Diagnostic Challenges in Canine Parvovirus 2c in Vaccine Failure Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Antigen Detection Test and Molecular Methods
2.3. Quantitative PCR for Detection of Virus Load
2.4. Statistical Analysis
3. Results
Antigenic and Molecular Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- DeCaro, N.; Buonavoglia, C. Canine parvovirus—A review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet. Microbiol. 2012, 155, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Thompson, G. Canine parvovirus: The worldwide occurrence of antigenic variants. J. Gen. Virol. 2016, 97, 2043–2057. [Google Scholar] [CrossRef] [PubMed]
- Truyen, U. Evolution of canine parvovirus—A need for new vaccines? Vet. Microbiol. 2006, 117, 9–13. [Google Scholar] [CrossRef]
- Truyen, U.; Evermann, J.F.; Vieler, E.; Parrish, C.R. Evolution of Canine Parvovirus Involved Loss and Gain of Feline Host Range. Virology 1996, 215, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Hueffer, K.; Parrish, C.R. Parvovirus host range, cell tropism and evolution. Curr. Opin. Microbiol. 2003, 6, 392–398. [Google Scholar] [CrossRef]
- Ikeda, Y.; Nakamura, K.; Miyazawa, T.; Tohya, Y.; Takahashi, E.; Mochizuki, M. Feline Host Range of Canine parvovirus: Recent Emergence of New Antigenic Types in Cats. Emerg. Infect. Dis. 2002, 8, 341–346. [Google Scholar] [CrossRef]
- Steinel, A.; Munson, L.; Van Vuuren, M.; Truyen, U. Genetic characterization of feline parvovirus sequences from various carnivores. J. Gen. Virol. 2000, 81, 345–350. [Google Scholar] [CrossRef]
- Hoelzer, K.; Shackelton, L.A.; Holmes, E.C.; Parrish, C.R. Within-Host Genetic Diversity of Endemic and Emerging Parvoviruses of Dogs and Cats. J. Virol. 2008, 82, 11096–11105. [Google Scholar] [CrossRef] [Green Version]
- Hoelzer, K.; Shackelton, L.A.; Parrish, C.R.; Holmes, E.C. Phylogenetic analysis reveals the emergence, evolution and dispersal of carnivore parvoviruses. J. Gen. Virol. 2008, 89, 2280–2289. [Google Scholar] [CrossRef]
- Carter, B.J.; Tattersall, P.J. Chapter 19 Parvoviridae. In Congenital and Other Related Infectious Diseases of the Newborn; Elsevier BV: Amsterdam, The Netherlands, 1987; pp. 325–334. [Google Scholar]
- Zhou, P.; Zeng, W.; Zhang, X.; Li, S. The genetic evolution of canine parvovirus–A new perspective. PLoS ONE 2017, 12, e0175035. [Google Scholar] [CrossRef] [Green Version]
- Truyen, U.; Parrish, C.R.; Harder, T.C.; Kaaden, O.-R. There is nothing permanent except change. The emergence of new virus diseases. Vet. Microbiol. 1995, 43, 103–122. [Google Scholar] [CrossRef]
- Parrish, C.R.; Have, P.; Foreyt, W.J.; Evermann, J.F.; Senda, M.; Carmichael, L.E. The Global Spread and Replacement of Canine Parvovirus Strains. J. Gen. Virol. 1988, 69, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Shackelton, L.A.; Parrish, C.R.; Truyen, U.; Holmes, E.C. High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc. Natl. Acad. Sci. USA 2004, 102, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Duque-García, Y.; Echeverri-Zuluaga, M.; Trejos-Suarez, J.; Ruiz-Saenz, J. Prevalence and molecular epidemiology of Canine parvovirus 2 in diarrheic dogs in Colombia, South America: A possible new CPV-2a is emerging? Vet. Microbiol. 2017, 201, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Martella, V.; Cavalli, A.; Pratelli, A.; Bozzo, G.; Camero, M.; Buonavoglia, D.; Narcisi, D.; Tempesta, M.; Buonavoglia, C. A Canine Parvovirus Mutant Is Spreading in Italy. J. Clin. Microbiol. 2004, 42, 1333–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.; DeCaro, N.; Desario, C.; Tanner, P.; Pardo, M.C.; Sanchez, S.; Buonavoglia, C.; Saliki, J.T. Occurrence of Canine Parvovirus Type 2c in the United States. J. Vet. Diagn. Investig. 2007, 19, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonavoglia, C.; Martella, V.; Pratelli, A.; Tempesta, M.; Cavalli, A.; Buonavoglia, D.; Bozzo, G.; Elia, G.; DeCaro, N.; Carmichael, L. Evidence for evolution of canine parvovirus type 2 in Italy. J. Gen. Virol. 2001, 82, 3021–3025. [Google Scholar] [CrossRef]
- DeCaro, N.; Martella, V.; Desario, C.; Bellacicco, A.L.; Camero, M.; Manna, L.; D’Aloja, D.; Buonavoglia, C. First Detection of Canine Parvovirus Type 2c in Pups with Haemorrhagic Enteritis in Spain. J. Vet. Med. Ser. B 2006, 53, 468–472. [Google Scholar] [CrossRef]
- Vieira, M.J.; Silva, E.; Oliveira, J.; Vieira, A.L.; DeCaro, N.; Desario, C.; Müller, A.; Carvalheira, J.; Buonavoglia, C.; Thompson, G. Canine parvovirus 2c infection in central Portugal. J. Vet. Diagn. Investig. 2008, 20, 488–491. [Google Scholar] [CrossRef] [Green Version]
- Calderón, M.G.; Mattion, N.; Bucafusco, D.; Fogel, F.; Remorini, P.; La Torre, J. Molecular characterization of canine parvovirus strains in Argentina: Detection of the pathogenic variant CPV2c in vaccinated dogs. J. Virol. Methods 2009, 159, 141–145. [Google Scholar] [CrossRef]
- Ohshima, T.; Hisaka, M.; Kawakami, K.; Kishi, M.; Tohya, Y.; Mochizuki, M. Chronological Analysis of Canine Parvovirus Type 2 Isolates in Japan. J. Vet. Med. Sci. 2008, 70, 769–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-C.; Chiang, S.-Y.; Wu, H.-Y.; Lin, J.-H.; Chiou, M.-T.; Liu, H.-F.; Lin, C.-N. Phylodynamic and Genetic Diversity of Canine Parvovirus Type 2c in Taiwan. Int. J. Mol. Sci. 2017, 18, 2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolford, L.; Crocker, P.; Bobrowski, H.; Baker, T.; Hemmatzadeh, F. Detection of the Canine Parvovirus 2c Subtype in Australian Dogs. Viral Immunol. 2017, 30, 371–376. [Google Scholar] [CrossRef]
- Calderon, M.G.; Romanutti, C.; Antuono, A.D.; Keller, L.; Mattion, N.; La Torre, J. Evolution of Canine Parvovirus in Argentina between years 2003 and 2010: CPV2c has become the predominant variant affecting the domestic dog population. Virus Res. 2011, 157, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Nair, R.; Peda, A.; Aung, M.; Ashwinie, G.S.; Gallagher, C.A.; Malik, Y.S.; Kobayashi, N.; Ghosh, S. Molecular characterization of canine parvovirus and canine enteric coronavirus in diarrheic dogs on the island of St. Kitts: First report from the Caribbean region. Virus Res. 2017, 240, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kapiya, J.; Nalubamba, K.S.; Kaimoyo, E.; Changula, K.; Chidumayo, N.; Saasa, N.; Simuunza, M.C.; Takada, A.; Mweene, A.S.; Chitanga, S.; et al. First genetic detection and characterization of canine parvovirus from diarrheic dogs in Zambia. Arch. Virol. 2018, 164, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Palermo, L.M.; Hueffer, K.; Parrish, C.R. Residues in the Apical Domain of the Feline and Canine Transferrin Receptors Control Host-Specific Binding and Cell Infection of Canine and Feline Parvoviruses. J. Virol. 2003, 77, 8915–8923. [Google Scholar] [CrossRef] [Green Version]
- Pérez, R.; Bianchi, P.; Calleros, L.; Francia, L.; Hernández, M.; Maya, L.; Panzera, Y.; Sosa, K.; Zoller, S. Recent spreading of a divergent canine parvovirus type 2a (CPV-2a) strain in a CPV-2c homogenous population. Vet. Microbiol. 2012, 155, 214–219. [Google Scholar] [CrossRef]
- Wilson, S.; Illambas, J.; Siedek, E.; Stirling, C.; Thomas, A.; Plevová, E.; Sture, G.; Salt, J. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c. Vaccine 2014, 32, 5420–5424. [Google Scholar] [CrossRef]
- DeCaro, N.; Desario, C.; Elia, G.; Martella, V.; Mari, V.; Lavazza, A.; Nardi, M.; Buonavoglia, C. Evidence for immunisation failure in vaccinated adult dogs infected with canine parvovirus type 2c. New Microbiol. 2008, 31, 125–130. [Google Scholar]
- Sehata, G.; Sato, H.; Yamanaka, M.; Takahashi, T.; Kainuma, R.; Igarashi, T.; Oshima, S.; Noro, T.; Oishi, E. Substitutions at residues 300 and 389 of the VP2 capsid protein serve as the minimal determinant of attenuation for canine parvovirus vaccine strain 9985-46. J. Gen. Virol. 2017, 98, 2759–2770. [Google Scholar] [CrossRef] [PubMed]
- DeCaro, N.; Cirone, F.; Desario, C.; Elia, G.; Lorusso, E.; Colaianni, M.L.; Martella, V.; Buonavoglia, C. Severe parvovirus in a 12-year-old dog that had been repeatedly vaccinated. Vet. Rec. 2009, 164, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Day, M.J.; Horzinek, M.C.; Schultz, R.D. WSAVA guidelines for the vaccination of dogs and cats. J. Small Anim. Pract. 2010, 51, e1. [Google Scholar] [CrossRef] [PubMed]
- Altman, K.; Kelman, M.; Ward, M. Are vaccine strain, type or administration protocol risk factors for canine parvovirus vaccine failure? Vet. Microbiol. 2017, 210, 8–16. [Google Scholar] [CrossRef]
- Hernández-Blanco, B.; Catalá-López, F. Are licensed canine parvovirus (CPV2 and CPV2b) vaccines able to elicit protection against CPV2c subtype in puppies? A systematic review of controlled clinical trials. Vet. Microbiol. 2015, 180, 1–9. [Google Scholar] [CrossRef]
- Kumar, M.; Nandi, S. Development of a SYBR Green based real-time PCR assay for detection and quantitation of canine parvovirus in faecal samples. J. Virol. Methods 2010, 169, 198–201. [Google Scholar] [CrossRef]
- Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Higgins, D.G.; Thompson, J.D.; Gibson, T.J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996, 266, 383–402. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; v 3.5.1; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Lunn, D.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Joseph, L.; Gyorkos, T.W. Inferences for Likelihood Ratios in the Absence of a “Gold Standard”. Med. Decis. Mak. 1996, 16, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.; Gyorkos, T.W.; Coupal, L. Bayesian Estimation of Disease Prevalence and the Parameters of Diagnostic Tests in the Absence of a Gold Standard. Am. J. Epidemiol. 1995, 141, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Zeileis, A.; Hornik, K. Vcd: Visualizing Categorical Data; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Meers, J.; Kyaw-Tanner, M.; Bensink, Z.; Zwijnenberg, R. Genetic analysis of canine parvovirus from dogs in Australia. Aust. Vet. J. 2007, 85, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Stryhn, H. Veterinary Epidemiologic Research; VER Inc.: Charlottetown, PE, Canada, 2010. [Google Scholar]
- Rika-Heke, T.; Kelman, M.; Ward, M.P. The relationship between the Southern Oscillation Index, rainfall and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia. Vet. J. 2015, 205, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Coyne, M.J. Canine parvovirus infection. In AccessScience; McGraw-Hill Professional: New York, NY, USA, 2015. [Google Scholar]
- Smith, J.R.; Farmer, T.S.; Johnson, R.H. Serological Observations on the Epidemiology of Parvovirus Enteritis of Dogs. Aust. Vet. J. 1980, 56, 149–150. [Google Scholar] [CrossRef]
- Kelman, M.; Barrs, V.R.; Norris, J.M.; Ward, M.P. Socioeconomic, geographic and climatic risk factors for canine parvovirus infection and euthanasia in Australia. Prev. Vet. Med. 2019, 174, 104816. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Durham, P.J.K.; Smith, J.R.; Campbell, R.S.F. Experimentally induced severe canine parvoviral enteritis. Aust. Vet. J. 1984, 61, 1–4. [Google Scholar] [CrossRef]
- Houston, D.M.; Ribble, C.S.; Head, L.L. Risk factors associated with parvovirus enteritis in dogs: 283 cases (1982–1991). J. Am. Vet. Med. Assoc. 1996, 208, 542–546. [Google Scholar]
- Kennedy, L.; Lunt, M.; Barnes, A.; McElhinney, L.; Fooks, A.R.; Baxter, D.N.; Ollier, W.E. Factors influencing the antibody response of dogs vaccinated against rabies. Vaccine 2007, 25, 8500–8507. [Google Scholar] [CrossRef]
- Wiedermann, U.; Garner-Spitzer, E.; Wagner, A. Primary vaccine failure to routine vaccines: Why and what to do? Hum. Vaccines Immunother. 2016, 12, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Markovich, J.E.; Stucker, K.M.; Carr, A.H.; Harbison, C.E.; Scarlett, J.M.; Parrish, C.R. Effects of canine parvovirus strain variations on diagnostic test results and clinical management of enteritis in dogs. J. Am. Vet. Med. Assoc. 2012, 241, 66–72. [Google Scholar] [CrossRef] [PubMed]
- DeCaro, N.; Buonavoglia, D.; Desario, C.; Amorisco, F.; Colaianni, M.L.; Parisi, A.; Terio, V.; Elia, G.; Lucente, M.S.; Cavalli, A.; et al. Characterisation of canine parvovirus strains isolated from cats with feline panleukopenia. Res. Vet. Sci. 2010, 89, 275–278. [Google Scholar] [CrossRef] [PubMed]
- DeCaro, N.; Desario, C.; Beall, M.J.; Cavalli, A.; Campolo, M.; DiMarco, A.A.; Amorisco, F.; Colaianni, M.L.; Buonavoglia, C. Detection of canine parvovirus type 2c by a commercially available in-house rapid test. Vet. J. 2010, 184, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Desario, C.; DeCaro, N.; Campolo, M.; Cavalli, A.; Cirone, F.; Elia, G.; Martella, V.; Lorusso, E.; Camero, M.; Buonavoglia, C. Canine parvovirus infection: Which diagnostic test for virus? J. Virol. Methods 2005, 126, 179–185. [Google Scholar] [CrossRef]
Parameter | Mode (%) | 95% Sure Greater Than (%) | Corresponding Beta Prior Distribution (α, β) |
---|---|---|---|
Antigen detection sensitivity | 85 | 50 | 6.25, 1.93 |
Antigen detection specificity | 85 | 50 | 6.25, 1.93 |
PCR sensitivity | 90 | 50 | 5.38, 1.49 |
PCR specificity | 90 | 50 | 5.38, 1.49 |
Tests↓ | Number of Positive Samples in Different Tests (%) | Total Positive (n = 79) | p-Value | |
---|---|---|---|---|
Positive/Vaccinated | Positive/Unknown or Unvaccinated | |||
Antigen detection | 7/32 (21.88%) | 30/47 (63.83%) | 37 (46.84%) | <0.001 * |
Conventional PCR | 14/32 (43.75%) | 38/47 (80.85%) | 52 (65.82%) | 0.001 |
2c Genotype | 12/14 (85.71%) a | 36/38 (94.74%) a | 48 a (92.3%) | 0.29 |
2b Genotype | 1/14 (7.14%) a | 2/38 (5.26%) a | 3 a (5.76%) | NA |
2a Genotype | 1 /14 (7.14%) a | 0/38 (0%) a | 1 a (1.92%) | NA |
PCR Negative | 3/17 (17.65%) | 3/41 (7.32%) | NA | NA |
qPCR mean (SD) Ct value b | 26.67 (7.91) | 17.65 (7.49) | NA | <0.001 *,c |
Sample Code↓ | Dilution→ | 1 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
---|---|---|---|---|---|---|---|---|---|---|
A1 | Ag test * | P | P | P | P | P | N | N | N | N |
Average Ct | 12.27 | 15.01 | 17.47 | 20.78 | 24.11 | 26.49 | 28.88 | 30.46 | 32.11 | |
Copy # † | 8.85 × 1010 | 9.12 × 109 | 8.93 × 108 | 9.09 × 107 | 9.09 × 106 | 8.77 × 105 | 8.52 × 104 | 8.06 × 103 | 7.85 × 102 | |
A2 | Ag test * | P | P | P | P | P | P | N | N | N |
Average Ct | 11.58 | 13.75 | 16.35 | 19.1 | 22.17 | 25.23 | 28.33 | 31.57 | 34.17 | |
Copy # † | 2.4 × 1012 | 3.5 × 1011 | 3.4 × 1010 | 2.9 × 109 | 1.8 × 108 | 1.2 × 107 | 7.4 × 105 | 4.1 × 104 | 4.0 × 103 | |
A3 | Ag test * | P | P | P | P | P | P | N | N | N |
Average Ct | 11.32 | 14.25 | 16.88 | 20.58 | 23.13 | 25.97 | 29.71 | 32.88 | 36.83 | |
Copy # † | 3.1 × 1012 | 2.2 × 1011 | 2.1 × 1010 | 7.7 × 108 | 7.8 × 106 | 6.1 × 106 | 2.1 × 105 | 1.2 × 104 | 3.6 × 103 | |
A4 | Ag test * | P | P | P | P | N | N | N | N | N |
Average Ct | 14.33 | 17.25 | 21.04 | 23.78 | 27.11 | 30.88 | 33.21 | 35.88 | 36.17 | |
Copy # † | 2.1 × 1011 | 1.5 × 1010 | 5.1 × 108 | 1.8 × 108 | 404 × 107 | 7.6 × 104 | 9.4 × 103 | 8.6 × 102 | 6.6 × 102 | |
B2 | Ag test * | P | P | P | P | N | N | N | N | N |
Average Ct | 15.25 | 18.57 | 22.31 | 25.41 | 28.82 | 31.83 | 34.14 | 36.74 | 36.81 | |
Copy # † | 9.1 × 1010 | 4.6 × 109 | 1.6 × 108 | 4.0 × 107 | 4.8 × 105 | 3.2 × 105 | 4.1 × 103 | 4.0 × 102 | 3.7 × 102 |
Parameter | Antigen Detection Test | Conventional PCR | qPCR |
---|---|---|---|
Sensitivity (%) | 72.24 (60.09–82.52) | 97.98 (92.17–99.82) | 97.86 (93.98–99.41) |
Specificity (%) | 95.39 (85.32–99.35) | 96.22 (85.75–99.65) | 95.51 (89.90–98.19) |
Positive predictive value (PPV) (%) | 96.61 (89.08–99.52) | 97.92 (91.93–99.81) | 97.54 (94.03–99.09) |
Negative predictive value (NPV) (%) | 65.37 (51.52–77.78) | 96.32 (86.20–99.66) | 96.09 (88.90–98.95) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yip, H.Y.E.; Peaston, A.; Woolford, L.; Khuu, S.J.; Wallace, G.; Kumar, R.S.; Patel, K.; Ahani Azari, A.; Akbarzadeh, M.; Sharifian, M.; et al. Diagnostic Challenges in Canine Parvovirus 2c in Vaccine Failure Cases. Viruses 2020, 12, 980. https://doi.org/10.3390/v12090980
Yip HYE, Peaston A, Woolford L, Khuu SJ, Wallace G, Kumar RS, Patel K, Ahani Azari A, Akbarzadeh M, Sharifian M, et al. Diagnostic Challenges in Canine Parvovirus 2c in Vaccine Failure Cases. Viruses. 2020; 12(9):980. https://doi.org/10.3390/v12090980
Chicago/Turabian StyleYip, Hiu Ying Esther, Anne Peaston, Lucy Woolford, Shiow Jing Khuu, Georgia Wallace, Rohan Suresh Kumar, Kandarp Patel, Ania Ahani Azari, Malihe Akbarzadeh, Maryam Sharifian, and et al. 2020. "Diagnostic Challenges in Canine Parvovirus 2c in Vaccine Failure Cases" Viruses 12, no. 9: 980. https://doi.org/10.3390/v12090980