Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure
Abstract
:1. Introduction
2. Distribution of HBV Infection in the Liver
3. Impact of HBV Infection on Hepatocyte Function
4. The Molecular Basis of Liver Enzyme Elevations in the Blood
5. Transaminase Flares and the Hepatic Reservoir during Natural History of HBV Infection
6. Transaminase Flares during Therapy
6.1. Nucleos(t)ide Analogues
6.2. Removal of NUC Therapy
6.3. Pegylated Interferon
6.4. Thymosin Alpha 1
6.5. RNAi/Antisense
6.6. Nucleic Acid Polymers
6.7. Transaminase Flares during Therapy with Cirrhosis
7. Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganem, D.; Prince, A.M. Hepatitis B virus infection--natural history and clinical consequences. N. Engl. J. Med. 2004, 350, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.S.; Coffin, C.S. Hepatitis B virus lymphotropism: Emerging details and challenges. Biotechnol. Genet. Eng. Rev. 2018, 34, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Rong, Q.; Huang, J.; Su, E.; Li, J.; Li, J.; Zhang, L.; Cao, K. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells. Virol. J. 2007, 4, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehermann, B.; Ferrari, C.; Pasquinelli, C.; Chisari, F.V. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat. Med. 1996, 2, 1104–1108. [Google Scholar] [CrossRef]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bath, R.M.; Doering, B.E.; Nailor, M.D.; Goodlet, K.J. Pharmacotherapy-Induced Hepatitis B Reactivation Among Patients With Prior Functional Cure: A Systematic Review. Ann. Pharmacother. 2019, 53, 294–310. [Google Scholar] [CrossRef]
- Polaris Observatory, C. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: A modelling study. Lancet Gastroenterol. Hepatol. 2018, 3, 383–403. [Google Scholar] [CrossRef]
- WHO. Hepatitis B Fact Sheet; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Vaillant, A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Levrero, M.; Pollicino, T.; Petersen, J.; Belloni, L.; Raimondo, G.; Dandri, M. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 2009, 51, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Tu, T.; Budzinska, M.A.; Shackel, N.A.; Urban, S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Mason, W.S.; Jilbert, A.R.; Litwin, S. Hepatitis B Virus DNA Integration and Clonal Expansion of Hepatocytes in the Chronically Infected Liver. Viruses 2021, 13, 210. [Google Scholar] [CrossRef]
- Freitas, N.; Lukash, T.; Gunewardena, S.; Chappell, B.; Slagle, B.L.; Gudima, S.O. Relative Abundance of Integrant-Derived Viral. RNAs in Infected Tissues Harvested from Chronic Hepatitis B Virus Carriers. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindh, M.; Rydell, G.E.; Larsson, S.B. Impact of integrated viral DNA on the goal to clear hepatitis B surface antigen with different therapeutic strategies. Curr. Opin Virol. 2018, 30, 24–31. [Google Scholar] [CrossRef]
- Cornberg, M.; Manns, M.P. Hepatitis: No cure for hepatitis B and D without targeting integrated viral DNA? Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 195–196. [Google Scholar] [CrossRef]
- Moucari, R.; Lada, O.; Marcellin, P. Chronic hepatitis B: Back to the future with HBsAg. Expert Rev. Anti Infect. Ther. 2009, 7, 633–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.R. Emerging Therapies Toward a Functional Cure for Hepatitis B Virus Infection. Gastroenterol. Hepatol. (N. Y.) 2018, 14, 439–442. [Google Scholar]
- Dusheiko, G.; Wang, B. Hepatitis B Surface Antigen Loss: Too Little, Too Late and the Challenge for the Future. Gastroenterology 2019, 156, 548–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, T.C.; Lok, A.S. How Do We Determine Whether a Functional Cure for HBV Infection Has Been Achieved? Clin. Gastroenterol. Hepatol. 2020, 18, 548–550. [Google Scholar] [CrossRef]
- Anderson, R.T.; Choi, H.S.J.; Lenz, O.; Peters, M.G.; Janssen, H.L.A.; Mishra, P.; Donaldson, E.; Westman, G.; Buchholz, S.; Miller, V.; et al. Association Between Seroclearance of Hepatitis B Surface Antigen and Long-term Clinical Outcomes of Patients With Chronic Hepatitis B Virus Infection: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 463–472. [Google Scholar] [CrossRef]
- Ray, M.B.; Desmet, V.J.; Fevery, J.; De Groote, J.; Bradburne, A.F.; Desmyter, J. Distribution patterns of hepatitis B surface antigen (HBsAg) in the liver of hepatitis patients. J. Clin. Pathol. 1976, 29, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Blum, H.E.; Stowring, L.; Figus, A.; Montgomery, C.K.; Haase, A.T.; Vyas, G.N. Detection of hepatitis B virus DNA in hepatocytes, bile duct epithelium, and vascular elements by in situ hybridization. Proc. Natl. Acad. Sci. USA 1983, 80, 6685–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakopoulou, L.; Adraskelas, N.; Stefanaki, K.; Zacharoulis, D.; Hadziyannis, S. Expression of HBsAg and HBcAg in liver tissue: Correlation with disease activity. Histol. Histopathol. 1992, 7, 493–499. [Google Scholar]
- Wee, A.; Yap, I.; Guan, R. Hepatocyte hepatitis B surface antigen expression in chronic hepatitis B virus carriers in Singapore: Correlation with viral replication and liver pathology. J. Gastroenterol. Hepatol. 1991, 6, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.C.; Lai, M.Y.; Su, I.J.; Chen, D.S.; Chang, M.H.; Yang, P.M.; Wu, C.Y.; Hsieh, H.C. Correlation of hepatocyte HBsAg expression with virus replication and liver pathology. Hepatology 1988, 8, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Hollinger, F.B.; Noonan, C.A.; Yoffe, B. Simultaneous detection of HBV-specific antigens and DNA in paraffin-embedded liver tissue by immunohistochemistry and in situ hybridization using a digoxigenin-labeled probe. J. Virol. Methods 1992, 37, 89–97. [Google Scholar] [CrossRef]
- Safaie, P.; Poongkunran, M.; Kuang, P.P.; Javaid, A.; Jacobs, C.; Pohlmann, R.; Nasser, I.; Lau, D.T. Intrahepatic distribution of hepatitis B virus antigens in patients with and without hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 3404–3411. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Zheng, Y.; Wang, W.; Bai, L.; Chen, L.; Feng, Y.; Zhang, Z.; Yuan, Z. In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection. J. Clin. Investig. 2016, 126, 1079–1092. [Google Scholar] [CrossRef]
- Naoumov, N.V.; Daniels, H.M.; Davison, F.; Eddleston, A.L.; Alexander, G.J.; Williams, R. Identification of hepatitis B virus-DNA in the liver by in situ hybridization using a biotinylated probe. Relation to HBcAg expression and histology. J. Hepatol. 1993, 19, 204–210. [Google Scholar] [CrossRef]
- Simonetti, S.R.; Schatzmayr, H.G.; Barth, O.M.; Simonetti, J.P. Detection of hepatitis B virus antigens in paraffin-embedded liver specimens from the Amazon region, Brazil. Mem. Inst. Oswaldo Cruz. 2002, 97, 105–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirohashi, S.; Shimosato, Y.; Ino, Y.; Kishi, K. Distribution of hepatitis B surface and core antigens in human liver cell carcinoma and surrounding nontumorous liver. J. Natl. Cancer Inst. 1982, 69, 565–568. [Google Scholar]
- Gowans, E.J.; Burrell, C.J.; Jilbert, A.R.; Marmion, B.P. Patterns of single- and double-stranded hepatitis B virus DNA and viral antigen accumulation in infected liver cells. J. Gen. Virol. 1983, 64 Pt 6, 1229–1239. [Google Scholar] [CrossRef]
- Lau, J.Y.; Naoumov, N.V.; Alexander, G.J.; Williams, R. Rapid detection of hepatitis B virus DNA in liver tissue by in situ hybridisation and its combination with immunohistochemistry for simultaneous detection of HBV antigens. J. Clin. Pathol. 1991, 44, 905–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Inigo, E.; Mariscal, L.; Bartolome, J.; Castillo, I.; Navacerrada, C.; Ortiz-Movilla, N.; Pardo, M.; Carreno, V. Distribution of hepatitis B virus in the liver of chronic hepatitis C patients with occult hepatitis B virus infection. J. Med. Virol. 2003, 70, 571–580. [Google Scholar] [CrossRef]
- Norton, P.A.; Gong, Q.; Mehta, A.S.; Lu, X.; Block, T.M. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J. Virol. 2003, 77, 5503–5506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.B.; Zhu, C.L.; Liu, X.; Gao, G.S. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis. 2011, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hao, J.; Liu, X.; Wang, H.; Zeng, X.; Yang, J.; Li, L.; Kuang, X.; Zhang, T. The mechanism of apoliprotein A1 down-regulated by Hepatitis B virus. Lipids Health Dis. 2016, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhu, H.; Song, H.; Xu, L.; Li, L.; Liu, F.; Liu, X. Hepatitis B virus inhibits the in vivo and in vitro synthesis and secretion of apolipoprotein C3. Lipids Health Dis. 2017, 16, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Yan, S.; He, Y.; Wang, F.; Song, S.; Guo, Y.; Zhou, Q.; Wang, Y.; Lin, Z.; Yang, Y.; et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. J. Hepatol. 2008, 48, 12–19. [Google Scholar] [CrossRef]
- Oehler, N.; Volz, T.; Bhadra, O.D.; Kah, J.; Allweiss, L.; Giersch, K.; Bierwolf, J.; Riecken, K.; Pollok, J.M.; Lohse, A.W.; et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology 2014, 60, 1483–1493. [Google Scholar] [CrossRef]
- Na, T.Y.; Shin, Y.K.; Roh, K.J.; Kang, S.A.; Hong, I.; Oh, S.J.; Seong, J.K.; Park, C.K.; Choi, Y.L.; Lee, M.O. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2009, 49, 1122–1131. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhu, P.; Liang, Y.; Yin, W.G.; Xiao, J.H. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells. World J. Gastroenterol. 2013, 19, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, W.; Zhang, L.; Lei, H.; Wu, X.; Guo, L.; Chen, X.; Wang, Y.; Tang, H. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci. Rep. 2015, 5, 8421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamontagne, J.; Mell, J.C.; Bouchard, M.J. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression. PLoS Pathog. 2016, 12, e1005438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamontagne, R.J.; Casciano, J.C.; Bouchard, M.J. A broad investigation of the HBV-mediated changes to primary hepatocyte physiology reveals HBV significantly alters metabolic pathways. Metabolism 2018, 83, 50–59. [Google Scholar] [CrossRef]
- Lee, Y.I.; Hwang, J.M.; Im, J.H.; Lee, Y.I.; Kim, N.S.; Kim, D.G.; Yu, D.Y.; Moon, H.B.; Park, S.K. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J. Biol. Chem. 2004, 279, 15460–15471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearhart, T.L.; Bouchard, M.J. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J. Virol. 2010, 84, 2675–2686. [Google Scholar] [CrossRef] [Green Version]
- Gearhart, T.L.; Bouchard, M.J. The hepatitis B virus HBx protein modulates cell cycle regulatory proteins in cultured primary human hepatocytes. Virus Res. 2011, 155, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Sir, D.; Tian, Y.; Chen, W.L.; Ann, D.K.; Yen, T.S.; Ou, J.H. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc. Natl. Acad. Sci. USA 2010, 107, 4383–4388. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Krueger, E.W.; Chen, J.; Cao, H.; Ninomiya, M.; McNiven, M.A. HBV secretion is regulated through the activation of endocytic and autophagic compartments mediated by Rab7 stimulation. J. Cell Sci. 2015, 128, 1696–1706. [Google Scholar] [CrossRef] [Green Version]
- Lazar, C.; Macovei, A.; Petrescu, S.; Branza-Nichita, N. Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production. PLoS ONE 2012, 7, e34169. [Google Scholar] [CrossRef]
- Clippinger, A.J.; Gearhart, T.L.; Bouchard, M.J. Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore. J. Virol. 2009, 83, 4718–4731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Z.T.; Liu, W.; Wu, S.X.; He, Y.; Lin, Y.T.; Chen, W.N.; Lin, X.J.; Lin, X. Hepatitis B Virus Surface Antigen Enhances the Sensitivity of Hepatocytes to Fas-Mediated Apoptosis via Suppression of AKT Phosphorylation. J. Immunol. 2018, 201, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.Z.; Blaileanu, G.; Hansen, B.C.; Shuldiner, A.R.; Gong, D.W. cDNA cloning, genomic structure, chromosomal mapping, and functional expression of a novel human alanine aminotransferase. Genomics 2002, 79, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, P.; Rafter, I.; Copley, C.; Andersson, U.; Hedberg, J.J.; Berg, A.L.; Samuelsson, A.; Hellmold, H.; Cotgreave, I.; Glinghammar, B. Isoforms of alanine aminotransferases in human tissues and serum--differential tissue expression using novel antibodies. Arch. Biochem. Biophys. 2007, 466, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Lindena, J.; Sommerfeld, U.; Hopfel, C.; Trautschold, I. Catalytic enzyme activity concentration in tissues of man, dog, rabbit, guinea pig, rat and mouse. Approach to a quantitative diagnostic enzymology, III. Communication. J. Clin. Chem. Clin. Biochem. 1986, 24, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinghammar, B.; Rafter, I.; Lindstrom, A.K.; Hedberg, J.J.; Andersson, H.B.; Lindblom, P.; Berg, A.L.; Cotgreave, I. Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int. J. Mol. Med. 2009, 23, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Panteghini, M. Aspartate aminotransferase isoenzymes. Clin. Biochem. 1990, 23, 311–319. [Google Scholar] [CrossRef]
- Van der Laarse, A.; Dijkshoorn, N.J.; Hollaar, L.; Caspers, T. The (iso)enzyme activities of lactate dehydrogenase, alpha-hydroxybutyrate dehydrogenase, creatine kinase and aspartate aminotransferase in human myocardial biopsies and autopsies. Clin. Chim. Acta 1980, 104, 381–391. [Google Scholar] [CrossRef]
- Rej, R. Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues. Clin. Chem. 1978, 24, 1971–1979. [Google Scholar] [CrossRef]
- West, M.B.; Wickham, S.; Parks, E.E.; Sherry, D.M.; Hanigan, M.H. Human GGT2 does not autocleave into a functional enzyme: A cautionary tale for interpretation of microarray data on redox signaling. Antioxid Redox Signal. 2013, 19, 1877–1888. [Google Scholar] [CrossRef] [Green Version]
- Nemesanszky, E.; Lott, J.A. Gamma-glutamyltransferase and its isoenzymes: Progress and problems. Clin. Chem. 1985, 31, 797–803. [Google Scholar] [CrossRef]
- Hanigan, M.H.; Frierson, H.F., Jr. Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue. J. Histochem. Cytochem. 1996, 44, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Irie, M.; Suzuki, N.; Sohda, T.; Anan, A.; Iwata, K.; Takeyama, Y.; Watanabe, H.; Fischer, P.; Scherberich, J.E.; Sakisaka, S. Hepatic expression of gamma-glutamyltranspeptidase in the human liver of patients with alcoholic liver disease. Hepatol. Res. 2007, 37, 966–973. [Google Scholar] [CrossRef]
- Gores, G.J.; Herman, B.; Lemasters, J.J. Plasma membrane bleb formation and rupture: A common feature of hepatocellular injury. Hepatology 1990, 11, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Rosser, B.G.; Gores, G.J. Liver cell necrosis: Cellular mechanisms and clinical implications. Gastroenterology 1995, 108, 252–275. [Google Scholar] [CrossRef]
- Ghosh, S.; Nandi, M.; Pal, S.; Mukhopadhyay, D.; Chakraborty, B.C.; Khatun, M.; Bhowmick, D.; Mondal, R.K.; Das, S.; Das, K.; et al. Natural killer cells contribute to hepatic injury and help in viral persistence during progression of hepatitis B e-antigen-negative chronic hepatitis B virus infection. Clin. Microbiol Infect. 2016, 22, 733 e719–733 e739. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, C.L.; Rinker, F.; Honer Zu Siederdissen, C.; Manns, M.P.; Wedemeyer, H.; Cornberg, M.; Bjorkstrom, N.K. Increased NK Cell Function After Cessation of Long-Term Nucleos(t)ide Analogue Treatment in Chronic Hepatitis B Is Associated With Liver Damage and HBsAg Loss. J. Infect. Dis. 2018, 217, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Rotman, Y.; Brown, T.A.; Hoofnagle, J.H. Evaluation of the patient with hepatitis B. Hepatology 2009, 49, S22–S27. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [Green Version]
- Sarin, S.K.; Kumar, M.; Lau, G.K.; Abbas, Z.; Chan, H.L.; Chen, C.J.; Chen, D.S.; Chen, H.L.; Chen, P.J.; Chien, R.N.; et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: A 2015 update. Hepatol. Int. 2016, 10, 1–98. [Google Scholar] [CrossRef] [PubMed]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Eminler, A.T.; Irak, K.; Ayyildiz, T.; Keskin, M.; Kiyici, M.; Gurel, S.; Gulten, M.; Dolar, E.; Nak, S.G. The relation between liver histopathology and GGT levels in viral hepatitis: More important in hepatitis B. Turk. J. Gastroenterol. 2014, 25, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manno, M.; Camma, C.; Schepis, F.; Bassi, F.; Gelmini, R.; Giannini, F.; Miselli, F.; Grottola, A.; Ferretti, I.; Vecchi, C.; et al. Natural history of chronic HBV carriers in northern Italy: Morbidity and mortality after 30 years. Gastroenterology 2004, 127, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Yang, C.C.; Liu, Y.; Xia, J.; Su, R.; Xiong, Y.L.; Wang, G.Y.; Sun, Z.H.; Yan, X.M.; Lu, S.; et al. Association of serum gamma-glutamyl transferase with treatment outcome in chronic hepatitis B patients. World J. Gastroenterol. 2015, 21, 9957–9965. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Lok, A.S.; Lai, C.L. Acute exacerbations in Chinese patients with chronic hepatitis B virus (HBV) infection. Incidence, predisposing factors and etiology. J. Hepatol. 1990, 10, 29–34. [Google Scholar] [CrossRef]
- Wu, I.C.; Lai, C.L.; Han, S.H.; Han, K.H.; Gordon, S.C.; Chao, Y.C.; Tan, C.K.; Sievert, W.; Tanwandee, T.; Xu, D.; et al. Efficacy of entecavir in chronic hepatitis B patients with mildly elevated alanine aminotransferase and biopsy-proven histological damage. Hepatology 2010, 51, 1185–1189. [Google Scholar] [CrossRef]
- Chi, H.; Arends, P.; Reijnders, J.G.; Carey, I.; Brown, A.; Fasano, M.; Mutimer, D.; Deterding, K.; Oo, Y.H.; Petersen, J.; et al. Flares during long-term entecavir therapy in chronic hepatitis B. J. Gastroenterol. Hepatol. 2016, 31, 1882–1887. [Google Scholar] [CrossRef]
- Wong, D.; Littlejohn, M.; Edwards, R.; Jackson, K.; Revill, P.; Gaggar, A.; Kitrinos, K.; Subramanian, M.; Marcellin, P.; Buti-Ferret, M.; et al. ALT flares during nucleotide analogue therapy are associated with HBsAg loss in genotype A HBeAg-positive chronic hepatitis B. Liver Int. 2018, 38, 1760–1769. [Google Scholar] [CrossRef]
- Mels, G.C.; Bellati, G.; Leandro, G.; Brunetto, M.R.; Vicari, O.; Borzio, M.; Piantino, P.; Fornaciari, G.; Scudeller, G.; Angeli, G.; et al. Fluctuations in viremia, aminotransferases and IgM antibody to hepatitis B core antigen in chronic hepatitis B patients with disease exacerbations. Liver 1994, 14, 175–181. [Google Scholar] [CrossRef]
- Brahmania, M.; Lombardero, M.; Hansen, B.E.; Terrault, N.A.; Lok, A.S.; Perrillo, R.P.; Belle, S.H.; Di Bisceglie, A.M.; Feld, J.J.; Lee, W.M.; et al. Association Between Severe Serum Alanine Aminotransferase Flares and Hepatitis B e Antigen Seroconversion and HBV DNA Decrease in Untreated Patients With Chronic HBV Infection. Clin. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef]
- Perrillo, R.; Campbell, C.; Wellinghoff, W.; Gelb, L. The relationship of hepatitis B e antigen, DNA polymerase activity, and titer of hepatitis B surface antigen with ongoing liver injury in chronic hepatitis B virus infection. Am. J. Gastroenterol. 1982, 77, 445–449. [Google Scholar]
- Liaw, Y.F.; Tai, D.I.; Chu, C.M.; Pao, C.C.; Chen, T.J. Acute exacerbation in chronic type B hepatitis: Comparison between HBeAg and antibody-positive patients. Hepatology 1987, 7, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Chauhan, R.; Gupta, N.; Hissar, S.; Sakhuja, P.; Sarin, S.K. Spontaneous increases in alanine aminotransferase levels in asymptomatic chronic hepatitis B virus-infected patients. Gastroenterology 2009, 136, 1272–1280. [Google Scholar] [CrossRef]
- Liaw, Y.F.; Yang, S.S.; Chen, T.J.; Chu, C.M. Acute exacerbation in hepatitis B e antigen positive chronic type B hepatitis. A clinicopathological study. J. Hepatol. 1985, 1, 227–233. [Google Scholar] [CrossRef]
- Liaw, Y.F.; Pao, C.C.; Chu, C.M.; Sheen, I.S.; Huang, M.J. Changes of serum hepatitis B virus DNA in two types of clinical events preceding spontaneous hepatitis B e antigen seroconversion in chronic type B hepatitis. Hepatology 1987, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.M.; Su, I.J.; Lai, M.Y.; Huang, G.T.; Hsu, H.C.; Chen, D.S.; Sung, J.L. Immunohistochemical studies on intrahepatic lymphocyte infiltrates in chronic type B hepatitis, with special emphasis on the activation status of the lymphocytes. Am. J. Gastroenterol. 1988, 83, 948–953. [Google Scholar] [PubMed]
- Tsai, S.L.; Chen, P.J.; Lai, M.Y.; Yang, P.M.; Sung, J.L.; Huang, J.H.; Hwang, L.H.; Chang, T.H.; Chen, D.S. Acute exacerbations of chronic type B hepatitis are accompanied by increased T cell responses to hepatitis B core and e antigens. Implications for hepatitis B e antigen seroconversion. J. Clin. Investig. 1992, 89, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, N.; Yamamoto, K.; Kuroda, M.J.; Terada, R.; Hakoda, T.; Shimomura, H.; Hata, H.; Nakayama, E.; Shiratori, Y. HBcAg-specific CD8 T cells play an important role in virus suppression, and acute flare-up is associated with the expansion of activated memory T cells. J. Clin. Immunol. 2003, 23, 223–232. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Robidoux, M.P.; Schwarz, T.; Heydmann, L.; Cheney, J.A.; Kvistad, D.; Aneja, J.; Melgaco, J.G.; Fernandes, C.A.; Chung, R.T.; et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 2019, 68, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Kappus, M.R.; Sterling, R.K. Extrahepatic manifestations of acute hepatitis B virus infection. Gastroenterol. Hepatol. (N. Y.) 2013, 9, 123–126. [Google Scholar]
- Jeng, W.J.; Sheen, I.S.; Liaw, Y.F. Hepatitis B virus DNA level predicts hepatic decompensation in patients with acute exacerbation of chronic hepatitis B. Clin. Gastroenterol. Hepatol. 2010, 8, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Yuan, H.J.; Hui, C.K.; Wong, D.K.; Wong, W.M.; Chan, A.O.; Wong, B.C.; Lai, C.L. A large population study of spontaneous HBeAg seroconversion and acute exacerbation of chronic hepatitis B infection: Implications for antiviral therapy. Gut 2003, 52, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Suslov, A.; Meier, M.A.; Ketterer, S.; Wang, X.; Wieland, S.; Heim, M.H. Transition to HBeAg-negative chronic hepatitis B virus infection is associated with reduced cccDNA transcriptional activity. J. Hepatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Huang, M.X.; Li, W.Y.; Gan, C.J.; Dong, W.X.; Peng, X.M. Liver damage favors the eliminations of HBV integration and clonal hepatocytes in chronic hepatitis B. Hepatol. Int. 2021, 15, 60–70. [Google Scholar] [CrossRef]
- Cai, Y.; Yin, W. The Multiple Functions of B Cells in Chronic HBV Infection. Front. Immunol. 2020, 11, 582292. [Google Scholar] [CrossRef]
- Taub, R. Liver regeneration: From myth to mechanism. Nat. Rev. Mol. Cell Biol. 2004, 5, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Fellous, T.G.; Islam, S.; Tadrous, P.J.; Elia, G.; Kocher, H.M.; Bhattacharya, S.; Mears, L.; Turnbull, D.M.; Taylor, R.W.; Greaves, L.C.; et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 2009, 49, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Fausto, N.; Campbell, J.S.; Riehle, K.J. Liver regeneration. J. Hepatol. 2012, 57, 692–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Miyajima, A. Liver regeneration and fibrosis after inflammation. Inflamm. Regen. 2016, 36, 19. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.S.; Liu, C.; Aldrich, C.E.; Litwin, S.; Yeh, M.M. Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J. Virol. 2010, 84, 8308–8315. [Google Scholar] [CrossRef] [Green Version]
- Tu, T.; Mason, W.S.; Clouston, A.D.; Shackel, N.A.; McCaughan, G.W.; Yeh, M.M.; Schiff, E.R.; Ruszkiewicz, A.R.; Chen, J.W.; Harley, H.A.; et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J. Viral. Hepat. 2015, 22, 737–753. [Google Scholar] [CrossRef]
- Vigano, M.; Lampertico, P. Hepatitis B virus treatment: Which patients should be treated with nucleos(t)ide analogue? Clin. Liver Dis. (Hoboken) 2013, 2, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chuang, T.H.; Redecke, V.; She, L.; Pitha, P.M.; Carson, D.A.; Raz, E.; Cottam, H.B. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 2003, 100, 6646–6651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kmonickova, E.; Potmesil, P.; Holy, A.; Zidek, Z. Purine P1 receptor-dependent immunostimulatory effects of antiviral acyclic analogues of adenine and 2,6-diaminopurine. Eur. J. Pharmacol. 2006, 530, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Potmesil, P.; Krecmerova, M.; Kmonickova, E.; Holy, A.; Zidek, Z. Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N6-substituted derivatives. Eur. J. Pharmacol. 2006, 540, 191–199. [Google Scholar] [CrossRef]
- Melchjorsen, J.; Risor, M.W.; Sogaard, O.S.; O’Loughlin, K.L.; Chow, S.; Paludan, S.R.; Ellermann-Eriksen, S.; Hedley, D.W.; Minderman, H.; Ostergaard, L.; et al. Tenofovir selectively regulates production of inflammatory cytokines and shifts the IL-12/IL-10 balance in human primary cells. J. Acquir. Immune Defic. Syndr. 2011, 57, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Ohto, U.; Nomura, S.; Kibata, K.; Motoi, Y.; Zhang, Y.; Murakami, Y.; Fukui, R.; Ishimoto, T.; Sano, S.; et al. Guanosine and its modified derivatives are endogenous ligands for TLR7. Int. Immunol. 2016, 28, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Asano, M.; Matsumoto, A.; Sugiyama, M.; Nishida, N.; Tanaka, E.; Inoue, T.; Sakamoto, M.; Enomoto, N.; Shirasaki, T.; et al. Induction of IFN-lambda3 as an additional effect of nucleotide, not nucleoside, analogues: A new potential target for HBV infection. Gut 2018, 67, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, M.; Tsuge, M.; Murakami, E.; Mori, N.; Ohishi, W.; Uchida, T.; Fujino, H.; Nakahara, T.; Abe-Chayama, H.; Kawaoka, T.; et al. The association between serum cytokine and chemokine levels and antiviral response by entecavir treatment in chronic hepatitis B patients. Antivir. Ther. 2018, 23, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenne, T.; Bridgeman, A.; Rigby, R.E.; Rehwinkel, J. Deoxyguanosine is a TLR7 agonist. Eur. J. Immunol. 2020, 50, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Lok, A.S.; Lai, C.L.; Leung, N.; Yao, G.B.; Cui, Z.Y.; Schiff, E.R.; Dienstag, J.L.; Heathcote, E.J.; Little, N.R.; Griffiths, D.A.; et al. Long-term safety of lamivudine treatment in patients with chronic hepatitis B. Gastroenterology 2003, 125, 1714–1722. [Google Scholar] [CrossRef]
- Zhang, N.P.; Reijnders, J.G.; Perquin, M.; Hansen, B.E.; Janssen, H.L. Frequency and clinical outcomes of flares related to nucleos(t)ide analogue therapy in patients with chronic hepatitis B. J. Viral. Hepat. 2011, 18, e252–e257. [Google Scholar] [CrossRef]
- Tenney, D.J.; Rose, R.E.; Baldick, C.J.; Pokornowski, K.A.; Eggers, B.J.; Fang, J.; Wichroski, M.J.; Xu, D.; Yang, J.; Wilber, R.B.; et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naive patients is rare through 5 years of therapy. Hepatology 2009, 49, 1503–1514. [Google Scholar] [CrossRef]
- Snow-Lampart, A.; Chappell, B.; Curtis, M.; Zhu, Y.; Myrick, F.; Schawalder, J.; Kitrinos, K.; Svarovskaia, E.S.; Miller, M.D.; Sorbel, J.; et al. No resistance to tenofovir disoproxil fumarate detected after up to 144 weeks of therapy in patients monoinfected with chronic hepatitis B virus. Hepatology 2011, 53, 763–773. [Google Scholar] [CrossRef]
- Cathcart, A.L.; Chan, H.L.; Bhardwaj, N.; Liu, Y.; Marcellin, P.; Pan, C.Q.; Shalimar; Buti, M.; Cox, S.; Parhy, B.; et al. No Resistance to Tenofovir Alafenamide Detected through 96 Weeks of Treatment in Patients with Chronic Hepatitis B Infection. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Manns, M.P.; Akarca, U.S.; Chang, T.T.; Sievert, W.; Yoon, S.K.; Tsai, N.; Min, A.; Pangerl, A.; Beebe, S.; Yu, M.; et al. Long-term safety and tolerability of entecavir in patients with chronic hepatitis B in the rollover study ETV-901. Expert Opin Drug Saf. 2012, 11, 361–368. [Google Scholar] [CrossRef]
- Seo, H.Y.; Lee, H.A.; Ko, S.Y.; Wang, J.H.; Kim, J.H.; Choe, W.H.; Kwon, S.Y. Clinical impact of the early alanine amininotransferase flare during tenofovir monotherapy in treatment-naive patients with chronic hepatitis B. Clin. Mol. Hepatol. 2017, 23, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeng, W.J.; Chen, Y.C.; Liaw, Y.F. Great and rapid HBsAg decline in patients with on-treatment hepatitis flare in early phase of potent antiviral therapy. J. Viral. Hepat. 2018, 25, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Shouval, D.; Lai, C.L.; Chang, T.T.; Cheinquer, H.; Martin, P.; Carosi, G.; Han, S.; Kaymakoglu, S.; Tamez, R.; Yang, J.; et al. Relapse of hepatitis B in HBeAg-negative chronic hepatitis B patients who discontinued successful entecavir treatment: The case for continuous antiviral therapy. J. Hepatol. 2009, 50, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Liaw, Y.F.; Hadziyannis, S.J. Systematic review: Cessation of long-term nucleos(t)ide analogue therapy in patients with hepatitis B e antigen-negative chronic hepatitis B. Aliment. Pharmacol. Ther. 2015, 42, 243–257. [Google Scholar] [CrossRef]
- Honkoop, P.; de Man, R.A.; Niesters, H.G.; Zondervan, P.E.; Schalm, S.W. Acute exacerbation of chronic hepatitis B virus infection after withdrawal of lamivudine therapy. Hepatology 2000, 32, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.G.; Wai, C.T.; Rajnakova, A.; Kajiji, T.; Guan, R. Fatal hepatitis B reactivation following discontinuation of nucleoside analogues for chronic hepatitis B. Gut 2002, 51, 597–599. [Google Scholar] [CrossRef]
- Su, T.H.; Yang, H.C.; Tseng, T.C.; Liou, J.M.; Liu, C.H.; Chen, C.L.; Chen, P.J.; Chen, D.S.; Liu, C.J.; Kao, J.H. Distinct Relapse Rates and Risk Predictors After Discontinuing Tenofovir and Entecavir Therapy. J. Infect. Dis. 2018, 217, 1193–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liem, K.S.; Fung, S.; Wong, D.K.; Yim, C.; Noureldin, S.; Chen, J.; Feld, J.J.; Hansen, B.E.; Janssen, H.L.A. Limited sustained response after stopping nucleos(t)ide analogues in patients with chronic hepatitis B: Results from a randomised controlled trial (Toronto STOP study). Gut 2019, 68, 2206–2213. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Wong, D.K.; Wong, G.T.; Seto, W.K.; Fung, J.; Yuen, M.F. Rebound of HBV DNA after cessation of nucleos/tide analogues in chronic hepatitis B patients with undetectable covalently closed. JHEP Rep. 2020, 2, 100112. [Google Scholar] [CrossRef]
- Wong, G.L.; Chan, H.L.; Yuen, B.W.; Tse, Y.K.; Luk, H.W.; Yip, T.C.; Hui, V.W.; Liang, L.Y.; Lee, H.W.; Lui, G.C.; et al. The safety of stopping nucleos(t)ide analogue treatment in patients with HBeAg-negative chronic hepatitis B. Liver Int. 2020, 40, 549–557. [Google Scholar] [CrossRef]
- Belloni, L.; Allweiss, L.; Guerrieri, F.; Pediconi, N.; Volz, T.; Pollicino, T.; Petersen, J.; Raimondo, G.; Dandri, M.; Levrero, M. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J. Clin. Investig. 2012, 122, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Gill, U.S.; Peppa, D.; Micco, L.; Singh, H.D.; Carey, I.; Foster, G.R.; Maini, M.K.; Kennedy, P.T. Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral. Load Suppression In Vivo. PLoS Pathog. 2016, 12, e1005788. [Google Scholar] [CrossRef]
- Micco, L.; Peppa, D.; Loggi, E.; Schurich, A.; Jefferson, L.; Cursaro, C.; Panno, A.M.; Bernardi, M.; Brander, C.; Bihl, F.; et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J. Hepatol. 2013, 58, 225–233. [Google Scholar] [CrossRef]
- Crouse, J.; Kalinke, U.; Oxenius, A. Regulation of antiviral T cell responses by type I interferons. Nat. Rev. Immunol. 2015, 15, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Flink, H.J.; Sprengers, D.; Hansen, B.E.; van Zonneveld, M.; de Man, R.A.; Schalm, S.W.; Janssen, H.L.; Group, H.B.V.S. Flares in chronic hepatitis B patients induced by the host or the virus? Relation to treatment response during Peg-interferon {alpha}-2b therapy. Gut 2005, 54, 1604–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Borg, M.J.; Hansen, B.E.; Bigot, G.; Haagmans, B.L.; Janssen, H.L. ALT and viral load decline during PEG-IFN alpha-2b treatment for HBeAg-positive chronic hepatitis B. J. Clin. Virol. 2008, 42, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, M.J.; Zoutendijk, R.; Flink, H.J.; Zwang, L.; Hansen, B.E.; Janssen, H.L. Close monitoring of hepatitis B surface antigen levels helps classify flares during peginterferon therapy and predicts treatment response. Clin. Infect. Dis. 2013, 56, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, S.; Abiru, S.; Komori, A.; Sasaki, R.; Bekki, S.; Hashimoto, S.; Saeki, A.; Yamasaki, K.; Migita, K.; Nakamura, M.; et al. Hepatic flares promote rapid decline of serum hepatitis B surface antigen (HBsAg) in patients with HBsAg seroclearance: A long-term follow-up study. Hepatol. Res. 2016, 46, E89–E99. [Google Scholar] [CrossRef]
- Yano, Y.; Seo, Y.; Hayashi, H.; Hatazawa, Y.; Hirano, H.; Minami, A.; Kawano, Y.; Saito, M.; Ninomiya, T.; Sugano, M.; et al. Factors associated with the decrease in hepatitis B surface antigen titers following interferon therapy in patients with chronic hepatitis B: Is interferon and adefovir combination therapy effective? Biomed. Rep. 2017, 7, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Wirth, S.; Zhang, H.; Hardikar, W.; Schwarz, K.B.; Sokal, E.; Yang, W.; Fan, H.; Morozov, V.; Mao, Q.; Deng, H.; et al. Efficacy and Safety of Peginterferon Alfa-2a (40KD) in Children With Chronic Hepatitis B: The PEG-B-ACTIVE Study. Hepatology 2018, 68, 1681–1694. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Farag, M.; Brouwer, W.P.; Sonneveld, M.J.; Feld, J.J.; De Man, R.A.; Hansen, B.; Janssen, H. Early PEG-interferon-related ALT Flares of High Magnitude Lead to HBsAg Decline and Loss. A Study of 639 Chronic Hepatitis B Patients. J. Hepatol. 2020, 73. [Google Scholar] [CrossRef]
- Low, T.L.; Goldstein, A.L. Thymosins: Structure, function and therapeutic applications. Thymus 1984, 6, 27–42. [Google Scholar]
- Naylor, P.H.; Mutchnick, M.G. Thymus-derived peptides in the treatment of viral chronic hepatitis. Dig. Dis. 1996, 14, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Naylor, P.H.; Mutchnick, M.G. Immunotherapy for hepatitis B in the direct acting antiviral era: Reevaluating the thymosin alpha1 efficacy trials in the light of a combination therapy approach. J. Viral. Hepat. 2018, 25, 4–9. [Google Scholar] [CrossRef]
- Iino, S.; Toyota, J.; Kumada, H.; Kiyosawa, K.; Kakumu, S.; Sata, M.; Suzuki, H.; Martins, E.B. The efficacy and safety of thymosin alpha-1 in Japanese patients with chronic hepatitis B; results from a randomized clinical trial. J. Viral. Hepat. 2005, 12, 300–306. [Google Scholar] [CrossRef]
- Chien, R.N.; Liaw, Y.F.; Chen, T.C.; Yeh, C.T.; Sheen, I.S. Efficacy of thymosin alpha1 in patients with chronic hepatitis B: A randomized, controlled trial. Hepatology 1998, 27, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Kadelka, S.; Dahari, H.; Ciupe, S.M. Understanding the antiviral effects of RNAi-based therapy in HBeAg-positive chronic hepatitis B infection. Sci. Rep. 2021, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Wong, D.K.; Schluep, T.; Lai, C.L.; Ferrari, C.; Locarnini, S.; Lo, R.C.; Gish, R.G.; Hamilton, J.; Wooddell, C.I.; et al. Long-term serological, virological and histological responses to RNA inhibition by ARC-520 in Chinese chronic hepatitis B patients on entecavir treatment. Gut 2021. [Google Scholar] [CrossRef]
- Yuen, M.F. HBV RNAi inhibitor RG6346 in Phase 1b-2a trial was safe, well tolerated, and resulted in subatantial and durable reductions in serum HBsAg levels. In Proceedings of the AASLD 2020 Late Breakong Oral Presentation, 11–16 November 2020. [Google Scholar]
- Vaillant, A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect. Dis. 2019, 5, 675–687. [Google Scholar] [CrossRef]
- Boulon, R.; Blanchet, M.; Lemasson, M.; Vaillant, A.; Labonte, P. Characterization of the antiviral effects of REP 2139 on the HBV lifecycle in vitro. Antiviral Res. 2019. [Google Scholar] [CrossRef]
- Blanchet, M.; Sinnathamby, V.; Vaillant, A.; Labonte, P. Inhibition of HBsAg secretion by nucleic acid polymers in HepG2.2.15cells. Antiviral Res. 2019, 164, 97–105. [Google Scholar] [CrossRef]
- Al-Mahtab, M.; Bazinet, M.; Vaillant, A. Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection. PLoS ONE 2016, 11, e0156667. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, M.; Pantea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J.; Schmid, P.; Le Gal, F.; Gordien, E.; Krawczyk, A.; et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef]
- Bazinet, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients With Chronic HBV Infection Naive to Nucleos(t)ide Therapy. Gastroenterology 2020, 158, 2180–2194. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. Benefit of transaminase elevations in establishing functional cure of HBV infection during NAP-based combination therapy. J. Viral. Hepat. 2021. [Google Scholar] [CrossRef] [PubMed]
- Streinu-Cercel, A.; Bazinet, M.; Elsner, C.; Dittmer, U.; Roggendorf, H.; Roggendorf, M.; Vaillant, A. Interferon free clearance of HDV RNA and HBsAg seroconversion in a cirrhotic subject with chronic HBV/HDV co-infection with TDF and REP 2165-Mg. Hepatology 2020, 72, 505A. [Google Scholar]
- Poh, Z.; Goh, B.B.; Chang, P.E.; Tan, C.K. Rates of cirrhosis and hepatocellular carcinoma in chronic hepatitis B and the role of surveillance: A 10-year follow-up of 673 patients. Eur. J. Gastroenterol. Hepatol. 2015, 27, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidrich, B.; Serrano, B.C.; Idilman, R.; Kabacam, G.; Bremer, B.; Raupach, R.; Onder, F.O.; Deterding, K.; Zacher, B.J.; Taranta, A.; et al. HBeAg-positive hepatitis delta: Virological patterns and clinical long-term outcome. Liver Int. 2012, 32, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Manesis, E.K.; Vourli, G.; Dalekos, G.; Vasiliadis, T.; Manolaki, N.; Hounta, A.; Koutsounas, S.; Vafiadis, I.; Nikolopoulou, G.; Giannoulis, G.; et al. Prevalence and clinical course of hepatitis delta infection in Greece: A 13-year prospective study. J. Hepatol. 2013, 59, 949–956. [Google Scholar] [CrossRef]
- Hoofnagle, J.H.; Di Bisceglie, A.M.; Waggoner, J.G.; Park, Y. Interferon alfa for patients with clinically apparent cirrhosis due to chronic hepatitis B. Gastroenterology 1993, 104, 1116–1121. [Google Scholar] [CrossRef]
- Chang, M.L.; Cheng, J.S.; Chien, R.N.; Liaw, Y.F. Hepatitis Flares Are Associated With Better Outcomes Than No Flare in Patients With Decompensated Cirrhosis and Chronic Hepatitis B Virus Infection. Clin. Gastroenterol. Hepatol. 2020, 18, 2064–2072 e2062. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Yurdaydin, C.; Hardtke, S.; Caruntu, F.A.; Curescu, M.G.; Yalcin, K.; Akarca, U.S.; Gurel, S.; Zeuzem, S.; Erhardt, A.; et al. Peginterferon alfa-2a plus tenofovir disoproxil fumarate for hepatitis D (HIDIT-II): A randomised, placebo controlled, phase 2 trial. Lancet Infect. Dis. 2019, 19, 275–286. [Google Scholar] [CrossRef]
Parameter | Specific Change | Reference |
---|---|---|
Lipid metabolism | Downregulation of multiple apolipoproteins (A, B, C, E, F, H and M) | [35,36,37,38] |
Upregulation of fatty acid synthesis | [39] | |
Increased cholesterol uptake and metabolism | [40] | |
Increased lipogenesis, membrane biogenesis and intracellular lipid/cholesterol accumulation | [41,42,43,44,45] | |
Cellular Metabolism | Increased oxidative stress | [39] |
Downregulation of mitochondrial electron transport function and increased mitochondrial production of reactive oxygen species | [46] | |
Upregulation of glycolysis and the Krebs cycle | [43,45] | |
Cell cycle | Transition from G0 to G1 | [44,47,48] |
Uptake/secretion | Upregulation of endocytosis and autophagy | [49,50] |
Upregulation of ER-associated protein degradation | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaillant, A. Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses 2021, 13, 745. https://doi.org/10.3390/v13050745
Vaillant A. Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses. 2021; 13(5):745. https://doi.org/10.3390/v13050745
Chicago/Turabian StyleVaillant, Andrew. 2021. "Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure" Viruses 13, no. 5: 745. https://doi.org/10.3390/v13050745