Effect of Postmortem Degradation on the Preservation of Viral Particles and Rabies Antigens in Mice Brains. Light and Electron Microscopic Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Animal Handling, Virus Inoculation, and Collection of the Infected Tissue
2.3. Histological and Immunohistochemical Processing
2.4. Electron Microscopy
2.5. Pre-Embedding Ultrastructural Immunocytochemistry
3. Results
3.1. Hematoxylin and Eosin Staining
3.2. Immunohistochemistry of Rabies
3.3. High-Resolution Optical Microscopy
3.4. Electron Microscopy
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Expert Consultation on rabies. Technical Report Series No. 982; WHO Press: Geneva, Switzerland, 2013; pp. 1–139. [Google Scholar]
- Rodríguez, G.; Sarmiento, L. Rabia: El cuerpo de Negri. Biomédica 1999, 19, 196–197. [Google Scholar] [CrossRef]
- Trimarchi, C.; Smith, J. Diagnostic evaluation. In Rabies; Jackson, A.C., Wunner, W., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 307–349. [Google Scholar]
- Mani, R.S.; Madhusudana, S.N. Laboratory diagnosis of human rabies: Recent advances. Sci. World J. 2013, 2013, 569712. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, H.; Bidmon, H.; Oppermann, O.; Remmerbach, T. Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice. Exp. Toxicol. Pathol. 2004, 56, 159–171. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, L.M.; Marston, D.A.; Brookes, S.M.; Fooks, A.R. Effects of carcase decomposition on rabies virus infectivity and detection. J. Virol. Methods 2014, 207, 110–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albas, A.; Ferrari, C.I.; da Silva, L.H.; Bernardi, F.; Ito, F.H. Influence of canine brain decomposition on laboratory diagnosis of rabies. Rev. Soc. Bras. Med. Trop. 1999, 32, 19–22. [Google Scholar] [CrossRef] [Green Version]
- David, D.; Yakobson, B.; Rotenberg, D.; Dveres, N.; Davidson, I.; Stram, Y. Rabies virus detection by RT-PCR in decomposed naturally infected brains. Vet. Microbiol. 2002, 20, 111–118. [Google Scholar] [CrossRef]
- Sarmiento, L.; Rodríguez, G.; De Serna, C.; Boshell, J.; Orozco, L. Detection of rabies virus antigens in tissue: Immunoenzymatic method. Patología 1999, 37, 7–10. [Google Scholar]
- Lamprea, N.; Ortega, L.; Santamaría, G.; Sarmiento, L.; Torres-Fernández, O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica 2010, 30, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.T.; Rech, R.R.; Harrison, L.; Brown, C.C. Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet. Pathol. 2010, 47, 630–636. [Google Scholar] [CrossRef]
- Lembo, T.; Niezgoda, M.; Velasco-Villa, A.; Cleaveland, S.; Ernest, E.; Rupprecht, C. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg. Infect. Dis. 2006, 12, 310–313. [Google Scholar] [CrossRef]
- Dyer, J.L.; Niezgoda, M.; Orciari, L.A.; Yager, P.A.; Ellison, J.A.; Rupprecht, C.E. Evaluation of an indirect rapid immunohistochemistry test for the differentiation of rabies virus variants. J. Virol. Methods 2013, 190, 29–333. [Google Scholar] [CrossRef] [PubMed]
- Hummeler, K.; Atanasiu, P. Electron microscopy. In Laboratory Techniques in Rabies; Maslin, F.X., Kaplan, M.M., Koprowski, H., Eds.; World Health Organization: Geneva, Switzerland, 1996; pp. 209–217. [Google Scholar]
- Torres-Fernández, O.; Monroy-Gómez, J.; Sarmiento, L. Unusual Ultrastructural Findings in Dendrites of Pyramidal Neurons in the Cerebral Cortex of Rabies-Infected Mice. Available online: https://peerj.com/preprints/847v1/ (accessed on 23 April 2020).
- Torres-Fernández, O.; Monroy-Gómez, J.; Sarmiento, L. Ultraestructura dendrítica en neuronas piramidales de ratones inoculados con virus de la rabia. Biosalud 2016, 15, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Monroy-Gómez, J.; Torres-Fernández, O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica 2013, 33, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Monroy-Gómez, J.; Santamaría, S.; Torres-Fernández, O. Overexpression of MAP2 and NF-H associated with dendritic pathology in the spinal cord of mice infected with rabies virus. Viruses 2018, 10, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Da-Silva, A.; Priestleym, J.; Cuello, C. Pre-embedding ultrastructural immunocytochemistry. In Immunohistochemistry II; Cuello, C., Ed.; John Wiley & Sons Inc.: Chichester, UK, 1993; pp. 181–227. [Google Scholar]
- Santos, B.; Del-Bel, E.; Homem, J.; Tumas, V. Influence of external factors on the preservation of human nervous tissue for histological studies: Review article. J. Bras. Patol. Med. Lab. 2014, 50, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Lavenex, P.; Lavenex, P.B.; Bennett, J.L.; Amaral, D.G. Post mortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation. J. Comp. Neurol. 2009, 512, 27–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, T.; Tagawa, K.; Ito, H.; Okazawa, H. Dynamic changes of the phosphoproteome in post mortem mouse brains. PLoS ONE 2011, 6, e21405. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.F.; Ding, Y.L.; Huang, Y.; Tao, X.Y.; Li, H.; Yu, P.C.; Shen, X.X.; Jiao, W.T.; Liang, G.D.; Tang, Q.; et al. Comparative analysis of the pathogenic mechanisms of street rabies virus strains with different virulence levels. Biomed. Environ. Sci. 2014, 27, 749–762. [Google Scholar] [CrossRef]
- Torres-Fernández, O.; Santamaría, G.; Rengifo, A.; Monroy-Gómez, J.; Hurtado, A.; Rivera, J.; Sarmiento, L. Patología dendrítica en rabia: Estudio neurohistológico, inmunohistoquímico y ultraestructural en ratones. Rev. Asoc. Colomb. Cienc. Biol. 2014, 26, 96–107. [Google Scholar]
- Rossiter, J.; Jackson, A.C. Pathology. In Rabies; Jackson, A.C., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 351–386. [Google Scholar]
- Jackson, A.C.; Randle, E.; Lawrance, G.; Rossiter, J. Neuronal apoptosis does not play an important role in human rabies encephalitis. J. Neurovirol. 2008, 14, 368–375. [Google Scholar] [CrossRef]
- Suja, M.; Mahadevan, A.; Madhusudana, S.; Shankar, S. Role of apoptosis in rabies viral encephalitis: A comparative study in mice, canine, and human brain with a review of literature. Pathol. Res. Int. 2011, 2011, 374286. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Kondo, M.; Inoue, S.; Noguchi, A.; Oyamada, T.; Yoshikawa, H.; Yamada, A. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J. Vet. Med. Sci. 2006, 68, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, D.; Park, C.H.; Tsujikawa, S.; Kohara, K.; Hatai, H.; Oyamada, T.; Noguchi, A.; Inoue, S. Lesions of the central nervous system induced by intracerebral inoculation of BALB/c mice with rabies virus (CVS-11). J. Vet. Med. Sci. 2010, 72, 1011–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.A.; Fooks, A.R.; Aubert, M.; Wandeler, A.I. Historical Perspectives of Rabies in Europe and the Mediterranean Basin Paris; World Organization for Animal Health (OIE): Paris, France, 2004; pp. 1–383. [Google Scholar]
- Madhusudana, S.; Paul, J.; Abhilash, V.; Suja, M. Rapid diagnosis of rabies in humans and animals by a dot blot enzyme immunoassay. Int. J. Infect. Dis. 2004, 8, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Panning, M.; Baumgarte, S.; Pfefferl, S.; Maier, T.; Martens, A.; Drosten, C. Comparative analysis of rabies virus reverse transcription-PCR and virus isolation using samples from a patient infected with rabies virus. J. Clin. Microbiol. 2010, 48, 2960–2962. [Google Scholar] [CrossRef] [Green Version]
- Monroy-Gómez, J.; Torres-Fernández, O. Efecto de la degradación post mortem sobre la detección inmunohistoquímica de antígenos en el cerebro de ratón. Rev. Investig. Salud Univ. Boyacá 2014, 1, 45–62. [Google Scholar] [CrossRef]
- Gigante, C.M.; Dettinger, L.; Powell, J.W.; Seiders, M.; Condori, R.E.C.; Griesser, R.; Okogi, K.; Carlos, M.; Pesko, K. Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics. PLoS ONE 2018, 13, e0197074. [Google Scholar] [CrossRef]
- Araújo, D.; Langoni, H.; Almeida, M.F.; Megid, J. Heminested reverse-transcriptase polymerase chain reaction (hnRT-PCR) as a tool for rabies virus detection in stored and decomposed samples. BMC Res. Notes 2008, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.C.; Venditti, L.L.; Queiroz, L.H. Comparison between RT-PCR and the mouse inoculation test for detection of rabies virus in samples kept for long periods under different conditions. J. Virol. Methods 2010, 164, 19–23. [Google Scholar] [CrossRef]
- Beltran, F.J.; Dohmen, F.G.; Del Pietro, H.; Cisterna, D.M. Diagnosis and molecular typing of rabies virus in samples stored in inadequate conditions. J. Infect. Dev. Ctries. 2014, 8, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Baskin, D. Fixation and tissue processing in immunohistochemistry. In A Dynamic Encyclopedia of Disease Mechanisms Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: Amsterdam, The Netherlands, 2014; pp. 3797–3806. [Google Scholar]
- Jurado, G.; Montoya-Flórez, L.; Betancur, C.; Pedraza-Ordoñez, F. Uso de la inmunohistoquímica como herramienta epidemiológica para el diagnóstico de rabia bovina a partir de casos no conclusivos. Rev. Mvz. Córdoba 2012, 17, 3065–3070. [Google Scholar] [CrossRef] [Green Version]
- Dürr, S.; Naïssengar, S.; Mindekem, R.; Diguimbye, C.; Niezgoda, M.; Kuzmin, I.; Rupprecht, C.; Zinsstag, J. Rabies diagnosis for developing countries. PLoS Negl. Trop. Dis. 2008, 2, e206. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy-Gómez, J.; Santamaría, G.; Sarmiento, L.; Torres-Fernández, O. Effect of Postmortem Degradation on the Preservation of Viral Particles and Rabies Antigens in Mice Brains. Light and Electron Microscopic Study. Viruses 2020, 12, 938. https://doi.org/10.3390/v12090938
Monroy-Gómez J, Santamaría G, Sarmiento L, Torres-Fernández O. Effect of Postmortem Degradation on the Preservation of Viral Particles and Rabies Antigens in Mice Brains. Light and Electron Microscopic Study. Viruses. 2020; 12(9):938. https://doi.org/10.3390/v12090938
Chicago/Turabian StyleMonroy-Gómez, Jeison, Gerardo Santamaría, Ladys Sarmiento, and Orlando Torres-Fernández. 2020. "Effect of Postmortem Degradation on the Preservation of Viral Particles and Rabies Antigens in Mice Brains. Light and Electron Microscopic Study" Viruses 12, no. 9: 938. https://doi.org/10.3390/v12090938