Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical and Legal Aspects
2.2. Experimental Design
2.3. Testicular Evaluation and Clinical Parameters
2.4. Fecal Testosterone Levels
2.5. RT-qPCR for ZIKV Genome Detection
2.6. Mac-ELISA to IgM Detection
2.7. Ultrasonographic Examination
2.8. Histological Analysis and Immunohistochemical Analysis
2.9. Statistical Analysis
3. Results
3.1. Clinical Evaluation of ZIKV Infection in Male Saimiri
3.2. Viremia and Specific Antibody Profile
3.3. Morphometric Evaluation (In Vivo)
3.4. Fecal Testosterone Levels
3.5. Testicular Echogenicity
3.6. Morphometric Evaluation and Macroscopic Changes in the Testicles of ZIKV-Infected Animals
3.7. Histopathological Analysis of the Reproductive System of Young S. collinsi Infected with ZIKV
3.8. Immunohistochemistry for Viral Antigen Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and Serological Specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef] [PubMed]
- de Souza Sampaio, G.; Brites, C.; Drexler, J.F.; Moreira-Soto, A.; Miranda, F.; Martins, E. Expansão Da Circulação Do Vírus Zika Da África à América, 1947–2018: Revisão Da Literatura*. Epidemiol. Serviços Saúde 2019, 28, e2018411. [Google Scholar] [CrossRef] [Green Version]
- Faria, N.R.; do Socorro da Silva Azevedo, R.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Thézé, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika Virus in the Americas: Early Epidemiological and Genetic Findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imperato, P.J. The Convergence of a Virus, Mosquitoes, and Human Travel in Globalizing the Zika Epidemic. J. Community Health 2016, 41, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Martines, R.B.; Bhatnagar, J.; de Oliveira Ramos, A.M.; Davi, H.P.F.; Iglezias, S.D.A.; Kanamura, C.T.; Keating, M.K.; Hale, G.; Silva-Flannery, L.; Muehlenbachs, A.; et al. Pathology of Congenital Zika Syndrome in Brazil: A Case Series. Lancet 2016, 388, 898–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas Ribeiro, B.N.; Muniz, B.C.; Gasparetto, E.L.; Ventura, N.; Marchiori, E. Congenital Zika Syndrome and Neuroimaging Findings: What Do We Know so Far? Radiol. Bras. 2017, 50, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Uraki, R.; Hwang, J.; Jurado, K.A.; Householder, S.; Yockey, L.J.; Hastings, A.K.; Homer, R.J.; Iwasaki, A.; Fikrig, E. Zika Virus Causes Testicular Atrophy. Sci. Adv. 2017, 3, e1602899. [Google Scholar] [CrossRef] [Green Version]
- Govero, J.; Esakky, P.; Scheaffer, S.M.; Fernandez, E.; Drury, A.; Platt, D.J.; Gorman, M.J.; Richner, J.M.; Caine, E.A.; Salazar, V.; et al. Zika Virus Infection Damages the Testes in Mice. Nature 2016, 540, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Li, S.; Ma, S.; Jia, L.; Zhang, F.; Zhang, Y.; Zhang, J.; Wong, G.; Zhang, S.; Lu, X.; et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016, 167, 1511–1524.e10. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Han, R.; Wu, H.; Han, D. Viral Threat to Male Fertility. Andrologia 2018, 50, e13140. [Google Scholar] [CrossRef] [Green Version]
- Tsetsarkin, K.A.; Acklin, J.A.; Liu, G.; Kenney, H.; Teterina, N.L.; Pletnev, A.G.; Lim, J.K. Zika Virus Tropism during Early Infection of the Testicular Interstitium and Its Role in Viral Pathogenesis in the Testes. PLoS Pathog. 2020, 16, e1008601. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.-Y.; Gao, N.; Wang, Z.-Y.; Cui, X.-Y.; Zhou, D.-S.; Fan, D.-Y.; Chen, H.; Wang, P.-G.; An, J. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis. Front. Cell Infect. Microbiol. 2017, 7, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, C.L.; Chong, A.C.N.; Ashbrook, A.W.; Jeng, G.; Jin, J.; Chen, H.; Tang, E.I.; Martin, L.A.; Kim, R.S.; Kenyon, R.M.; et al. Male Germ Cells Support Long-Term Propagation of Zika Virus. Nat. Commun. 2018, 9, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, E.E.; Pesavento, P.A.; van Rompay, K.K.A.; Keel, M.K.; Singapuri, A.; Gomez-Vazquez, J.P.; Dudley, D.M.; O’Connor, D.H.; Breitbach, M.E.; Maness, N.J.; et al. Zika Virus Persistence in the Male Macaque Reproductive Tract. PLoS Negl. Trop. Dis. 2022, 16, e0010566. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.K.; Mean, K.D.; Puntney, R.C.; Alexander, E.S.; Sullivan, R.; Simmons, H.A.; Zeng, X.; Weiler, A.M.; Friedrich, T.C.; Golos, T.G. Zika Virus in Rhesus Macaque Semen and Reproductive Tract Tissues: A Pilot Study of Acute Infection. Biol. Reprod. 2020, 103, 1030–1042. [Google Scholar] [CrossRef]
- Peregrine, J.; Gurung, S.; Lindgren, M.C.; Husain, S.; Zavy, M.T.; Myers, D.A.; Papin, J.F. Zika Virus Infection, Reproductive Organ Targeting, and Semen Transmission in the Male Olive Baboon. J. Virol. 2019, 94, e01434-19. [Google Scholar] [CrossRef]
- Koide, F.; Goebel, S.; Snyder, B.; Walters, K.B.; Gast, A.; Hagelin, K.; Kalkeri, R.; Rayner, J. Development of a Zika Virus Infection Model in Cynomolgus Macaques. Front. Microbiol. 2016, 7, 2028. [Google Scholar] [CrossRef]
- Joguet, G.; Mansuy, J.M.; Matusali, G.; Hamdi, S.; Walschaerts, M.; Pavili, L.; Guyomard, S.; Prisant, N.; Lamarre, P.; Dejucq-Rainsford, N.; et al. Effect of Acute Zika Virus Infection on Sperm and Virus Clearance in Body Fluids: A Prospective Observational Study. Lancet Infect. Dis. 2017, 17, 1200–1208. [Google Scholar] [CrossRef] [Green Version]
- Siemann, D.N.; Strange, D.P.; Maharaj, P.N.; Shi, P.-Y.; Verma, S. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the In Vitro Blood-Testis Barrier Model. J. Virol. 2017, 91, e00623-17. [Google Scholar] [CrossRef] [Green Version]
- Matusali, G.; Houzet, L.; Satie, A.-P.; Mahé, D.; Aubry, F.; Couderc, T.; Frouard, J.; Bourgeau, S.; Bensalah, K.; Lavoué, S.; et al. Zika Virus Infects Human Testicular Tissue and Germ Cells. J. Clin. Investig. 2018, 128, 4697–4710. [Google Scholar] [CrossRef] [Green Version]
- Mlera, L.; Bloom, M.E. Differential Zika Virus Infection of Testicular Cell Lines. Viruses 2019, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- das Neves Almeida, R.; Braz-de-Melo, H.A.; Santos, I.d.O.; Corrêa, R.; Kobinger, G.P.; Magalhaes, K.G. The Cellular Impact of the ZIKA Virus on Male Reproductive Tract Immunology and Physiology. Cells 2020, 9, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miner, J.J.; Diamond, M.S. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 2017, 21, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Stassen, L.; Armitage, C.; van der Heide, D.; Beagley, K.; Frentiu, F. Zika Virus in the Male Reproductive Tract. Viruses 2018, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Baud, D.; Musso, D.; Vouga, M.; Alves, M.P.; Vulliemoz, N. Zika Virus: A New Threat to Human Reproduction. Am. J. Reprod. Immunol. 2017, 77, e12614. [Google Scholar] [CrossRef] [Green Version]
- Moreira, J.; Peixoto, T.M.; Siqueira, A.M.; Lamas, C.C. Sexually Acquired Zika Virus: A Systematic Review. Clin. Microbiol. Infect. 2017, 23, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Grischott, F.; Puhan, M.; Hatz, C.; Schlagenhauf, P. Non-Vector-Borne Transmission of Zika Virus: A Systematic Review. Travel Med. Infect. Dis. 2016, 14, 313–330. [Google Scholar] [CrossRef]
- Terzian, A.C.B.; Zini, N.; Sacchetto, L.; Rocha, R.F.; Parra, M.C.P.; del Sarto, J.L.; Dias, A.C.F.; Coutinho, F.; Rayra, J.; da Silva, R.A.; et al. Evidence of Natural Zika Virus Infection in Neotropical Non-Human Primates in Brazil. Sci. Rep. 2018, 8, 16034. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.W.; Young, M.P.; Mamidi, A.; Regla-Nava, J.A.; Kim, K.; Shresta, S. A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication. Cell Rep. 2016, 17, 3091–3098. [Google Scholar] [CrossRef] [Green Version]
- Pratt-Riccio, L.R.; Riccio, E.K.P.; Bianco-Junior, C.; Alves, F.A.; de Oliveira Baptista, B.; Totino, P.R.R.; Muniz, J.A.P.C.; de Castro, P.H.G.; de Moura Carvalho, L.J.; Daniel-Ribeiro, C.T. Uso de Modelos de Primatas Neotropicais Para Pesquisa Em Malária: Um Histórico Dos 25 Anos de Colaboração Entre o Laboratório de Pesquisa Em Malária (IOC, Fiocruz) e o Centro Nacional de Primatas (IEC, SVS). Rev. Panamazonica Saude 2021, 12, e202100462. [Google Scholar] [CrossRef]
- de Alcantara, B.N.; Imbeloni, A.A.; de Brito Simith Durans, D.; de Araújo, M.T.F.; do Rosário Moutinho da Cruz, E.; de Carvalho, C.A.M.; de Mendonça, M.H.R.; de Sousa, J.R.; Moraes, A.F.; Filho, A.J.M.; et al. Histopathological Lesions of Congenital Zika Syndrome in Newborn Squirrel Monkeys. Sci. Rep. 2021, 11, 6099. [Google Scholar] [CrossRef] [PubMed]
- Milich, K.M.; Koestler, B.J.; Simmons, J.H.; Nehete, P.N.; di Fiore, A.; Williams, L.E.; Dudley, J.P.; Vanchiere, J.; Payne, S.M. Methods for Detecting Zika Virus in Feces: A Case Study in Captive Squirrel Monkeys (Saimiri Boliviensis Boliviensis). PLoS ONE 2018, 13, e0209391. [Google Scholar] [CrossRef] [Green Version]
- Imbeloni, A.A.; de Alcantara, B.N.; Coutinho, L.N.; de Azevedo Scalercio, S.R.R.; Carneiro, L.A.; Oliveira, K.G.; Filho, A.J.M.; de Brito Simith Durans, D.; da Silva, W.B.; Nunes, B.T.D.; et al. Prenatal Disorders and Congenital Zika Syndrome in Squirrel Monkeys. Sci. Rep. 2021, 11, 2698. [Google Scholar] [CrossRef] [PubMed]
- Malewicz, B.; Jenkin, H.M. Development of Dengue Virus Plaques under Serum-Free Overlay Medium. J. Clin. Microbiol. 1979, 9, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.G.; Leão, D.L.; Almeida, D.V.C.; Santos, R.R.; Domingues, S.F.S. Seminal Characteristics and Cryopreservation of Sperm from the Squirrel Monkey, Saimiri Collinsi. Theriogenology 2015, 84, 743–749.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.; Petty, C.S.; Neaves, W.B. A New Approach to Quantification of Spermatogenesis and Its Application to Germinal Cell Attrition during Human Spermiogenesis. Biol. Reprod. 1981, 25, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Amann, R.P. Sperm Production Rates. In The Testis; Johnson, A.D., Gomes, W.R., Vandemark, N.L., Eds.; Academic Press: New York, NY, USA, 1970; pp. 433–482. [Google Scholar]
- Graham, L.; Schwarzenberger, F.; Möstl, E.; Galama, W.; Savage, A. A Versatile Enzyme Immunoassay for the Determination of Progestogens in Feces and Serum. Zoo Biol. 2001, 20, 227–236. [Google Scholar] [CrossRef]
- Lima, M.C.M.; Scalercio, S.R.R.A.; Lopes, C.T.A.; Martins, N.D.; Oliveira, K.G.; Caldas-Bussiere, M.C.; Santos, R.R.; Domingues, S.F.S. Monitoring Sexual Steroids and Cortisol at Different Stages of the Ovarian Cycle from Two Capuchin Monkey Species: Use of Non- or Less Invasive Methods than Blood Sampling. Heliyon 2019, 5, e02166. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Nunes, B.T.D.; de Mendonça, M.H.R.; de Brito Simith, D.; Moraes, A.F.; Cardoso, C.C.; Prazeres, I.T.E.; de Aquino, A.A.; da Conceição Miranda Santos, A.; Queiroz, A.L.N.; Rodrigues, D.S.G.; et al. Development of RT-QPCR and Semi-Nested RT-PCR Assays for Molecular Diagnosis of Hantavirus Pulmonary Syndrome. PLoS Negl. Trop. Dis. 2019, 13, e0007884. [Google Scholar] [CrossRef]
- Rojas, A.; Diagne, C.T.; Stittleburg, V.D.; Mohamed-Hadley, A.; de Guillén, Y.A.; Balmaseda, A.; Faye, O.; Sall, A.A.; Harris, E.; Pinsky, B.A.; et al. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection. Am. J. Trop. Med. Hyg. 2018, 98, 1833–1836. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.A.; Muth, D.A.; Brown, T.; Johnson, A.J.; Karabatsos, N.; Roehrig, J.T. Standardization of Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assays for Routine Diagnosis of Arboviral Infections. J. Clin. Microbiol. 2000, 38, 1823–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, F.O.B.; Coutinho, L.N.; Takeshita, R.S.C.; da Silva, G.A.; da Silva, K.S.M.; Whiteman, C.W.; de Castro, P.H.G.; Muniz, J.A.P.C.; Vicente, W.R.R. A Protocol for Gynecological and Obstetric Examination of Owl Monkeys Using Ultrasound. Rev. Ciências Agrárias 2011, 54, 7–13. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ayala, H.D.M.; Ribeiro, H.F.L.; Filho, S.T.R.; Silva, E.V.C.; Vale, W.G. Association of Testicular Echogenicity, Scrotal Circumference, Testicular Volume and Testosterone Concentration in Buffaloes. Rev. Bras. Med. Vet. 2016, 38, 334–340. [Google Scholar]
- Pinho, R.O.; Costa, D.S.; Siqueira, J.B.; Chaya, A.Y.; Neto, T.M.; Martins, L.F.; Guimarães, S.E.F.; Guimarães, J.D. Testicular Echotexture and Seminal Quality of Young Montana Tropical Compound Bulls Classified as Sound and Unsound for Breeding. Rev. Bras. Zootec. 2012, 41, 1961–1965. [Google Scholar] [CrossRef] [Green Version]
- Sziva, R.E.; Ács, J.; Tőkés, A.-M.; Korsós-Novák, Á.; Nádasy, G.L.; Ács, N.; Horváth, P.G.; Szabó, A.; Ke, H.; Horváth, E.M.; et al. Accurate Quantitative Histomorphometric-Mathematical Image Analysis Methodology of Rodent Testicular Tissue and Its Possible Future Research Perspectives in Andrology and Reproductive Medicine. Life 2022, 12, 189. [Google Scholar] [CrossRef]
- Johnsen, S.G. Testicular Biopsy Score Count—A Method for Registration of Spermatogenesis in Human Testes: Normal Values and Results in 335 Hypogonadal Males. Horm. Res. Paediatr. 1970, 1, 2–25. [Google Scholar] [CrossRef]
- Manabe, F.; Takeshima, H.; Akaza, H. Protecting Spermatogenesis from Damage Induced by Doxorubicin Using the Luteinizing Hormone-Releasing Hormone Agonist Leuprorelin. Cancer 1997, 79, 1014–1021. [Google Scholar] [CrossRef]
- Hall, W.C.; Crowell, T.P.; Watts, D.M.; Barros, V.L.R.; Kruger, H.; Pinheiro, F.; Peters, C.J. Demonstration of Yellow Fever and Dengue Antigens in Formalin-Fixed Paraffin-Embedded Human Liver by Immunohistochemical Analysis. Am. J. Trop. Med. Hyg. 1991, 45, 408–417. [Google Scholar] [CrossRef]
- Quaresma, J.A.S.; Barros, V.L.R.S.; Fernandes, E.R.; Pagliari, C.; Guedes, F.; Vasconcelos, P.F.D.C.; de Andrade, H.F.; Duarte, M.I.S. Immunohistochemical Examination of the Role of Fas Ligand and Lymphocytes in the Pathogenesis of Human Liver Yellow Fever. Virus Res. 2006, 116, 91–97. [Google Scholar] [CrossRef]
- Tesh, R.B.; Guzman, H.; da Rosa, A.P.A.T.; Vasconcelos, P.F.C.; Dias, L.B.; Bunnell, J.E.; Zhang, H.; Xiao, S. Experimental Yellow Fever Virus Infection in the Golden Hamster (Mesocricetus Auratus). I. Virologic, Biochemical, and Immunologic Studies. J. Infect. Dis. 2001, 183, 1431–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckard, D.T.; Chung, W.M.; Brooks, J.T.; Smith, J.C.; Woldai, S.; Hennessey, M.; Kwit, N.; Mead, P. Male-to-Male Sexual Transmission of Zika Virus—Texas, January 2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 372–374. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.; Slavinski, S.; Komoto, K.; Rakeman, J.; Weiss, D. Suspected Female-to-Male Sexual Transmission of Zika Virus—New York City, 2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 716–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turmel, J.M.; Abgueguen, P.; Hubert, B.; Vandamme, Y.M.; Maquart, M.; le Guillou-Guillemette, H.; Leparc-Goffart, I. Late Sexual Transmission of Zika Virus Related to Persistence in the Semen. Lancet 2016, 387, 2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef]
- Liang, B.; Guida, J.P.; Costa, M.L.; Mysorekar, I.U. Host and Viral Mechanisms of Congenital Zika Syndrome. Virulence 2019, 10, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicastri, E.; Castilletti, C.; Liuzzi, G.; Iannetta, M.; Capobianchi, M.R.; Ippolito, G. Persistent Detection of Zika Virus RNA in Semen for Six Months after Symptom Onset in a Traveller Returning from Haiti to Italy, February 2016. Eurosurveillance 2016, 21, 30314. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Luo, H.; Xie, X.; Medeiros, D.B.A.; Wakamiya, M.; Tesh, R.B.; Barrett, A.D.; Wang, T.; et al. A Live-Attenuated Zika Virus Vaccine Candidate Induces Sterilizing Immunity in Mouse Models. Nat. Med. 2017, 23, 763–767. [Google Scholar] [CrossRef]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.M.; Guimarães, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; et al. The Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models. Nature 2016, 534, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Lazear, H.M.; Govero, J.; Smith, A.M.; Platt, D.J.; Fernandez, E.; Miner, J.J.; Diamond, M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 2016, 19, 720–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, T.A.; Oliveira, Y.C.; Bernardes, F.S.; Kallas, E.G.; Duarte-Neto, A.N.; Esteves, S.C.; Drevet, J.; Hallak, J. Viral Infections and Implications for Male Reproductive Health. Asian J. Androl. 2021, 23, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Neto, A.N.; Teixeira, T.A.; Caldini, E.G.; Kanamura, C.T.; Gomes-Gouvêa, M.S.; dos Santos, A.B.G.; Monteiro, R.A.A.; Pinho, J.R.R.; Mauad, T.; da Silva, L.F.F.; et al. Testicular Pathology in Fatal COVID-19: A Descriptive Autopsy Study. Andrology 2022, 10, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Dong, H.L.; Huang, X.Y.; Qiu, Y.F.; Wang, H.J.; Deng, Y.Q.; Zhang, N.N.; Ye, Q.; Zhao, H.; Liu, Z.Y.; et al. Characterization of a 2016 Clinical Isolate of Zika Virus in Non-Human Primates. EBioMedicine 2016, 12, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schouest, B.; Fahlberg, M.; Scheef, E.A.; Ward, M.J.; Headrick, K.; Szeltner, D.M.; Blair, R.V.; Gilbert, M.H.; Doyle-Meyers, L.A.; Danner, V.W.; et al. Immune Outcomes of Zika Virus Infection in Nonhuman Primates. Sci. Rep. 2020, 10, 13069. [Google Scholar] [CrossRef] [PubMed]
- Osuna, C.E.; Lim, S.-Y.; Deleage, C.; Griffin, B.D.; Stein, D.; Schroeder, L.T.; Omange, R.; Best, K.; Luo, M.; Hraber, P.T.; et al. Zika Viral Dynamics and Shedding in Rhesus and Cynomolgus Macaques. Nat. Med. 2016, 22, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.S.; Bezerra Júnior, P.S.; Cerqueira, V.D.; Rivero, G.R.C.; Oliveira Júnior, C.A.; Castro, P.H.G.; da Silva, G.A.; da Silva, W.B.; Imbeloni, A.A.; Sousa, J.R.; et al. Experimental Yellow Fever Virus Infection in the Squirrel Monkey (Saimiri Spp.) I: Gross Anatomical and Histopathological Findings in Organs at Necropsy. Mem. Inst. Oswaldo Cruz 2020, 115, e190501. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Sánchez-San Martín, C.; Bouquet, J.; Li, T.; Yagi, S.; Tamhankar, M.; Hodara, V.L.; Parodi, L.M.; Somasekar, S.; Yu, G.; et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci. Rep. 2017, 7, 17126. [Google Scholar] [CrossRef] [Green Version]
- Vanchiere, J.A.; Ruiz, J.C.; Brady, A.G.; Kuehl, T.J.; Williams, L.E.; Baze, W.B.; Wilkerson, G.K.; Nehete, P.N.; McClure, G.B.; Rogers, D.L.; et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop. Med. Hyg. 2018, 98, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Halabi, J.; Jagger, B.W.; Salazar, V.; Winkler, E.S.; White, J.P.; Humphrey, P.A.; Hirsch, A.J.; Streblow, D.N.; Diamond, M.S.; Moley, K. Zika Virus Causes Acute and Chronic Prostatitis in Mice and Macaques. J. Infect. Dis. 2020, 221, 1506–1517. [Google Scholar] [CrossRef]
- Mruk, D.D.; Cheng, C.Y. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr. Rev. 2015, 36, 564–591. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Holdcraft, R.W.; Shima, J.E.; Griswold, M.D.; Braun, R.E. Androgens Regulate the Permeability of the Blood-Testis Barrier. Proc. Natl. Acad. Sci. USA 2005, 102, 16696–16700. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Rodríguez, J.; Martínez-García, C. Apoptosis Precedes Detachment of Germ Cells from the Seminiferous Epithelium after Hormone Suppression by Short-Term Oestradiol Treatment of Rats. Int. J. Androl. 1998, 21, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Leão, D.L.; Sampaio, W.V.; da Cunha Sousa, P.; Oskam, I.C.; Dos Santos, R.R.; Domingues, S.F.S. The Use of Anogenital Distance as a Non-invasive Predictor of Seminal Quality in Captive Squirrel Monkey (Saimiri Collinsi Osgood 1961). J. Med. Primatol. 2021, 50, 299–305. [Google Scholar] [CrossRef]
- Sampaio, W.V.; Leão, D.L.; da Cunha Sousa, P.; de Queiroz, H.L.; Domingues, S.F.S. Male Fattening Is Related to Increased Seminal Quality of Squirrel Monkeys (Saimiri Collinsi): Implications for Sperm Competition. Am. J. Primatol. 2022, 84, e23353. [Google Scholar] [CrossRef]
- Oliveira, K.G.; Santos, R.R.; Leão, D.L.; Queiroz, H.L.; Paim, F.P.; Vianez-Júnior, J.L.S.G.; Domingues, S.F.S. Testicular Biometry and Semen Characteristics in Captive and Wild Squirrel Monkey Species (Saimiri Sp.). Theriogenology 2016, 86, 879–887.e4. [Google Scholar] [CrossRef]
- Hoen, B.; Carpentier, M.; Gaete, S.; Tressières, B.; Herrmann-Storck, C.; Vingadassalom, I.; Huc-Anaïs, P.; Funk, A.L.; Fontanet, A.; de Lamballerie, X. Kinetics of Anti-Zika Virus Antibodies after Acute Infection in Pregnant Women. J. Clin. Microbiol. 2019, 57, e01151-19. [Google Scholar] [CrossRef]
- Ferraz, F.S. Morfofisiologia Testicular de Saguis Híbridos de Vida Livre (Callitrichidae: Primatas); Rio de Janeiro—RJ, Brasil, Universidade Federal de Viçosa: Viçosa, Brasil, 2015. [Google Scholar]
- Zhao, S.; Zhu, W.; Xue, S.; Han, D. Testicular Defense Systems: Immune Privilege and Innate Immunity. Cell Mol. Immunol. 2014, 11, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, I.; sen Sharma, S.; Majumdar, S.S. Pubertal Orchestration of Hormones and Testis in Primates. Mol. Reprod. Dev. 2019, 86, 1505–1530. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.M.; Vallender, E.J. The Resurgence and Genetic Implications of New World Primates in Biomedical Research. Trends Genet. 2012, 28, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Hawash, M.B.F.; Sanz-Remón, J.; Grenier, J.C.; Kohn, J.; Yotova, V.; Johnson, Z.; Lanford, R.E.; Brinkworth, J.F.; Barreiro, L.B. Primate Innate Immune Responses to Bacterial and Viral Pathogens Reveals an Evolutionary Trade-off between Strength and Specificity. Proc. Natl. Acad. Sci. USA 2021, 118, e2015855118. [Google Scholar] [CrossRef] [PubMed]
- Berry, N.; Ferguson, D.; Ham, C.; Hall, J.; Jenkins, A.; Giles, E.; Devshi, D.; Kempster, S.; Rose, N.; Dowall, S.; et al. High Susceptibility, Viral Dynamics and Persistence of South American Zika Virus in New World Monkey Species. Sci. Rep. 2019, 9, 14495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman Primate Models of Human Viral Infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Strange, D.P.; Green, R.; Siemann, D.N.; Gale, M.; Verma, S. Immunoprofiles of Human Sertoli Cells Infected with Zika Virus Reveals Unique Insights into Host-Pathogen Crosstalk. Sci. Rep. 2018, 8, 8702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Thompson, L.A.; Dufour, J.M. Sertoli Cells—Immunological Sentinels of Spermatogenesis. Semin. Cell Dev. Biol. 2014, 30, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meachem, S.J.; Nieschlag, E.; Simoni, M. Inhibin B in Male Reproduction: Pathophysiology and Clinical Relevance. Eur. J. Endocrinol. 2001, 145, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, R.A.; de França, L.R. Spermatogenesis and Cycle of the Seminiferous Epithelium. In Molecular Mechanisms in Spermatogenesis; Cheng, C.Y., Ed.; Springer: New York, NY, USA, 2008; pp. 1–15. ISBN 978-0-387-09597-4. [Google Scholar]
- Rashid, M.; Zahedi-Amiri, A.; Glover, K.K.M.; Gao, A.; Nickol, M.E.; Kindrachuk, J.; Wilkins, J.A.; Coombs, K.M. Zika Virus Dysregulates Human Sertoli Cell Proteins Involved in Spermatogenesis with Little Effect on Tight Junctions. PLoS Negl. Trop. Dis. 2020, 14, e0008335. [Google Scholar] [CrossRef]
- Rossi, S.L.; Tesh, R.B.; Azar, S.R.; Muruato, A.E.; Hanley, K.A.; Auguste, A.J.; Langsjoen, R.M.; Paessler, S.; Vasilakis, N.; Weaver, S.C. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. Trop. Med. Hyg. 2016, 94, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Plant, T.M.; Terasawa, E.; Witchel, S.F. Puberty in Non-Human Primates and Man. In Knobil and Neill’s Physiology of Reproduction; Plant, T.M., Zelesnik, A., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 1487–1536. ISBN 9780123977694. [Google Scholar]
- Silva Júnior, J.S.; Ravetta, A.L.; Lynch Alfaro, J.W.; Valença-Montenegro, M.M. Saimiri Collinsi (Amended Version of 2020 Assessment). Available online: https://www.iucnredlist.org/species/70610928/192585417 (accessed on 4 April 2022).
Score | Histological Pattern |
---|---|
10 | Fully mature spermatogenesis is observed (mature hooked spermatozoa with dense nuclear chromatin lying within tubular lumen). |
9 | Many spermatozoa are present, but the germinal epithelium shows markedsloughing or obliteration of the lumen. |
8 | Only a few spermatozoa (<10) are present in the section. |
7 | No spermatozoa but many mature spermatids are present. |
6 | Few mid-phase spermatids (<10), with pale chromatin and narrow oval heads, are observed; they are radially arranged. |
5 | Immature spermatids, randomly arranged throughout the tubule are observed; each has a rounded nucleus with pale chromatin. |
4 | Only a few spermatocytes are observed and no spermatids or spermatozoa. |
3 | Spermatogonia are the only germ cells present. |
2 | No germ cells are present, but Sertoli cells are. |
1 | No cells are present in the tubular section. |
Groups | ID | Age (Years) | Weight (g) Mean ± SD | Mucous |
---|---|---|---|---|
G1 | AT-001 | 2.7 | 588 ± 19 | normal colored |
AT-003 | 2.2 | 578 ± 6 | normal colored | |
G2 | AT-005 | 1.7 | 584 ± 12 | normal colored |
AT-156 | 1.7 | 536 ± 8 | normal colored | |
AT-163 | 2.4 | 588 ± 44 | normal colored |
Groups | Groups | |
---|---|---|
G1: Uninfected | G2: Infected | |
Tubular Area (µm2) | 21 292 ± 7 334 a | 11 475 ± 2 373 b |
Seminiferous Epithelium Area (µm2) | 15 983 ± 6 568 a | 7 961 ± 1 741 b |
Larger Diameter (µm) | 179.6 ± 39.8 a | 131.2 ± 20.7 b |
Smaller Diameter (µm) | 148.1 ± 27.3 a | 109.5 ± 10.2 b |
Epithelium Height (µm) | 45.7 ± 13.5 a | 30.6 ± 4.8 b |
Johnsen’s Score | 4.9 ± 1.05 a | 3.25 ± 0.47 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchimol, G.d.C.; Santos, J.B.; Lopes, A.S.d.C.; Oliveira, K.G.; Okada, E.S.T.; de Alcantara, B.N.; Pereira, W.L.A.; Leão, D.L.; Martins, A.C.C.; Carneiro, L.A.; et al. Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi). Viruses 2023, 15, 615. https://doi.org/10.3390/v15030615
Benchimol GdC, Santos JB, Lopes ASdC, Oliveira KG, Okada EST, de Alcantara BN, Pereira WLA, Leão DL, Martins ACC, Carneiro LA, et al. Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi). Viruses. 2023; 15(3):615. https://doi.org/10.3390/v15030615
Chicago/Turabian StyleBenchimol, Gabriela da Costa, Josye Bianca Santos, Ana Sophia da Costa Lopes, Karol Guimarães Oliveira, Eviny Sayuri Trindade Okada, Bianca Nascimento de Alcantara, Washington Luiz Assunção Pereira, Danuza Leite Leão, Ana Cristina Carneiro Martins, Liliane Almeida Carneiro, and et al. 2023. "Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi)" Viruses 15, no. 3: 615. https://doi.org/10.3390/v15030615
APA StyleBenchimol, G. d. C., Santos, J. B., Lopes, A. S. d. C., Oliveira, K. G., Okada, E. S. T., de Alcantara, B. N., Pereira, W. L. A., Leão, D. L., Martins, A. C. C., Carneiro, L. A., Imbeloni, A. A., Makiama, S. T., de Castro, L. P. P. A., Coutinho, L. N., Casseb, L. M. N., Vasconcelos, P. F. d. C., Domingues, S. F. S., Medeiros, D. B. d. A., & Scalercio, S. R. R. d. A. (2023). Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi). Viruses, 15(3), 615. https://doi.org/10.3390/v15030615