levels, mg/dL, median (IQR) | 551.5 (468.3–662.3) | 584 (471–706.5) | 534 (421–734.5) | 0.7228 |
Lymphocytes, cells/μL, median (IQR) | 600 (400–1000) | 700 (450–1050) | 600 (400–1025) | 0.6394 |
Hematological disease, n (%) | 22 (56.4) | 13 (61.9) | 9 (50) | 0.5279 |
Rheumatological disease, n (%) | 15 (38.5) | 7 (33.3) | 8 (44.4) | 0.5254 |
Number of plasma units used, median (IQR) | NA | 3 (2.5–3.5) | NA | NA |
Remdesivir, n (%) | 35 (89.7) | 18 (85.7) | 17 (94.4) | 0.6094 |
Corticosteroids, n (%) | 37 (94.9) | 20 (95.2) | 17 (94.4) | 1 |
Antibiotics, n (%) | 35 (89.7) | 19 (90.5) | 16 (88.9) | 1 |
Co-infection, n (%) | 4 (10.3) | 2 (9.5) | 2 (11.1) | 1 |
ICU stay, n (%) | 6 (15.4) | 1 (4.8) | 5 (27.8) | 0.0775 |
Duration of stay, days, median (IQR) | 9.5 (5–16.3) | 9 (5-14.5) | 12 (5.5–28) | 0.3164 |
In-hospital mortality, n (%) | 6 (15.4) | 3 (14.3) | 3 (16.7) | 1 |
Re-admission for COVID-19, n (%) | 9 (25) | 2 (11.1) | 7 (46.7) | 0.0469 |
Positive PCR for SARS-CoV-2 three months after diagnosis, n (%) | 5 (12.8) | 3 (14.3) | 2 (11.1) | 1 |
Characteristic | Survived (n = 33) | Died (n = 6) | p |
---|---|---|---|
Age, mean (SD) | 64.7 (12.5) | 74.7 (12) | 0.0792 |
Male gender, n (%) | 17 (51.5) | 3 (50) | 1 |
Diagnosed until December 2021 * | 14 (42.4) | 3 (50) | 1 |
Diagnosed after December 2021 ** | 19 (57.6) | 3 (50) | 1 |
Respiratory failure on presentation, n (%) *** | 8 (25) | 1 (20) | 1 |
Fever, n (%) | 22 (66.7) | 4 (66.7) | 1 |
Infiltrates in chest X-ray, n (%) | 21 (63.6) | 3 (50) | 0.6580 |
IgG levels, mg/dL, median (IQR) | 559 (488.8–750.8) | 499.5 (430–569) | 0.5385 |
Lymphocytes, cells/μL, median (IQR) | 600 (450–950) | 1200 (275–7675) | 0.5995 |
Hematological disease, n (%) | 16 (48.5) | 6 (100) | 0.0267 |
Rheumatological disease, n (%) | 15 (45.5) | 0 (0) | 0.0649 |
Received plasma, n (%) | 18 (54.5) | 3 (50) | 1 |
Remdesivir, n (%) | 30 (90.9) | 5 (83.3) | 1 |
Corticosteroids, n (%) | 31 (93.9) | 6 (100) | 1 |
Antibiotics, n (%) | 29 (87.9) | 6 (100) | 1 |
Co-infection, n (%) | 3 (9.1) | 1 (16.7) | 0.5025 |
ICU stay, n (%) | 3 (9.1) | 3 (50) | 0.0359 |
Duration of stay, days, median (IQR) | 9 (5–15.8) | 28 (7.3–49.5) | 0.0588 |
Re-admission for COVID-19, n (%) | 9 (27.3) | NA | NA |
Characteristic | Univariate Analysis p | Multivariate Analysis p | OR (95% CI) |
---|---|---|---|
Lymphocytes (per cell/μL) | 0.0387 | 0.333 | 1 (1–1.001) |
Duration of stay (per day) | 0.0021 | 0.042 | 1.08 (1.003–1.163) |
ICU stay | 0.0097 | 0.499 | 2.422 (0.186–31.548) |
Characteristic | Univariate Analysis p | Multivariate Analysis p | OR (95% CI) |
---|---|---|---|
IgG levels, per mg/dL | 0.0012 | 0.638 | 0.999 (0.993–1.004) |
Convalescent plasma use | 0.022 | 0.123 | 0.112 (0.07–1.817) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, P.; Katsigiannis, A.; Papakitsou, I.; Kopidakis, I.; Makraki, E.; Milonas, D.; Filippatos, T.D.; Sourvinos, G.; Papadogiannaki, M.; Lydaki, E.; et al. Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023, 15, 756. https://doi.org/10.3390/v15030756
Ioannou P, Katsigiannis A, Papakitsou I, Kopidakis I, Makraki E, Milonas D, Filippatos TD, Sourvinos G, Papadogiannaki M, Lydaki E, et al. Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses. 2023; 15(3):756. https://doi.org/10.3390/v15030756
Chicago/Turabian StyleIoannou, Petros, Athanasios Katsigiannis, Ioanna Papakitsou, Ioannis Kopidakis, Eirini Makraki, Dimitris Milonas, Theodosios D. Filippatos, George Sourvinos, Marina Papadogiannaki, Evaggelia Lydaki, and et al. 2023. "Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates" Viruses 15, no. 3: 756. https://doi.org/10.3390/v15030756
APA StyleIoannou, P., Katsigiannis, A., Papakitsou, I., Kopidakis, I., Makraki, E., Milonas, D., Filippatos, T. D., Sourvinos, G., Papadogiannaki, M., Lydaki, E., Chamilos, G., & Kofteridis, D. P. (2023). Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses, 15(3), 756. https://doi.org/10.3390/v15030756