Construction and Transcriptomic Study of Chicken IFNAR1-Knockout Cell Line Reveals the Essential Roles of Cell Growth- and Apoptosis-Related Pathways in Duck Tembusu Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Construction of chIFNAR1-Knockout DF-1 Cell Clone, KO-IFNAR1
2.3. CCK8 Assay
2.4. RNA Extraction and RT-qPCR Analysis
2.5. SDS-PAGE and Western Blot Analysis
2.6. Transcriptomic Analysis
2.7. RNA Interference
2.8. Plasmid Construction
3. Results
3.1. CRISPR/Cas9-Mediated Knockout of chIFNAR1 in DF-1 Cells
3.2. Knockout of IFNAR1 Significantly Reduces the Induction of IFN-β and ISG in Cells Infected with DTMUV, IBV and NDV
3.3. Knockout of chIFNAR1 Promotes the Replication of DTMUV, IBV and NDV
3.4. Transcriptomic Analysis of Differential Gene Expression in DF-1 and KO-IFNAR1 Cells Infected with DTMUV
3.5. Biological Significance of DEGs in DTMUV-Infected KO-IFNAR1 Cells
3.6. Validation of Transcriptomic Data by RT-qPCR
3.7. Knockdown of HELZ2 and IFI6 Promotes DTMUV Replication
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randall, R.E.; Goodbourn, S. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 2008, 89, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Alsayed, Y.M.; Druker, B.J.; Platanias, L.C. The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J. Biol. Chem. 1997, 272, 29991–29994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, G.R.; Darnell, J.E. The JAK-STAT Pathway at Twenty. Immunity 2012, 36, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, C.; Huang, M.; Xiong, T.; Rong, F.; Li, L.; Liu, D.X.; Chen, R.A. Transcriptomic Analysis and Functional Characterization Reveal the Duck Interferon Regulatory Factor 1 as an Important Restriction Factor in the Replication of Tembusu Virus. Front. Microbiol. 2020, 11, 2069. [Google Scholar] [CrossRef]
- Fung, T.S.; Liu, D.X. Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun. Cell Death Dis. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.X.; Liang, J.Q.; Zhu, Q.C.; Dai, G.; Li, S.; Fung, T.S.; Liu, D.X. A gammacoronavirus, avian infectious bronchitis virus, and an alphacoronavirus, porcine epidemic diarrhea virus, exploit a cell survival strategy by upregulating cFOS to promote virus replication. J. Virol. 2021, 95, e02107-20. [Google Scholar] [CrossRef]
- Vu, T.H.; Hong, Y.; Truong, A.D.; Lee, S.; Heo, J.; Lillehoj, H.S.; Hong, Y.H. The highly pathogenic H5N1 avian influenza virus induces the MAPK signaling pathway in the trachea of two Ri chicken lines. Anim. Biosci. 2022, 35, 964. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Antonova, E.; Glazova, O.; Gaponova, A.; Eremyan, A.; Zvereva, S.; Grebenkina, N.; Volkova, N.; Volchkov, P. Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line. F1000Research 2018, 7, 238. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ti, J.; Zhang, L.; Li, Z.; Zhao, D.; Zhang, Y.; Li, F.; Diao, Y. Effect of age and inoculation route on the infection of duck Tembusu virus in Goslings. Vet. Microbiol. 2015, 181, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage DAmin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, W.; Wu, Z.; Zhang, J.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Sun, K.; Yang, Q. Goose Mx and OASL Play Vital Roles in the Antiviral Effects of Type I, II, and III Interferon against Newly Emerging Avian Flavivirus. Front. Immunol. 2017, 8, 1006. [Google Scholar] [CrossRef] [Green Version]
- Del, V.A.; Jang, H.J.; Monson, M.S.; Lamont, S.J. Role of the chicken oligoadenylate synthase-like gene during in vitro Newcastle disease virus infection. Poult. Sci. 2021, 100, 101067. [Google Scholar]
- Zhang, H.; Zhang, H.; Cao, S.; Sui, C.; Song, Y.; Zhao, Y.; Liu, S. Knockout of p53 leads to a significant increase in ALV-J replication. Poult. Sci. 2021, 100, 101374. [Google Scholar] [CrossRef]
- Ye, C.; Liu, S.; Li, N.; Zuo, S.; Niu, Y.; Lin, Q.; Liang, H.; Luo, X.; Fu, X. Mandarin Fish (Siniperca chuatsi) p53 Regulates Glutaminolysis Induced by Virus via the p53/miR145-5p/c-Myc Pathway in Chinese Perch Brain Cells. Microbiol. Spectr. 2022, 10, e02727. [Google Scholar] [CrossRef]
- Zhu, Q.C.; Li, S.; Yuan, L.X.; Chen, R.A.; Liu, D.X.; Fung, T.S. Induction of the Proinflammatory Chemokine Interleukin-8 Is Regulated by Integrated Stress Response and AP-1 Family Proteins Activated during Coronavirus Infection. Int. J. Mol. Sci. 2021, 22, 5646. [Google Scholar] [CrossRef]
- Wan, P.; Zhang, S.; Ruan, Z.; Liu, X.; Yang, G.; Jia, Y.; Li, Y.; Pan, P.; Li, W.; Li, G.; et al. AP-1 signaling pathway promotes pro-IL-1β transcription to facilitate NLRP3 inflammasome activation upon influenza A virus infection. Virulence 2022, 13, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kong, N.; Jiao, Y.; Dong, S.; Sun, D.; Chen, X.; Zheng, H.; Tong, W.; Yu, H.; Yu, L.; et al. EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by Regulating IRAV To Degrade Viral Nucleocapsid Protein. J. Virol. 2021, 95, e64521. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Zhao, M.; He, W.; He, H.; Wang, H. Cellular microRNA bta-miR-2361 inhibits bovine herpesvirus 1 replication by directly targeting EGR1 gene. Vet. Microbiol. 2019, 233, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Fusco, D.N.; Pratt, H.; Kandilas, S.; Cheon, S.S.Y.; Lin, W.; Cronkite, D.A.; Basavappa, M.; Jeffrey, K.L.; Anselmo, A.; Sadreyev, R.; et al. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front. Microbiol. 2017, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Drouin, A.; Wallbillich, N.; Theberge, M.; Liu, S.; Katz, J.; Bellovodad, K.; Cheon, S.S.Y.; Gootkinde, F.; Bierman, E.; Zavrase, J.; et al. Impact of Zika virus on the human type I interferon osteoimmune response. Cytokine 2021, 137, 155342. [Google Scholar] [CrossRef]
- Yu, S.; Mao, H.; Jin, M.; Lin, X. Transcriptomic Analysis of the Chicken MDA5 Response Genes. Genes 2020, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Berthoux, L. The Restrictome of Flaviviruses. Virol. Sin. 2020, 35, 363–377. [Google Scholar] [CrossRef]
- Richardson, R.B.; Ohlson, M.B.; Eitson, J.L.; Kumar, A.; McDougal, M.B.; Boys, I.N.; Mar, K.B.; de la Cruz-Rivera, P.C.; Douglas, C.; Konopka, G.; et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat. Microbiol. 2018, 3, 1214–1223. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, M.; Morita, E. Flavivirus Replication Organelle Biogenesis in the Endoplasmic Reticulum: Comparison with Other Single-Stranded Positive-Sense RNA Viruses. Int. J. Mol. Sci. 2019, 20, 2336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Zuo, Q.; Li, D.; Zhang, W.; Wang, F.; Ji, Y.; Jin, J.; Lu, Z.; Wang, M.; et al. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE 2017, 12, e172207. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Q.; Wang, Y.; Cheng, S.; Lian, C.; Tang, B.; Wang, F.; Lu, Z.; Ji, Y.; Zhao, R.; Zhang, W.; et al. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology. G3 2016, 6, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
Gene | Foward Primer (5′-3′) | Reverse Primer (5′-3′) | |
---|---|---|---|
Primers for qPCR | GAPDH (C) | GCCATCACAGCCACACAGA | TTTCCCCACAG CCTTAGCA |
VIPERIN (C) | TCGTTCTGCCTCTGCTCTCCTG | TTGTAGTTGCACTGCCTGGTGAAG | |
IFIT5 (C) | CACCAGCTAGGACTCTGCTACCG | CCTCCGCATACATC CTTGCCAAG | |
MX (C) | CTGCGGACAAGCCATAGAA | GCACCCCAAAAACTCCTACA | |
OASL (C) | ATCATCGAGAG GCGGCTC | TCCGCGCTACAAGGACAGC | |
IFN-β (C) | AGATGGCTCCCAGCTCTACA | AGTGGTTGAGCTGGTTG AGG | |
NDV-NP | GGAAGGAAGCGGAGCCATCATG | GCTGTGGAGGGTTCATCTCATTCG | |
DTMUV-E | CGCTGAGATGGAGGATTATGG | ACTGATTTTTGGTGG CGTG | |
IBV-N | GTTCTCGCATAAGGTCGGCTA | GCTCACTAAACACCACCAGAAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Yang, Z.; Xiong, T.; Wang, T.; Yang, J.; Huang, M.; Liu, D.; Chen, R. Construction and Transcriptomic Study of Chicken IFNAR1-Knockout Cell Line Reveals the Essential Roles of Cell Growth- and Apoptosis-Related Pathways in Duck Tembusu Virus Infection. Viruses 2022, 14, 2225. https://doi.org/10.3390/v14102225
Xiang C, Yang Z, Xiong T, Wang T, Yang J, Huang M, Liu D, Chen R. Construction and Transcriptomic Study of Chicken IFNAR1-Knockout Cell Line Reveals the Essential Roles of Cell Growth- and Apoptosis-Related Pathways in Duck Tembusu Virus Infection. Viruses. 2022; 14(10):2225. https://doi.org/10.3390/v14102225
Chicago/Turabian StyleXiang, Chengwei, Zekun Yang, Ting Xiong, Ting Wang, Jie Yang, Mei Huang, Dingxiang Liu, and RuiAi Chen. 2022. "Construction and Transcriptomic Study of Chicken IFNAR1-Knockout Cell Line Reveals the Essential Roles of Cell Growth- and Apoptosis-Related Pathways in Duck Tembusu Virus Infection" Viruses 14, no. 10: 2225. https://doi.org/10.3390/v14102225
APA StyleXiang, C., Yang, Z., Xiong, T., Wang, T., Yang, J., Huang, M., Liu, D., & Chen, R. (2022). Construction and Transcriptomic Study of Chicken IFNAR1-Knockout Cell Line Reveals the Essential Roles of Cell Growth- and Apoptosis-Related Pathways in Duck Tembusu Virus Infection. Viruses, 14(10), 2225. https://doi.org/10.3390/v14102225