Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. SNV Information on the hTIM-1 IgV Domain
2.2. Cells
2.3. hTIM-1 Plasmids
2.4. Generation of Pseudotyped VSIVs
2.5. Virus Entry Assay
2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting
2.7. Immunofluorescence Assay
2.8. Flow Cytometry
2.9. Purification of Soluble hTIM-1 Proteins
2.10. Viral Entry Inhibition Assay Using Soluble hTIM-1 Proteins
2.11. Statistical Analysis
3. Results
3.1. SNVs of the hTIM-1 IgV Domain
3.2. hTIM-1 SNV Substitutions Affecting the Entry of Pseudotyped VSIV into HEK293T Cells
3.3. SNV Substitutions Affecting Neutralizing Activity of Soluble hTIM-1 against VSIVΔG*-EBOV
3.4. Mapping of the hTIM-1 SNV Positions
3.5. Allele Frequencies and Functional Predictions of hTIM-1 SNVs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, E.W.; Lin, J.Y.; Kane, L.P. TIM-1 and TIM-3 proteins in immune regulation. Cytokine 2008, 44, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kuchroo, V.K.; Dardalhon, V.; Xiao, S.; Anderson, A.C. New roles for TIM family members in immune regulation. Nat. Rev. Immunol. 2008, 8, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Rennert, P.D. Novel roles for TIM-1 in immunity and infection. Immunol. Lett. 2011, 141, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kachko, A.; Costafreda, M.I.; Zubkova, I.; Jacques, J.; Takeda, K.; Wells, F.; Kaplan, G.; Major, M.E. Determinants in the Ig variable domain of human HAVCR1 (TIM-1) are required to enhance Hepatitis C virus entry. J. Virol. 2018, 92, e01742-17. [Google Scholar] [CrossRef]
- Kondratowicz, A.S.; Lennemann, N.J.; Sinn, P.L.; Davey, R.A.; Hunt, C.L.; Moller-Tank, S.; Meyerholz, D.K.; Rennert, P.; Mullins, R.F.; Brindley, M.; et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire ebolavirus and Lake Victoria marburgvirus. Proc. Natl. Acad. Sci. USA 2011, 108, 8426–8431. [Google Scholar] [CrossRef]
- Kobayashi, N.; Karisola, P.; Peña-Cruz, V.; Dorfman, D.M.; Jinushi, M.; Umetsu, S.E.; Butte, M.J.; Nagumo, H.; Chernova, I.; Zhu, B.; et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007, 27, 927–940. [Google Scholar] [CrossRef]
- Amara, A.; Mercer, J. Viral apoptotic mimicry. Nat. Rev. Microbiol. 2015, 13, 461–469. [Google Scholar] [CrossRef]
- Moller-Tank, S.; Maury, W. Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology 2014, 468–470, 565–580. [Google Scholar] [CrossRef]
- Jemielity, S.; Wang, J.J.; Chan, Y.K.; Ahmed, A.A.; Li, W.; Monahan, S.; Bu, X.; Farzan, M.; Freeman, G.J.; Umetsu, D.T.; et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 2013, 9, e1003232. [Google Scholar] [CrossRef]
- Brunton, B.; Rogers, K.; Phillips, E.K.; Brouillette, R.B.; Bouls, R.; Butler, N.S.; Maury, W. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl. Trop. Dis. 2019, 13, e0006983. [Google Scholar] [CrossRef]
- Younan, P.; Iampietro, M.; Nishida, A.; Ramanathan, P.; Santos, R.I.; Dutta, M.; Lubaki, N.M.; Koup, R.A.; Katze, M.G.; Bukreyev, A. Ebola virus binding to TIM-1 on T lymphocytes induces a cytokine storm. MBio 2017, 8, e00845-17. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.-W.; Yang, C.-J.; Peng, K.-J.; Chen, P.-L.; Wang, S.-J.; Ping, Y.-H. TIM-1 as a signal receptor triggers Dengue virus-induced autophagy. Int. J. Mol. Sci. 2019, 20, 4893. [Google Scholar] [CrossRef] [PubMed]
- Moller-Tank, S.; Albritton, L.M.; Rennert, P.D.; Maury, W. Characterizing functional domains for TIM-mediated enveloped virus entry. J. Virol. 2014, 88, 6702–6713. [Google Scholar] [CrossRef] [PubMed]
- Moller-Tank, S.; Kondratowicz, A.S.; Davey, R.A.; Rennert, P.D.; Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 2013, 87, 8327–8341. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Eyheramonho, M.B.; Pichavant, M.; Gonzalez Cambaceres, C.; Matangkasombut, P.; Cervio, G.; Kuperman, S.; Moreiro, R.; Konduru, K.; Manangeeswaran, M.; et al. A polymorphism in TIM1 is associated with susceptibility to severe Hepatitis A virus infection in humans. J. Clin. Investig. 2011, 121, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Biasin, M.; Sironi, M.; Saulle, I.; Pontremoli, C.; Garziano, M.; Cagliani, R.; Trabattoni, D.; Lo Caputo, S.; Vichi, F.; Mazzotta, F.; et al. A 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 confers protections against HIV-1 infection. Microbes Infect. 2017, 19, 69–74. [Google Scholar] [CrossRef]
- Niu, J.; Jiang, Y.; Xu, H.; Zhao, C.; Zhou, G.; Chen, P.; Cao, R. TIM-1 promotes Japanese encephalitis virus entry and infection. Viruses 2018, 10, 630. [Google Scholar] [CrossRef]
- Kirui, J.; Abidine, Y.; Lenman, A.; Islam, K.; Gwon, Y.D.; Lasswitz, L.; Evander, M.; Bally, M.; Gerold, G. The phosphatidylserine receptor TIM-1 enhances authentic Chikungunya virus cell entry. Cells 2021, 10, 1828. [Google Scholar] [CrossRef]
- Kuroda, M.; Fujikura, D.; Noyori, O.; Kajihara, M.; Maruyama, J.; Miyamoto, H.; Yoshida, R.; Takada, A. A polymorphism of the TIM-1 IgV domain: Implications for the susceptibility to filovirus infection. Biochem. Biophys. Res. Commun. 2014, 455, 223–228. [Google Scholar] [CrossRef]
- Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 2010, 235, 172–189. [Google Scholar] [CrossRef] [Green Version]
- Santiago, C.; Ballesteros, A.; Martínez-Muñoz, L.; Mellado, M.; Kaplan, G.G.; Freeman, G.J.; Casasnovas, J.M. Structures of T cell immunoglobulin mucin protein 4 show a metal-ion-dependent ligand binding site where phosphatidylserine binds. Immunity 2007, 27, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Ballesteros, A.; Tami, C.; Martínez-Muñoz, L.; Kaplan, G.G.; Casasnovas, J.M. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity 2007, 26, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Cao, L.; Ling, H.; Dang, M.; Sun, Y.; Zhang, X.; Chen, Y.; Zhang, L.; Su, D.; Wang, X.; et al. TIM-1 acts a dual-attachment receptor for ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Protein Cell 2015, 6, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Genome Browser Homepage. Available online: http://www.ensembl.org (accessed on 1 May 2020).
- dbSNP-National Centre for Biotechnological Information (NCBI). Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 1 May 2020).
- Ensembl Pathogenicity Predictions. Available online: https://grch37.ensembl.org/info/genome/variation/prediction/protein_function.html (accessed on 1 May 2020).
- Messaoudi, I.; Amarasinghe, G.K.; Basler, C.F. Filovirus pathogenesis and immune evasion: Insights from Ebola virus and Marburg virus. Nat. Rev. Microbiol. 2015, 13, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Ly, H. Differential immune responses to New World and Old World mammalian arenaviruses. Int. J. Mol. Sci. 2017, 18, 1040. [Google Scholar] [CrossRef]
- Lee, J.E.; Saphire, E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009, 4, 621–635. [Google Scholar] [CrossRef]
- Takada, A.; Robison, C.; Goto, H.; Sanchez, A.; Murti, K.G.; Whitt, M.A.; Kawaoka, Y. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl. Acad. Sci. USA 1997, 94, 14764–14769. [Google Scholar] [CrossRef]
- Yoshida, R.; Igarashi, M.; Ozaki, H.; Kishida, N.; Tomabechi, D.; Kida, H.; Ito, K.; Takada, A. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of Influenza A viruses. PLoS Pathog. 2009, 5, e1000350. [Google Scholar] [CrossRef]
- Waanders, F.; van Timmeren, M.M.; Stegeman, C.A.; Bakker, S.J.L.; van Goor, H. Kidney injury molecule-1 in renal disease. J. Pathol. 2010, 220, 7–16. [Google Scholar] [CrossRef]
- Schweigert, O.; Dewitz, C.; Möller-Hackbarth, K.; Trad, A.; Garbers, C.; Rose-John, S.; Scheller, J. Soluble T cell immunoglobulin and mucin domain (TIM)-1 and -4 generated by a disintegrin and metalloprotease (ADAM)-10 and -17 bind to phosphatidylserine. Biochim. Biophys. Acta-Mol. Cell Res. 2014, 1843, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, C.; Wang, H.; Guo, Z.; Rong, H.; Pan, J.; Li, W.; Pei, R.; Chen, X.; Zhang, Z.; et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a functional entry factor for Tick-borne encephalitis virus. MBio 2022, 13, e02860-21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Hu, L.; Zhang, Y.; Zheng, H.; Wu, H.; Wang, J.; Luo, L.; Xiao, H.; Qiao, C.; et al. TIM-1 augments cellular entry of Ebola virus species and mutants, which is blocked by recombinant TIM-1 protein. Microbiol. Spectr. 2022, 10, e02212-21. [Google Scholar] [CrossRef] [PubMed]
- Tami, C.; Silberstein, E.; Manangeeswaran, M.; Freeman, G.J.; Umetsu, S.E.; DeKruyff, R.H.; Umetsu, D.T.; Kaplan, G.G. Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J. Virol. 2007, 81, 3437–3446. [Google Scholar] [CrossRef]
- Lee, J.; Phong, B.; Egloff, A.M.; Kane, L.P. TIM polymorphisms—genetics and function. Genes Immun. 2011, 12, 595–604. [Google Scholar] [CrossRef]
- Chae, S.-C.; Song, J.-H.; Heo, J.-C.; Lee, Y.-C.; Kim, J.-W.; Chung, H.-T. Molecular variations in the promoter and coding regions of human TIM-1 gene and their association in Koreans with asthma. Hum. Immunol. 2003, 64, 1177–1182. [Google Scholar] [CrossRef]
- Chae, S.-C.; Park, Y.-R.; Song, J.-H.; Shim, S.-C.; Yoon, K.-S.; Chung, H.-T. The polymorphisms of TIM-1 promoter region are associated with rheumatoid arthritis in a Korean population. Immunogenetics 2005, 56, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Katsonis, P.; Koire, A.; Wilson, S.J.; Hsu, T.-K.; Lua, R.C.; Wilkins, A.D.; Lichtarge, O. Single nucleotide variations: Biological impact and theoretical interpretation. Protein Sci. 2014, 23, 1650–1666. [Google Scholar] [CrossRef]
- Weerd, N.A.; Vivian, J.P.; Lim, S.S.; Huang, S.U.; Hertzog, P.J. Structural integrity with functional plasticity: What type I IFN receptor polymorphisms reveal. J. Leukoc. Biol. 2020, 108, 909–924. [Google Scholar] [CrossRef]
- Schröder, N.W.; Schumann, R.R. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 2005, 5, 156–164. [Google Scholar] [CrossRef]
- Nogales, A.; DeDiego, M.L. Host single nucleotide polymorphisms modulating Influenza A virus disease in humans. Pathogens 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Perera-Lecoin, M.; Meertens, L.; Carnec, X.; Amara, A. Flavivirus entry receptors: An update. Viruses 2013, 6, 69–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
rsID a | Position | Amino Acid Wildtype/Mutant | SNV Name | Location b |
---|---|---|---|---|
rs774628607 | 31 | S/F | S31F | β-strand B |
rs766684661 | 32 | V/F | V32F | β-strand B |
rs763305471 | 33 | T/A | T33A | β-strand B |
rs748542797 | 34 | L/P | L34P | β-strand B |
rs1235087840 | 35 | P/S | P35S | BC loop |
rs948562287 | 38 | Y/H | Y38H | BC loop |
rs1331131690 | 43 | T/A | T43A | BC loop |
rs1392286629 | 44 | S/P | S44P | BC loop |
rs201914430 | 45 | M/V | M45V | β-strand C |
rs778524415 | 46 | C/W | C46W | β-strand C |
rs368474218 | 47 | W/R | W47R | β-strand C |
rs1334308674 | 49 | R/S | R49S | β-strand C |
rs1467830805 | 50 | G/S | G50S | CC’ loop |
rs2270922 | 51 | S/L | S51L | CC’ loop |
rs766596791 | 53 | S/F | S53F | CC’ loop |
rs750683624 | 57 | C/S | C57S | CC’ loop |
rs1324375875 | 58 | Q/R | Q58R | CC’ loop |
rs765450007 | 60 | G/D | G60D | β-strand C’ |
s776921169 | 62 | V/I | V62I | β-strand C’ |
rs1313131093 | 101 | G/D | G101D | β-strand F |
rs759044943 | 102 | V/L | V102L | β-strand F |
rs770585374 | 106 | R/H | R106H | β-strand F |
rs748923252 | 107 | V/I | V107I | β-strand F |
rs769720430 | 109 | H/P | H109P | FG loop |
rs370980439 | 110 | R/C | R110C | FG loop |
rs1196575610 | 111 | G/R | G111R | FG loop |
rs1240319173 | 113 | F/L | F113L | FG loop |
rs377678930 | 114 | N/S | N114S | FG loop |
rs1168125347 | 115 | D/G | D115G | FG loop |
rs745941787 | 116 | M/L | M116L | β-strand G |
rs778900665 | 119 | T/I | T119I | β-strand G |
rs754029647 | 120 | V/I | V120I | β-strand G |
rs1190295106 | 121 | S/P | S121P | β-strand G |
rs1169032336 | 124 | I/T | I124T | β-strand G |
rs556857102 | 125 | V/L | V125L | β-strand G |
SNVs | Global MAF a | SIFT b | PolyPhen-2 c | CADD d | REVEL e |
---|---|---|---|---|---|
L34P | 7.39 × 10−5 | D | ProD | LD | LDC |
C46W | 3.94 × 10−5 | D | ProD | LD | LDC |
W47R | 1.44 × 10−4 | D | ProD | LD | LDC |
C57S | 6.57 × 10−6 | D | ProD | LD | LDC |
V62I | 3.94 × 10−5 | T | B | LB | LB |
H109P | 4.02 × 10−6 | D | PosD | LB | LB |
R110C | 1.97 × 10−5 | D | PosD | LB | LB |
G111R | 6.57 × 10−6 | D | ProD | LD | LB |
N114S | 4.09 × 10−6 | D | ProD | LD | LB |
D115G | 2.63 × 10−5 | D | ProD | LD | LDC |
I124T | 7.96 × 10−6 | D | ProD | LD | LB |
SNVs | Global MAF a | SIFT b | PolyPhen-2 c | CADD d | REVEL e |
---|---|---|---|---|---|
S31F | NA f | D | PosD | LB | LB |
V32F | NA | D | ProD | LB | LB |
T33A | 6.57 × 10−6 | D | PosD | LB | LB |
P35S | 6.57 × 10−6 | T | PosD | LB | LB |
Y38H | NA | D | ProD | LD | LB |
T43A | 4.01 × 10−6 | D | B | LB | LB |
S44P | 4.01 × 10−6 | D | B | LB | LB |
M45V | 1.00 × 10−4 | D | PosD | LB | LB |
R49S | 6.57 × 10−6 | D | ProD | LB | LB |
G50S | 4.01 × 10−6 | D | ProD | LB | LB |
S51L | 3.28 × 10−5 | D | B | LD | LB |
S53F | 4.00 × 10−6 | D | PosD | LD | LB |
Q58R | 4.01 × 10−6 | T | B | LB | LB |
G60D | 2.00 × 10−5 | T | B | LB | LB |
G101D | 4.00 × 10−6 | D | PosD | LD | LDC |
V102L | 3.29 × 10−5 | T | B | LB | LB |
R106H | 3.29 × 10−5 | D | ProD | LD | LDC |
V107I | NA | T | B | LB | LB |
F113L | 2.63 × 10−5 | D | ProD | LD | LB |
M116L | 1.25 × 10−5 | T | B | LB | LB |
T119I | 4.20 × 10−6 | D | PosD | LB | LB |
V120I | 4.60 × 10−5 | T | B | LB | LB |
S121P | 6.57 × 10−6 | D | ProD | LB | LB |
V125L | 1.97 × 10−5 | D | B | LB | LB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattori, T.; Saito, T.; Miyamoto, H.; Kajihara, M.; Igarashi, M.; Takada, A. Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells. Viruses 2022, 14, 2124. https://doi.org/10.3390/v14102124
Hattori T, Saito T, Miyamoto H, Kajihara M, Igarashi M, Takada A. Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells. Viruses. 2022; 14(10):2124. https://doi.org/10.3390/v14102124
Chicago/Turabian StyleHattori, Takanari, Takeshi Saito, Hiroko Miyamoto, Masahiro Kajihara, Manabu Igarashi, and Ayato Takada. 2022. "Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells" Viruses 14, no. 10: 2124. https://doi.org/10.3390/v14102124
APA StyleHattori, T., Saito, T., Miyamoto, H., Kajihara, M., Igarashi, M., & Takada, A. (2022). Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells. Viruses, 14(10), 2124. https://doi.org/10.3390/v14102124