HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequential Extraction of Gnidia sericocephala Roots
2.2. Microfractionation of the DCM Extract
2.3. UPLC-QTOF-MS/MS Characterization of Microfractions
2.4. Isolation and Purification of Compounds from the DCM Extract
2.5. Anti-HIV and Cytotoxicity In Vitro Screening of Compounds and Extracts of Gnidia sericocephala
2.6. Anti-HIV Screening of Compound 1 in PBMC
2.7. In Vitro Latency Reversal, Cell Viability, and T Cell Activation Assays
2.8. Ex Vivo Latency Reversal Assays
3. Results and Discussion
3.1. Anti-HIV Activity of G. Sericocephala Extracts
3.2. Anti-HIV Activity of HPLC Microfractions of the DCM Extract
3.3. NMR and MS Analysis of Purified Compounds
3.4. Anti-HIV Activity of Isolated Compounds
3.5. Anti-HIV Activity of Yuanhuacine A (1) in PBMC Isolates
3.6. Effects of Yuanhuacine A (1) and the Yuanhuacine-Containing Isomeric Mixture (2) on HIV Latency Reversal, Cell Viability, and T Cell Activation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAIDS. Global AIDS update: Seizing the Moment: Tackling Entrenched Inequalities to End Epidemics. Geneva 2020. Available online: https://healtheducationresources.unesco.org/library/documents/global-aids-update-2020-seizing-moment-tackling-entrenched-inequalities-end#:~:text=to%20end%20epidemics-Global%20AIDS%20update%202020%3A%20seizing%20the%20moment%3A%20tackling,entrenched%20inequalities%20to%20end%20epidemics&text=380%20p.&text=UNAIDS%20report%20on%20the%20global,HIV%20progress%20way%20off%20course (accessed on 27 June 2022).
- Omolo, J.J.; Maharaj, V.; Naidoo, D.; Klimkait, T.; Malebo, H.M.; Mtullu, S.; Lyaruu, H.V.M.; de Koning, C.B. Bioassay-Guided Investigation of the Tanzanian Plant Pyrenacantha kaurabassana for Potential Anti-HIV-Active Compounds. J. Nat. Prod. 2012, 75, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Ngo-Giang-Huong, N.; Huynh, T.H.K.; Dagnra, A.Y.; Toni, T.-D.; I Maiga, A.; Kania, D.; Eymard-Duvernay, S.; Peeters, M.; Soulie, C.; Peytavin, G.; et al. Prevalence of pretreatment HIV drug resistance in West African and Southeast Asian countries. J. Antimicrob. Chemother. 2018, 74, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Chimukangara, B.; Kharsany, A.B.; Lessells, R.J.; Naidoo, K.; Rhee, S.-Y.; Manasa, J.; Gräf, T.; Lewis, L.; Cawood, C.; Khanyile, D.; et al. Moderate-to-High Levels of Pretreatment HIV Drug Resistance in KwaZulu-Natal Province, South Africa. AIDS Res. Hum. Retrovir. 2019, 35, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Moyo, S.; Hunt, G.; Zuma, K.; Zungu, M.; Marinda, E.; Mabaso, M.; Kana, V.; Kalimashe, M.; Ledwaba, J.; Naidoo, I.; et al. HIV drug resistance profile in South Africa: Findings and implications from the 2017 national HIV household survey. PLoS ONE 2020, 15, e0241071. [Google Scholar] [CrossRef]
- UNAIDS. UNAIDS Data 2021. Geneva. Available online: https://www.unaids.org/en/resources/presscentre/pressreleaseandstatementarchive/2021/july/20210714_global-aids-update_en.pdf/ (accessed on 12 May 2022).
- Cillo, A.R.; Sobolewski, M.D.; Bosch, R.J.; Fyne, E.; Piatak, M.; Coffin, J.M.; Mellors, J.W. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA 2014, 111, 7078–7083. [Google Scholar] [CrossRef]
- Ventura, J.D. Human immunodeficiency virus 1 (HIV-1): Viral latency, the reservoir, and the cure. Yale J. Biol. Med. 2020, 93, 549–560. [Google Scholar]
- Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science 1997, 278, 1295–1300. [Google Scholar] [CrossRef]
- Hashemi, P.; Sadowski, I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med. Res. Rev. 2019, 40, 881–908. [Google Scholar] [CrossRef]
- Archin, N.M.; Liberty, A.L.; Kashuba, A.D.; Choudhary, S.K.; Kuruc, J.D.; Crooks, A.M.; Parker, D.C.; Anderson, E.M.; Kearney, M.; Strain, M.C.; et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012, 487, 482–485. [Google Scholar] [CrossRef]
- Abner, E.; Jordan, A. HIV “shock and kill” therapy: In need of revision. Antivir. Res. 2019, 166, 19–34. [Google Scholar] [CrossRef]
- Boucau, J.; Das, J.; Joshi, N.; Le Gall, S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLOS Pathog. 2020, 16, e1008442. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.J.; Ntie-Kang, F.; Tietjen, I. Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antivir. Res. 2018, 158, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.N.; McMonagle, E.L.; Hosie, M.J.; Willett, B.J. Prostratin exhibits both replication enhancing and inhibiting effects on FIV infection of feline CD4+ T-cells. Virus Res. 2013, 171, 121–128. [Google Scholar] [CrossRef][Green Version]
- Mehla, R.; Bivalkar-Mehla, S.; Zhang, R.; Handy, I.; Albrecht, H.; Giri, S.; Nagarkatti, P.; Nagarkatti, M.; Chauhan, A. Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner. PLoS ONE 2010, 5, e11160. [Google Scholar] [CrossRef]
- Vidal, V.; Potterat, O.; Louvel, S.; Hamy, F.; Mojarrab, M.; Sanglier, J.-J.; Klimkait, T.; Hamburger, M. Library-Based Discovery and Characterization of Daphnane Diterpenes as Potent and Selective HIV Inhibitors in Daphne gnidium. J. Nat. Prod. 2011, 75, 414–419. [Google Scholar] [CrossRef]
- Pierens, G.K. 1H and 13C NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. J. Comput. Chem. 2014, 35, 1388–1394. [Google Scholar] [CrossRef]
- Lanier, E.R.; Ptak, R.G.; Lampert, B.M.; Keilholz, L.; Hartman, T.; Buckheit, R.W.; Mankowski, M.K.; Osterling, M.C.; Almond, M.R.; Painter, G.R. Development of Hexadecyloxypropyl Tenofovir (CMX157) for Treatment of Infection Caused by Wild-Type and Nucleoside/Nucleotide-Resistant HIV. Antimicrob. Agents Chemother. 2010, 54, 2901–2909. [Google Scholar] [CrossRef]
- Ptak, R.G.; Gallay, P.A.; Jochmans, D.; Halestrap, A.P.; Ruegg, U.T.; Pallansch, L.A.; Bobardt, M.D.; de Béthune, M.-P.; Neyts, J.; De Clercq, E.; et al. Inhibition of Human Immunodeficiency Virus Type 1 Replication in Human Cells by Debio-025, a Novel Cyclophilin Binding Agent. Antimicrob. Agents Chemother. 2008, 52, 1302–1317. [Google Scholar] [CrossRef]
- Jordan, A.; Bisgrove, D.; Verdin, E. J Lat 10-6-HIV-repsoducibly establishes a latent infection after acute infection of T cells in vitro-cdg188. EMBO J. 2003, 22, 1868–1877. [Google Scholar] [CrossRef]
- Schonhofer, C.; Yi, J.; Sciorillo, A.; Andrae-Marobela, K.; Cochrane, A.; Harris, M.; Brumme, Z.L.; Brockman, M.A.; Mounzer, K.; Hart, C.; et al. Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem. Pharmacol. 2021, 186, 114462. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, N.; Kang, G.; Niu, W.; Li, Q.; Guo, J. Controlling Multicycle Replication of Live-Attenuated HIV-1 Using an Unnatural Genetic Switch. ACS Synth. Biol. 2017, 6, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Adachi, A.; E Gendelman, H.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; A Martin, M. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 1986, 59, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.-L.; Yao, G.-D.; Song, S.-J. Daphnane-type diterpenes from genus Daphne and their anti-tumor activity. Chin. Herb. Med. 2021, 13, 145–156. [Google Scholar] [CrossRef]
- De Mieri, M.; Du, K.; Neuburger, M.; Saxena, P.; Zietsman, P.C.; Hering, S.; van der Westhuizen, J.H.; Hamburger, M. hERG Channel Inhibitory Daphnane Diterpenoid Orthoesters and Polycephalones A and B with Unprecedented Skeletons from Gnidia polycephala. J. Nat. Prod. 2015, 78, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X.; Zhang, F.; Yang, P.; Gao, X.; Song, Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure—Activity relationship of potent inhibitory activity against DNA topoisomerase I. Bioorganic Med. Chem. 2006, 14, 3888–3895. [Google Scholar] [CrossRef] [PubMed]
- Görick, C.; Melzig, M.F. Gniditrin is the main diterpenoid constituent in the bark of Daphne mezereum L. Die Pharm. 2013, 68, 640–642. [Google Scholar] [CrossRef]
- Emert, J.; Breslow, R. Gnididin, gniditrin, and gnidicin, novel potent antileukemic diterpenoid esters from Gnidia lamprantha. J. Am. Chem. Soc. 1975, 97, 672–673. [Google Scholar]
- Jin, Y.-X.; Shi, L.-L.; Zhang, D.-P.; Wei, H.-Y.; Si, Y.; Ma, G.-X.; Zhang, J. A Review on Daphnane-Type Diterpenoids and Their Bioactive Studies. Molecules 2019, 24, 1842. [Google Scholar] [CrossRef]
- Liao, S.-G.; Chen, H.-D.; Yue, J.-M. Plant Orthoesters. Chem. Rev. 2009, 109, 1092–1140. [Google Scholar] [CrossRef]
- Wang, M.; Tietjen, I.; Chen, M.; Williams, D.E.; Daoust, J.; Brockman, M.A.; Andersen, R.J. Sesterterpenoids Isolated from the Sponge Phorbas sp. Activate Latent HIV-1 Provirus Expression. J. Org. Chem. 2016, 81, 11324–11334. [Google Scholar] [CrossRef]
- Shawon, J.; Akter, Z.; Hossen, M.M.; Akter, Y.; Sayeed, A.; Junaid, M.; Afrose, S.S.; Khan, M.A. Current Landscape of Natural Products against Coronaviruses: Perspectives in COVID-19 Treatment and Anti-viral Mechanism. Curr. Pharm. Des. 2020, 26, 5241–5260. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Huang, L.; Zhu, L.; Ferrari, G.; Chan, C.; Li, W.; Lee, K.-H.; Chen, C.-H. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β. J. Med. Chem. 2015, 58, 8638–8646. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, K.; Li, W.; Miura, K.; Asada, Y.; Huang, L.; Chen, C.-H.; Lee, K.-H.; Koike, K. Isolation, Structural Elucidation, and Anti-HIV Activity of Daphnane Diterpenoids from Daphne odora. J. Nat. Prod. 2020, 83, 3270–3277. [Google Scholar] [CrossRef]
- Huang, L.; Ho, P.; Yu, J.; Zhu, L.; Lee, K.-H.; Chen, C.-H. Picomolar Dichotomous Activity of Gnidimacrin Against HIV-1. PLoS ONE 2011, 6, e26677. [Google Scholar] [CrossRef] [PubMed]
Position | Compound | ||||||
---|---|---|---|---|---|---|---|
Yuanhuacine A (1) | Yuanhuacine * (2) | Yuanhuajine (3) | Gniditrin (4) | ||||
δC | δH (J) | δC | δH (J) | δC | δH (J) | δH (J) | |
1 | 160.47, CH | 7.48, t (8.06) | 160.50, CH | 7.62, s | 160.05, CH | 7.39, d (4.5) | 7.59, s |
2 | 136.96, C | 137.04, C | - | 136.98, C | |||
3 | 209.50, C | 209.54, C | - | 209.50, C | |||
4 | 71.98, C | 60.58, C | - | 78.37, C | |||
5 | 72.17, CH | 4.25, s | 64.07, CH | 3.66, s | 72.13, CH | 4.27, s | 4.27, s |
6 | 60.57, C | - | 72.15, C | - | 60.54, C | ||
7 | 64.73, CH | 3.84, d (13.0) | 72.00, CH | 4.27, s | 64.41, CH | 3.98, br d (7.6, 4.7) | 3.48, s |
8 | 34.80, CH | 3.65, d (2.6) | 35.7, CH | 3.66, s | 35.56, CH | 3.81, dd (12.4, 12.7) | 3.80, dt (5.7, 12.5) |
9 | 80.50, C | 78.40, C | - | 72.22, C | |||
10 | 47.50, CH | 3.87, quint (5.2) | 47.3, CH | 3.88, d (19.5) | 47.51, CH | 3.93, m | 3.97, m |
11 | 44.15, CH | 2.58, q (7.3) | 44.2, CH | 2.57, m | 44.21, CH | 2.56, m | 2.51, m |
12 | 78.24, CH | 5.24, s | 78.9, CH | 5.24, s | 78.64, CH | 5.11, t (7.9) | 5.10, q (4.4, 8.5) |
13 | 83.92, C | 83.92, C | - | 84.27, C | |||
14 | 78.96, CH | 4.92, d (1.2) | 81.2, CH | 4.92, s | 80.86, CH | 4.93, d (2.5) | 4.92, s |
15 | 143.00, C | 143.06, C | - | 142.9, C | |||
16 | 113.67, CH2 | 5.02, m 5.03, s | 114.62, CH2 | 5.04, t (8.4) | 113.83, CH2 | 5.02, d (4.9) | 5.02, d (4.12) |
17 | 18.80, CH3 | 1.89, br s | 18.79, CH3 | 1.90, s | 18.37, CH3 | 1.88, s | 1.88, s |
18 | 18.37, CH3 | 1.41, d (7.69) | 18.37, CH3 | 1.42, m | 18.97, CH3 | 1.41, t (3.9) | 1.41, t (3.9) |
19 | 9.90, CH3 | 1.79, dd (1.27) | 9.90, CH3 | 1.80, s | 9.96, CH3 | 1.75, s | 1.75, s |
20 | 64.07, CH2 | 3.97, d (12.7), 3.67 s | 64.72, CH2 | 3.97, d (19.5) | 63.8, CH2 | 3.64, dd (7.6, 4.7) | 3.63, dt (2.7, 3.1) |
1′ | 117.10, C | 117.1, C | - | 119.3, C | |||
2′ | 122.29, CH | 5.70, d (15.4) | 122.41, CH | 5.70, d (15.44) | 135.3, CH | 5.81, d (15.9) | |
3′ | 135.24, CH | 6.72, dd (10.87, 15.33) | 135.4, CH | 6.73, dd (11.07, 15.31) | 128.2, CH | 7.39, m | 7.72, dd (4.9, 1.96) |
4′ | 128.64, CH | 6.09, dd (10.81, 15.3) | 128.7, CH | 6.08 (11.09, 15.03) | 127.2, CH | 6.20, m | 7.39, d (6.2) |
5′ | 139.20, CH | 5.89, dt (15.3, 14.5) | 139.6, CH | 5.89, m (6.9,15.03) | 129.9, CH | 6.6, m | 7.39, d (6.22) |
6′ | 35.81, CH2 | 2.11, q (7.3) | 32.8, CH2 | 2.12, d (7.35) | 127.2, CH | 6.16, m | 7.39, d (6.22) |
7′ | 22.24, CH2 | 1.44, sext (7.3) | 28.9, CH2 | 1.41, dd (4.1, 6.7) | 141.5, CH | 5.97, m | 7.59, s |
8′ | 13.65, CH3 | 0.93, t (7.3) | 31.4, CH2 | 1.27, s | 36.1, CH2 | 2.1, q (8.7, 15.3) | |
9′ | 22.68, CH2 | 1.31, br s | 22.7, CH2 | 1.44, m | |||
10′ | 14.2, CH3 | 0.91, t (6.7) | 13.8, CH3 | 0.92, t (7.4) | |||
1″ | 165.54, C | 165.8, C | - | 165.9, C | |||
2″ | 129.48, C | 129.8, C | - | 135.6, C | 5.75, m | ||
3″ | 7.39, d (6.22) | ||||||
3″-7″ | 129.71, CH | 7.92, dd (8.2, 8.4) | 129.5, CH | 7.92, d (7.6) | 126.3, CH | 7.72, m | |
4″-6″ | 128.76, CH | 7.48, t (8.1, 15.2) | 128.8, CH | 7.49, t (7.9) | 128.2, CH | 7.39, m | |
4″ | 6.17, m | ||||||
5″ | 133.45, CH | 7.61, m | 133.5, CH | 7.62, s | 129.9, CH | 7.59, m | 6.56, m |
6″ | 5.95, m | ||||||
7″ | 5.10, q | ||||||
8″ | 2.1, q (8.7, 15.3) | ||||||
9″ | 1.44, m | ||||||
10″ | 0.92, t (7.4) |
Compound | Antiviral Activity (µM) | Cytotoxicity (µM) | Selectivity Index | |
---|---|---|---|---|
EC50 | EC90 | CC50 | CC50/IC50 | |
Yuanhuacine (1) | 0.03 | 0.09 | >15 | >500 |
AZT | 0.007 | 0.05 | >1 | >142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tembeni, B.; Sciorillo, A.; Invernizzi, L.; Klimkait, T.; Urda, L.; Moyo, P.; Naidoo-Maharaj, D.; Levitties, N.; Gyampoh, K.; Zu, G.; et al. HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae). Viruses 2022, 14, 1437. https://doi.org/10.3390/v14071437
Tembeni B, Sciorillo A, Invernizzi L, Klimkait T, Urda L, Moyo P, Naidoo-Maharaj D, Levitties N, Gyampoh K, Zu G, et al. HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae). Viruses. 2022; 14(7):1437. https://doi.org/10.3390/v14071437
Chicago/Turabian StyleTembeni, Babalwa, Amanda Sciorillo, Luke Invernizzi, Thomas Klimkait, Lorena Urda, Phanankosi Moyo, Dashnie Naidoo-Maharaj, Nathan Levitties, Kwasi Gyampoh, Guorui Zu, and et al. 2022. "HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae)" Viruses 14, no. 7: 1437. https://doi.org/10.3390/v14071437
APA StyleTembeni, B., Sciorillo, A., Invernizzi, L., Klimkait, T., Urda, L., Moyo, P., Naidoo-Maharaj, D., Levitties, N., Gyampoh, K., Zu, G., Yuan, Z., Mounzer, K., Nkabinde, S., Nkabinde, M., Gqaleni, N., Tietjen, I., Montaner, L. J., & Maharaj, V. (2022). HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae). Viruses, 14(7), 1437. https://doi.org/10.3390/v14071437