The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas
Abstract
:1. Introduction
2. Information Retrieval
3. Historical Events
3.1. Patrick Manson’s Speech
- The direct trade and human travel between Asia and YF-infested parts of the Americas, which will be made possible upon completion of the Panama Canal, will introduce YF to Asia where the principal vector mosquito is abundant.
- Once YF is introduced to Asia, it will spread among major urban areas, such as Hong Kong, Shanghai, Bangkok, Singapore, Batavia (now Jakarta), Colombo, Bombay (now Mumbai), and other cities, since people there totally lack immunity.
- The Canal opening will result in decimation of the population similar to that caused by European diseases introduced to the Americas after Christopher Columbus discovered the New World.
- A sanitary organization must be established prior to completion of the Panama Canal to prevent dispersal of YF. Sanitary officers must be empowered to board ships to inspect conditions, quarantine anyone suspected of having YF, fumigate to eliminate mosquitoes, and to destroy mosquito eggs.
- An international agreement on health matters must be established between governments to prevent dispersal of YF from endemic regions of the world.
- During outbreaks of YF, there may be undesirable activities, such as dissemination of distorted information, dangerous experiments using the etiologic agent, and trafficking of infected mosquitoes.
3.2. YF Elimination in the Panama Canal Zone
3.3. YF in Hawaii
3.4. Yellow Fever Investigation by the Rockefeller Foundation
4. Measures to Prevent YF Dispersal
4.1. International Conventions
4.2. India and East Africa
4.3. Other Asian Countries
4.4. US Army During World War II
4.5. French, British and RF Activities
5. Proposed Hypotheses to Explain Absence of Yellow Fever in Asia
5.1. Distance to Asia and Scarcity of Opportunity
5.2. Human Transport
5.3. Human Genetics
5.4. Variation in Mosquito Vector Competence
5.5. Cross Protective Immunity in Humans
5.6. Viral Interference in the Vector
5.7. Lack of Ideal Ecologic Conditions
5.8. International Preventive Measures
6. Routes and Directions of Aedes aegypti Dispersal to Asia
7. Possibility of the Establishment of Transmission Cycle in Asia
7.1. Urban Transmission in South America and Trinidad
7.2. Interface Transmission in South America
7.3. Spillback in South America- A Hypothesis
7.4. Urban Transmission in Asia
7.5. Sylvan (Enzootic) Transmission in Asia
8. Other Enigmas
8.1. Viral Maintenance in Vectors
8.1.1. Vertical Transmission (VT) of Flaviviruses in Vector Mosquitoes
8.1.2. Larval Transmission
8.1.3. Expectoration
8.1.4. Sufficient Populations of Infected Vectors and Year-Long Activity of Vectors
8.2. Dead-End Hosts, Incidental Hosts, Survival of Vectors, Dilution Effect, and Immune Hosts
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, S. Yellow fever threat in India. Lancet 2001, 357, 1346. [Google Scholar] [CrossRef]
- Gubler, D.J. The changing epidemiology of yellow fever and dengue, 1900 to 2003: Full circle? Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Gumashta, R.; Kasturwar, N.B.; Janaid, M. Yellow fever: The challenges ahead in India. Nat. J. Commun. Med. 2012, 3, 31–34. [Google Scholar]
- Hanley, K.A.; Monath, T.P.; Weaver, S.C.; Rossi, S.L.; Richman, R.L.; Vasilakis, N. Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. 2013, 19, 292–311. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Chen, J.; Huang, Q.; Hu, Y.; Zhu, A.; Ye, S.; Xu, L.; Lu, H. Yellow fever in a worker returning to China from Angola, March 2016. Emerg. Infect. Dis. 2016, 22, 1317–1318. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Anantharajah, P.; Lim, P.L. Yellow fever cases in Asia: Primed for an epidemic. Int. J. Infect. Dis. 2016, 48, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Leong, W.Y. Importation of yellow fever into China: Assessing travel patterns. J. Travel Med. 1017, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Brent, S.E.; Watts, A.; Cetron, M.; German, M.; Kraemer, M.U.G.; Bogoch, I.I.; Brady, O.J.; Hay, S.I.; Creatore, M.I.; Khan, K. International travel between global urban centres vulnerable to yellow fever transmission. Bull. World Health Organ. 2018, 96, 343–354. [Google Scholar] [CrossRef]
- Gubler, D.J. Pandemic yellow fever: A potential threat to global health via travelers. J. Travel Med. 2018, 25, tay097. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.S.E.; Chan, M.; Lim, P.L. Yellow fever-what it means for Singapore. Ann. Acad. Med. 2018, 47, 185–187. [Google Scholar]
- Carter, H.R. Yellow Fever: An Epidemiological and Historical Study of Its Place of Origin; Williams and Wilkins Co.: Baltimore, MD, USA, 1931; p. 308. [Google Scholar]
- Colmant, A.M.G.; Bielefeldt-Ohmann, H.; Hobson-Peters, J.; Suen, W.M.; O’Brien, C.A.; Van der Hurk, A.F.; Hall, R.A. A newly discovered flavivirus in the yellow fever virus group displays restricted replication in vertebrates. J. Gen. Virol. 2016, 97, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.A.; Williams, S.H.; Melville, L.F.; Nicholson, J.; Hall, R.A.; Bielefeldt, H.; Prow, N.A.; Chidlow, G.R.; Wong, S.; Sinha, R.; et al. Characterization of Fitzroy River virus and serologic evidence of human and animal infection. Emerg. Infect. Dis. 2017, 23, 1289–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, A.N.; Harbach, R.E. History of the discovery of the mode of transmission of yellow fever virus. J. Vector Ecol. 2017, 42, 208–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monath, T.P. Yellow fever: Victors, Victoria? Conqueror, Conquest? Epidemics and research in the last forty years and prospects for the future. Am. J. Trop. Med. Hyg. 1991, 45, 1–43. [Google Scholar] [CrossRef]
- Boyce, R. Yellow Fever and Its Prevention; John Murray: London, UK, 1911; 380p. [Google Scholar]
- Manson, P. The relation of the Panama Canal to the introduction of yellow fever into Asia. Tran. Epidemiol. Soc. Lond. 1903, 22, 60–100. [Google Scholar]
- Gorgas, W.C. Sanitation in Panama; D. Appleton Co: New York, NY, USA; London, UK, 1915; pp. 206–218. [Google Scholar]
- Morris, A.D. The epidemic that never was: Yellow fever in Hawaii. Hawaii Med. J. 1995, 54, 781–784. [Google Scholar]
- James, S.D. The protection of India from yellow fever. Ind. J. Med. Res. 1913, 1, 213–257. [Google Scholar]
- Fosdick, R.B. The Story of the Rockefeller Foundation; Harper & Brothers Publishers: New York, NY, USA, 1952; p. 59. [Google Scholar]
- Williams, G. The Plague Killers; Charles Scribner’s Sons: New York, NY, USA, 1969; p. 209. [Google Scholar]
- Soper, F.L. The unfinished business with yellow fever. In Yellow Fever, a Symposium in Commemoration of Carlos Finlay, 1955; Jefferson Digital Commons, Thomas Jefferson University: Philadelphia, PA, USA, 1955; p. 3. [Google Scholar]
- Shope, R.E. The discovery of arbovirus diseases. Ann. N. Y. Acad. Sci. 1994, 740, 138–145. [Google Scholar] [CrossRef]
- Calisher, C.H. A brief history of arbovirology, focusing on contributions by workers of the Rockefeller Foundation. Vector-Borne Zoon. Dis. 2005, 5, 202–211. [Google Scholar] [CrossRef]
- Downs, W.G. The Rockefeller Foundation Virus Program: 1951–1971 with update to 1981. Annu. Rev. Med. 1982, 33, 1–29. [Google Scholar] [CrossRef]
- Vasilakis, N.; Tesh, R.B.; Popov, V.; Widen, S.G.; Wood, T.G.; Forrester, N.L.; Gonzalez, J.P.; Saluzzo, J.F.; Alkhovsky, S.; Lam, S.K.; et al. Exploring the legacy of the arbovirus hunters. Viruses 2019, 11, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, B.J. The Pan American Sanitary Bureau. Am. J. Public Health 1930, 20, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Whittingham, H.E. Preventive medicine in relation to aviation. Proc. R. Soc. Med. 1938, 32, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Duguet, J. Disinsectization of aircraft. Bull. World Health Organ. 1945, 2, 155–191. [Google Scholar]
- Anonymous. British Medical Association Meeting. Summary proceedings: Yellow fever. Br. Med. J. 1932, 2, 324–325. [Google Scholar]
- Ackerknecht, E.H. Anticontagionism between 1821 and 1867. Int. J. Epidemiol. 2009, 38, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Polu, S. Infectious Diseases in India, 1892–1940: Policy-Making and the Perception of Risk; Palgrave Macmillan: Basingstoke, UK, 2012; pp. 119–139. [Google Scholar]
- Meerwijk, M.B. Phantom menace: Dengue and yellow fever in Asia. Bull. Hist. Med. 2020, 94, 215–243. [Google Scholar] [CrossRef]
- Sawyer, W.A.; Whitman, L. The yellow fever immunity survey of North, East, and South Africa. Trans. R. Soc. Trop. Med. Hyg. 1936, 29, 397–412. [Google Scholar] [CrossRef]
- Ahmed, A.; Dietrich, I.; LaBeaud, A.D.; Lindsay, S.W.; Musa, A.; Weaver, S.C. Risk and challenges of arboviral diseases in Sudan: The urgent need for actions. Viruses 2020, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Pandit, C.G. My World of Preventive Medicine: Autobiography of an Indian Physician; Indian Council of Medical Research: New Delhi, India, 1982; pp. 109–143.
- Monath, T.P.; Kinney, R.M.; Schlesinger, J.J.; Brandriss, M.W.; Brés, P. Ontogeny of yellow fever 17D vaccine RNA oligonucleotide fingerprint and monoclonal antibody analysis of vaccines produced worldwide. J. Gen. Virol. 1983, 64, 627–637. [Google Scholar] [CrossRef]
- Sivaramakrishnan, K. Yellow fever, quarantine and the jet age in India: Extremely far, incredibly close. In Quarantine; Bashford, A., Ed.; Palgrave Macmillan: Basingstoke, UK, 2016; pp. 154–172. [Google Scholar]
- Augustine, G. History of Yellow Fever; Searcy and Pfaff: New Orleans, LA, USA, 1909; 1194p. [Google Scholar]
- Hong Kong Government. Government notification: Yellow fever in Hong Kong in 1865-66. Hong Kong Gov. Gaz. 1866, 122–134, 189–194. [Google Scholar]
- Heiser, V. An Ameirican Doctor’s Odyssey: Adventures in Forty-Five Countries; W.W. Norton & Co.: New York, NY, USA, 1936; p. 291. [Google Scholar]
- Hoffman, W.H. Yellow fever as a Far Eastern problem. Tr. Sixth Bienn. Congr. East Assoc. Trop. Med. Tokyo; Kyorinsha: Tokyo, Japan, 1925; pp. 143–157. [Google Scholar]
- Snijders, E.P.; Dinger, E.J.; Schüffner, W.A.P. On the transmission of dengue in Sumatra. Am. J. Trop. Med. 1931, 11, 171–197. [Google Scholar] [CrossRef]
- Snijders, E.P. The yellow fever problem in the Far East. In Tr. Far East. Assoc. Trop. Med.; Far Eastern Association of Tropical Medicine: Bangkok, Thailand, 1931; pp. 133–150. [Google Scholar]
- Bayne-Jones, S. Chapter XIII: Yellow fever. In Medical Department United States Army in World War II: Medical Department, United States Army Preventive Medicine in World War II; Office of the Surgeon General, Department of the Army: Washington, DC, USA, 1964; Volume VII, pp. 357–370. [Google Scholar]
- Thomas, R.E.; Lorenzetti, D.L.; Spragins, W. Mortality and morbidity among military personnel and civilians during the 1930s and World War II from transmission of hepatitis during yellow fever vaccination: Systematic review. Am. J. Public Health 2013, 103, e16–e29. [Google Scholar] [CrossRef] [PubMed]
- Hong Kong, Centre for Health Protection, Dept. Health. Scientific Committee on Vector- Borne Diseases. Prevention of Yellow Fever in Hong Kong, 2008; 16p. Available online: http://www.Chp.gov.hk/en/static/24009.html (accessed on 9 October 2020).
- Peltier, M. Yellow fever vaccination, simple or associated with vaccination against smallpox, of the populations of French West Africa by the method of the Pasteur Institute of Dakar. Am. J. Public Health 1947, 37, 1026–1032. [Google Scholar] [CrossRef] [Green Version]
- Balfour, A. Wild monkeys as reservoir for virus of yellow fever. Lancet 1914, 1, 1176–1178. [Google Scholar] [CrossRef] [Green Version]
- Barrie, H.J. Artifacts and archives. Diary notes on a trip to West Africa in relation to a yellow fever expedition under the auspice of the Rockefeller Foundation, 1926, by Oskar Klotz. Can. Bull. Med. Hist. 1997, 14, 133–163. [Google Scholar] [CrossRef]
- Kuno, G. Revisiting the Tumultuous Yellow Fever Investigations in the First Three Decades of the Twentieth Century; Small Batch Books: Amherst, MA, USA, 2014; 91p. [Google Scholar]
- Thomas, H.W. Yellow fever. Trans. R. Soc. Trop. Med. Hyg. 1909, 3, 59–62. [Google Scholar] [CrossRef]
- Agramonte, A. Yellow fever—A strictly human disease. N. Y. Med. J. 1912, 96, 465–468. [Google Scholar]
- Klotz, O. Diary of Oskar Klotz: Notes and Research Trip to West Coast of Africa; LAC Digitized File: 3011072497; Library and Archives Canada (LAC): Ottawa, ON, Canada, 1926; 299p. [Google Scholar]
- Klotz, O. Yellow Fever in West Africa; The Williams and Wilkins Co.: Baltimore, MD, USA, 1928; 30p. [Google Scholar]
- McKinley, E.B. A Geography of Disease; The George Washington University Press: Washington, DC, USA, 1935; 495p. [Google Scholar]
- Gould, E.A.; de Lamballerie, X.; Zanotto, P.M.A.; Holmes, E.C. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 2003, 59, 277–314. [Google Scholar]
- Sawyer, W.A.; Bauer, J.H.; Whitman, L. The distribution of yellow fever immunity in North America, Central America, West Indies, Europe, Asia, and Australia, with special reference to specificity of protection test. Am. J. Trop. Med. 1937, 17, 137–161. [Google Scholar] [CrossRef]
- Sinton, J.A. Suggestions with regard to prevention of the spread of yellow fever to India by air traffic, with special reference to insect transmission, Government of India: New Delhi. Health Bull. 1938, 20, 1–40. [Google Scholar]
- Gillett, J.D.; Ross, R.W. The laboratory transmission of yellow fever by Malaysian Aedes aegypti. Ann. Trop. Med. Parasitol. 1955, 49, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Cathey, J.T.; Marr, J.S. Yellow fever, Asia and the East African slave trade. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.O. The African slave trade to Asia and the Indian Ocean islands. Afr. Asian Stud. 2006, 5, 325–346. [Google Scholar] [CrossRef]
- Monath, T.P. Yellow fever. In The Arboviruses: Epidemiology and Ecology; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; Volume V, pp. 139–231. [Google Scholar]
- Courtney, K.O. Report on the recent outbreak of jungle yellow fever in Panamá. Am. J. Public Health 1950, 40, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Soper, F.L. The newer epidemiology of yellow fever. Am. J. Public Health 1937, 27, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Downs, W.G. Epidemiological notes in connection with the 1954 outbreak of yellow fever in Trinidad, B.W.I. In Yellow Fever, a Symposium in Commemoration of Carlos Juan Finlay, 1955; Jefferson Digital Commons, Thomas Jefferson University: Philadelphia, PA, USA, 1955; Available online: jdc.jefferson.edu/yellow_fever_symposium/ (accessed on 13 October 2020).
- Lewis, M.J. Yellow fever activity in Trinidad: An historical review, 1620–1978. In Studies on the Natural History of Yellow Fever in Trinidad; Tikasingh, E.S., Ed.; CAREC Monograph; CAREC: Port of Spain, Trinidad and Tobago, 1991; Volume 1, pp. 6–13. [Google Scholar]
- Eddy, T.P. Asians in the white man’s grave. Tran. R. Soc. Trop. Med. Hyg. 1979, 74, 142. [Google Scholar] [CrossRef]
- Blake, L.E.; Garcia-Blanco, M.A. Human genetic variation and yellow fever mortality during 19th century U.S. epidemics. mBio 2014, 5, e01253-14. [Google Scholar] [CrossRef] [Green Version]
- Kiple, K.F.; Kiple, V.H. Another Dimension to the Black Diaspora: Diet, Disease, and Racism; Cambridge University Press: Cambridge, UK, 1982; p. 30. [Google Scholar]
- Watts, S. Yellow fever immunity in West Africa and the Americas in the age of slavery nd beyond: A reappraisal. J. Soc. Hist. 2001, 34, 955–967. [Google Scholar] [CrossRef]
- Lee, S.; Mountain, J.; Koenig, B.A. The meanings of “race” in the new genetics: Implications for health disparities research. Yale J. Health Policy Lwa Ethics 2001, 1, 33–75. [Google Scholar]
- Espinosa, M. The question of racial immunity to yellow fever in history and histiography. Soc. Sci. Hist. 2014, 38, 437–453. [Google Scholar] [CrossRef]
- Hogarth, R.A. The myth of innate racial difference between white and black people’s bodies: Lessons from the 1793 yellow fever epidemic in Philadelphia, Pennsylvania. Am. J. Public Health 2019, 109, 1339–1341. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Craven, R.B.; Adjukiewicz, A.; Germain, M.; Francy, D.B.; Ferrera, L.; Samba, E.M.; N’Jie, H.; Cham, K.; Fitzgerald, S.A.; et al. Yellow fever in the Gambia, 1978–1979: Epidemiologic aspects with observations on the occurrence of Orungo virus infection. Am. J. Trop. Med. Hyg. 1980, 29, 912–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasidi, A.; Monath, T.P.; De Cook, K.; Tomori, O.; Cordelier, R.; Olaleye, O.D. Urban yellow fever epidemic in western Nigeria, 1987. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 401–406. [Google Scholar] [CrossRef]
- Thonnon, J.; Fontenille, D.; Tall, A.; Diallo, M.; Renaudineau, Y.; Baudez, B.; Raphenon, G. Re-emergence of yellow fever in Senegal in 1995. Am. J. Trop. Med. Hyg. 1998, 59, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legendre, J. Races de Stegomyia fasciata et fièvre jaune. Comptes Rendus Acad. Sci. 1927, 185, 1224–1226. [Google Scholar]
- Dudley, S.F. Can yellow fever spread into Asia? An essay on the ecology of mosquito-borne disease. J. Trop. Med. Hyg. 1945, 37, 273–278. [Google Scholar]
- Downs, W.G.; Shope, R.E. Apparent Barrier to the Extension of Yellow Fever to East Africa and Asia; World Health Organization: Geneva, Switzerland, 1974. [Google Scholar]
- Gubler, D.J.; Novak, R.; Mitchell, C.E. Arthropod vector competence-epidemiological, genetic and biological considerations. In Recent Development in the Genetics of Insect Disease Vectors; Steiner, W., Tabachnick, W., Rai, K., Narang, S., Eds.; Stipes Publishing: Champaign, IL, USA, 1982; pp. 326–335. [Google Scholar]
- Lourenco-de-Oliveira, M.; Vazeille, M.; DeFillippis, A.M.B.; Failloux, A.-B. Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil. Memórias Inst. Oswaldo Cruz 2002, 97, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzani, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Ecol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Miller, B.R.; Monath, T.P.; Tabachnick, W.J.; Ezike, V.I. Epidemic yellow fever caused by an incompetent mosquito vector. Trop. Med. Parasitol. 1989, 40, 396–399. [Google Scholar]
- Azar, S.R.; Weaver, S.C. Vector competence: What has Zika virus taught? Viruses 2019, 11, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashcroft, M.T. Historical evidence of resistance to yellow fever acquired by residence in India. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 247–252. [Google Scholar] [CrossRef]
- Izurieta, R.O.; Maculuso, M.; Watts, D.M.; Tesh, R.B.; Guerra, B.; Cruz, M.; Galwankar, S.; Vermund, S.H. Anamnestic immune response to dengue and decreased severity of yellow fever. J. Glob. Infect. Dis. 2009, 1, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Saron, W.A.A.; Rathore, A.P.S.; Ting, L.; Ooi, E.E.; Low, J.; Abraham, S.N.; John, A.L.S. Flaviviruses serocomplex cross reactivity is protective by eliciting heterologous memory CD4 T cells. Sci. Adv. 2018, 4, eaar4297. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.E. Immunology of Cross-reactions from Infection with Other Group B Viruses. In WHO Expert Committee on Yellow Fever: 1971; VIR/YF71.9; WHO: Geneva, Switzerland, 1971; Available online: https://apps.who.int/iris/bitstream/handle/10665/40924/WHO_TRS_479.pdf?sequence=1&isAllowed=y (accessed on 25 November 2020).
- Theiler, M.; Anderson, C.R. The relative resistance of dengue-immune monkeys to yellow fever virus. Am. J. Trop. Med. Hyg. 1975, 24, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.Y.; Guzman, H.; Travassos da Rosa, A.; Zhu, H.B.; Tesh, R.B. Alteration of clinical outcome and histopathology of yellow fever virus infection in a hamster model by previous infection with heterologous flaviviruses. Am. J. Trop. Med. Hyg. 2003, 68, 695–703. [Google Scholar] [CrossRef]
- Frederiksen, H. Historical evidence for interference between dengue and yellow fever. Am. J. Trop. Med. Hyg. 1955, 4, 483–491. [Google Scholar] [CrossRef]
- Agampododi, S.B.; Wickramage, K. Is there a risk of yellow fever transmission in South Asian countries with hyper-endemic dengue? BioMed. Res. Int. 2013. [Google Scholar] [CrossRef] [Green Version]
- Sabin, A. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1952, 1, 30–50. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.; Wilson, D.C.; Lee, V.H. The 1970 yellow fever epidemic in Okwoga District, Benne Plateau State, Nigeria. 3. Serological responses in persons with and without pre-existing heterologous group B immunity. Bull. World Health Organ. 1973, 49, 235–244. [Google Scholar] [PubMed]
- Possas, C.; Lourenco-de-Oliveira, R.; Tauil, P.L.; Pinheiro, F.P.; Pissinatti, A.; Da Cunha, R.V.; Freire, M.; Martins, R.M.; Homma, A. Yellow fever outbreak in Brazil: The puzzle of rapid spread and challenges for immunization. Memórias Instituto Oswaldo Cruz 2018, 113, e180278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.I.O.; Sacchetto, L.; Rezende, I.M.; Trindade, G.S.; LeBaud, A.D.; de Thoisy, B.; Drumond, B.P. Recent sylvatic yellow fever virus transmission in Brazil: The news from an old disease. Virol. J. 2020, 17, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, B.K.; Varma, M.G.R. Infection of an Aedes aegypti cell line with infectious arbovirus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 1975, 69, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Abrao, E.P.; da Fonseca, B.A. Infection of mosquito cells (C6/36) by dengue-2 virus interferes with subsequent infection by yellow fever virus. Vector-Borne Zoon. Dis. 2016, 16, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Öhlund, P.; Lundén, H.; Blomström, A.L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019, 55, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Frangeul, L.; Dickson, L.B.; Blanc, H.; Verdier, Y.; Vinh, J.; Lambrechts, L.; Saleh, M.-C. Uncovering the repertoire of endogenous flaviviral elements in Aedes mosquito genomes. J. Virol. 2017, 91, e00571-17. [Google Scholar] [CrossRef] [Green Version]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.-M.; et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J. Virol. 2019, 93, e00705-19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Asad, S.; Khromykh, A.A.; Asgari, S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci. Rep. 2017, 7, 6935. [Google Scholar] [CrossRef] [Green Version]
- Baroian, O.B.; Lozinskaia, T.M. The epidemiology of yellow fever. Vopr. Virusol. 1958, 1, 3–11. [Google Scholar]
- Stepan, N.L. Eradication: Ridding the World of Diseases-Forever? Cornell University Press: Ithaca, NY, USA, 2011; p. 62. [Google Scholar]
- Humphreys, M. How four once common diseases were eliminated from the American South. Health Aff. 2009, 28, 1734–1744. [Google Scholar] [CrossRef] [Green Version]
- Pybus, O.G.; Tatem, A.J.; Lemey, P. Virus evolution and transmission in an ever more connected world. Proc. R. Soc. B 2015, 282, 20142878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellicour, S.; Baele, G.; Dudas, G.; Faria, N.R.; Pybus, O.G.; Sudard, M.A.; Rambaut, A.; Lemey, P. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 2018, 9, 2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti—A review. Memórias Inst. Oswaldo Cruz 2013, 108 (Suppl. S1), S11–S17. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Sylla, M.; Goss, L.; Burugu, M.W.; Sang, R.; Kamau, L.W.; Kenya, E.U.; Bosio, C.; Munoz, M.D.L.; Sharakova, M.; et al. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl. Trop. Dis. 2013, 7, e2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goubert, C.; Minard, G.; Vieira, C.; Boulesteix, M. Population genetics of the Asian Tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity 2016, 117, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, K.L.; Kaddumukasa, M.; Shija, F.; Djouaka, R.; Masinzo, G.; Lutwana, J.; Linton, Y.M.; Walton, C. Comparative phylogeography of Aedes mosquitoes and the role of postclimatic change for evolution within Africa. Evol. Ecol. 2018, 8, 3019–3036. [Google Scholar] [CrossRef] [PubMed]
- Bennett, K.L.; Shija, F.; Linton, Y.-M.; Misinzo, G.; Kaddumukasa, M.; Djouaka, R.; Anyaele, O.; Harris, A.; Irish, S.; Hlaing, T.; et al. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: A precursor to successful worldwide colonization. Mol. Ecol. 2016, 25, 4337–4354. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, W.J. Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. Am. Entomol. 1991, 37, 14–24. [Google Scholar] [CrossRef]
- Soghigian, J.; Gloria-Soria, A.; Robert, A.; LeGoff, G.; Failloux, A.-B.; Powell, J.R. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 2020, 29, 3593–3606. [Google Scholar] [CrossRef]
- Sall, A.A.; Faye, O.; Diallo, M.; Firth, C.; Kitchen, A.; Holmes, E.C. Yellow fever virus exhibits slower evolutionary dynamics than dengue virus. J. Virol. 2009, 84, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Gloria-Soria, A.; Ayala, D.; Bheecarry, A.; Calderon-Arguedas, O.; Chadee, D.D.; Chiappero, M.; Coetzee, M.; Bin Elahee, K.; Fernandez-Salas, I.; Kamal, H.A.; et al. Global genetic diversity of Aedes aegypti. Mol. Evol. 2016, 25, 5377–5395. [Google Scholar]
- Powell, J.R.; Gloria-Soria, A.; Kotsakiozi, P. Recent history of Aedes aegypti: Vector genomics and epidemiology records. BioScience 2018, 68, 854–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, H.S.D.; Hapugoda, M.; Perera, R.; Black, W.C.; de Silva, B.G.D.N.K. Mitochondrial metabolic genes provide phylogeographic relationships of global collections of Aedes aegypti (Diptera: Culicidae). PLoS Negl. Trop. Dis. 2020, 15, e0235430. [Google Scholar] [CrossRef] [PubMed]
- Gordon Smith, C.E. The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. Trop. Med. Hyg. 1956, 59, 243–251. [Google Scholar]
- Christie, J. On epidemics of dengue fever: Their diffusion and etiology. Glasg. Med. J. 1881, 16, 161–176. [Google Scholar]
- Zakham, F.; Al-habal, M.; Taher, R.; Ataoui, A.; El Mgibri, M. Viral haemorrhagic fevers in the Tohamah region of the Western Arabian Peninsula. PLoS Negl. Trop. Dis. 2017, 11, e0005322. [Google Scholar] [CrossRef]
- Kuno, G. Letter to the editor. BioScience 2019, 69, 161. [Google Scholar] [CrossRef]
- Ekblom, T. Some observations on Stegomyia fasciata during a visit to Greece in the autumn of 1928. Acta Med. Scand. 1929, 70, 505–518. [Google Scholar] [CrossRef]
- Kumm, H.W. The Geographical Distribution of the Yellow Fever Vectors. 1931. Available online: https://books.google.com.hk/books/about/The_Geographical_Distribution_of_the_Yel.html?id=3SlDAAAAYAAJ&redir_esc=y (accessed on 25 November 2020).
- Schaffner, F.; Mathis, A. Dengue and dengue vectors in the WHO European region: Past, present, and scenarios for the future. Lancet Commun. 2014, 14, 1271–1280. [Google Scholar] [CrossRef]
- Kotsakiozi, P.; Gloria-Soria, A.; Schaffner, F.; Robert, V.; Powell, J.R. Aedes aegypti in the Black Sea: Recent introduction or ancient remnant? Parasit. Vectors 2018, 11, 396. [Google Scholar] [CrossRef]
- Riabova, T.E.; Lunicheva, L.V.; Markovich, N.; Ganushkina, L.A.; Orabei, V.G.; Sergiev, V.P. Detection of Aedes (Stegomyia) aegypti mosquitoes in Sochi City. Med. Parasitol. 2005, 1, 3–5. [Google Scholar]
- Ganashina, L.A.; Patraman, I.V.; Rezza, G.; Migliorini, L.; Litvinov, S.K.; Sergiev, V.P. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the area of Sochi, Russia. Vector-Borne Zoon. Dis. 2016, 16, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Akiner, M.M.; Demirci, B.; Babuadze, G.; Robert, V.; Schaffner, F. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and Zika outbreaks in Europe. PLoS Negl. Trop. Dis. 2016, 10, e0004664. [Google Scholar]
- Hirsch, A. Dengue. In Handbook of Geographical and Historical Pathology; Hirsch, A., Ed.; The New Sydenham Society: London, UK, 1883; Volume 1, pp. 55–81. [Google Scholar]
- Bylon, D. Korte aantekening wegens eene algemeine ziekte, doorgans geaamadde knokkel-Koorts. Batavia Soc. Art Sci. 1780, 2, 17–30. (In Dutch) [Google Scholar]
- Carey, D.E. Aedes aegypti and dengue. A case of mistaken identity? J. Hist. Med. 1971, 26, 243–262. [Google Scholar]
- Njenga, M.K.; Nderitu, L.; Ledermann, J.P.; Ndirangu, A.; Loque, C.H.; Kelly, C.H.; Sang, R.; Sergon, K.; Breiman, R.; Powers, A.M. Tracking epidemic chikungunya virus into Indian Ocean from East Africa. J. Gen. Virol. 2008, 89, 2754–2760. [Google Scholar] [CrossRef]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Trpis, M.; Hausermann, W. Demonstration of differential domesticity of Aedes aegypti (L.) (Diptera: Culicidae) in Africa by mark-release-recapture. Bull. Entomol. Res. 1975, 65, 199–208. [Google Scholar] [CrossRef]
- Powell, J.R. Mosquito-borne human viral diseases: Why Aedes aegypti? Am. J. Trop. Med. Hyg. 2018, 98, 1563–1565. [Google Scholar] [CrossRef]
- Arias-Goeta, C.; Mousson, L.; Rougeon, F.; Failloux, A.-B. Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLoS ONE 2013, 8, e57548. [Google Scholar] [CrossRef]
- Eisler, R. Health risks of gold miner: A synoptic review. Environ. Geochem. Health 2003, 25, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, S.T.; Forshey, B.M.; Morrison, A.C.; Paz-Soldan, V.A.; Vazquez-Prokovic, G.M.; Astete, H.; Reiner, R.C.; Vilcarromero, S.; Elder, J.P.; Halsey, E.S.; et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 2013, 110, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Cunha, J.G. Dengue, Its History, Symptoms and Treatment: With Observations on the Epidemic which Prevailed in Bombay during the Years 1871¨C72; Thacker Vining Co.: Bombay, India, 1872; 44p. [Google Scholar]
- Hughes, J.H.; Porter, J.E. Dispersal of mosquitoes through transportation, with particular reference to immature stages. Mosq. News 1956, 16, 106–111. [Google Scholar]
- Joyce, C.R. Potentialities for accidental establishment of exotic mosquitoes in Hawaii. Proc. Hawaii Entomol. Soc. 1961, 17, 403–412. [Google Scholar]
- Schurz, W.L. Mexico, Peru, and the Manilla Galleon. Hisp. Amer. Histo. Rev. 1918, 1, 389–402. [Google Scholar] [CrossRef]
- Scott, H.H. The influence of the slave-trade in the spread of tropical disease. Trans. R. Soc. Trop. Med. Hyg. 1943, 37, 169–188. [Google Scholar] [CrossRef] [Green Version]
- Bryant, J.E.; Holmes, E.C.; Barrett, A.D.T. Out of Africa: A molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog. 2007, 3, e75. [Google Scholar] [CrossRef] [Green Version]
- Dinger, J.E.; Schüffner, W.A.P.; Snijders, E.P.; Swellengrebel, N.H. Onderzoek over gele koorts in Nederland. Ned. Tijdschr. Voor Geneeskd. 1929, 73, 4378–4383. [Google Scholar]
- Hindle, E. Filtrable viruses. Proc. R. Soc. Med. 1929, 22, 823–826. [Google Scholar]
- De Lange, C.D.; Lichtenstein, A. A Clinical Textbook of Tropical Medicine; G. Kolif &Co.: Batavia, Indonesia, 1936; (Quoted in U.S. Navy, Bureau of Medicine and Surgery. Epidemiology of Diseases of Military Importance in the Netherland Indies-Including the Identification and Distribution of Arthropods of Medical Importance; U.S. Printing Office: Washington, DC, USA, 1944; NAVMED 133). [Google Scholar]
- Gordon Smith, C.E.; Turner, L.H.; Armitage, P. Yellow fever vaccination in Malaysia by subcutaneous injection and multiple puncture: Neutralizing antibody responses with and without pre-existing antibody to related viruses. Bull. World Health Organ. 1962, 27, 717–727. [Google Scholar]
- Taylor, R.M. Epidemiology. In Yellow Fever; Strode, G.K., Ed.; McGraw-Hill Book Co.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1951; pp. 426–538. [Google Scholar]
- Clements, A.N. The Biology of Mosquitoes; CABI: Wallingford, UK, 2012; Volume 3, pp. 218–250. [Google Scholar]
- Germain, M.; Sureau, P.; Herve, J.P.; Fabre, J.; Mouchet, J.; Robin, Y.; Geoffroy, B. Isolements du virus de la fièvre jaune a partir du groupe A. africanus (Theobald) en Républíque Centralafricaine: Importance des savanes humides et semi-humides en tanto que zone d’dmergence du virus amaril. Cah. ORSTOM Ent. Med. Parasitol. 1976, 14, 125–139. [Google Scholar]
- Service, M.W. Urbanization: A hot bed of vector-borne diseases. In Demography and Vector-Borne Diseases; Service, M.W., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 59–83. [Google Scholar]
- Soper, F.L. The elimination of urban yellow fever in the Americas through the eradication of Aedes aegypti. Am. J. Public Health 1963, 53, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Tauil, P.L. Critical aspects of yellow fever control in Brazil. Rev. Saude Public 2010, 44, 555–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Stuyft, P.; Gianella, A.; Pirard, M.; Cespedes, J.; Lora, J.; Peredo, C.; Pelegrino, J.L.; Vorndam, V.; Boelaert, M. Urbanization of yellow fever in Santa Cruz, Bolivia. Lancet 1999, 353, 1558–1562. [Google Scholar] [CrossRef]
- WHO. Outbreak news. Yellow fever, Paraguay. Wkly. Epidemiol. Rec. 2008, 83, 105. [Google Scholar]
- Soper, F.L. Building the Health Bridge; Kerr, J.A., Ed.; Indiana University: Bloomington, Indiana, 1970; pp. 160–164, 191–214. [Google Scholar]
- Causey, O.R.; Kumm, H.W.; Laemmert, H.W. Dispersion of forest mosquitoes in Brazil: Further studies. Am. J. Trop. Med. Hyg. 1950, 30, 301–312. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Moraes, M.A. An epidemic of yellow fever in central Brazil, 1972–1973. I. Ecological studies. Am. J. Trop. Med. Hyg. 1980, 30, 204–211. [Google Scholar] [CrossRef]
- De Abrao, F.V.S.; Ferreira-de-Brito, A.; dos Santos, A.A.C.; de Miranda, R.M.; de Souza Bonelly, I.; Falqueto, A.; Paupy, C.; Carvalho, G.; Moutailler, S.; Lourenço-de-Oliveira, R.; et al. Haemagobus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg. Microbes Infect. 2019, 8, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Fraga, C. The yellow fever epidemic at Rio de Janeiro. Public Health Rep. 1928, 47, 3079–3083. [Google Scholar] [CrossRef]
- Barreto, J.B. Notas épidemiológicas sobre a febre amarela, no Rio de Janeiro, em 1928. Arch. Hyg. 1928, 3, 93–191. [Google Scholar]
- Sawyer, W.A.; Kitchen, S.F.; Frobisher, M.; Lloyd, W. The relationship of yellow fever of the Western Hemisphere to that of Africa and to Leptospira jaundice. J. Exp. Med. 1930, 51, 493–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wermelinger, E.D.; Carvalho, R.W. Methods and procedures used in Aedes aegypti control in the successful campaign for yellow fever prophylaxis in Rio de Janeiro, Brazil, in 1928 and 1929. Epidemiol. Serviços Saúde 2016, 25, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.; Monath, T.P. Epidemiology and ecology of yellow fever virus. Adv. Virus Res. 2003, 61, 291–315. [Google Scholar] [PubMed]
- Kuno, G. Review of the factors modulating dengue transmission. Epidemiol. Rev. 1995, 17, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Teissier, Y.; Paul, R.; Aubry, M.; Rodo, X.; Dommar, C.; Salje, H.; Sakuntabhai, A.; Cazelles, B.; Cao-Lormeau, V.-M. Long-term persistence of monotypic dengue transmission in small size isolated populations, French Polynesia, 1978–2014. PLoS Negl. Trop. Dis. 2020, 14, e0008110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halstead, S.B.; Scanlon, J.E.; Umpairit, P.; Uomsakdi, S. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 1969, 18, 997–1021. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.S.; Nisalak, A.; Nimmannitya, S. Disappearance of chikungunya virus from Bangkok. Tran. R. Soc. Trop. Med. Hyg. 1985, 79, 419–420. [Google Scholar] [CrossRef]
- Pavri, K. Disappearance of chikungunya virus from India and South East Asia. Tran. R. Soc. Trop. Med. Hyg. 1986, 80, 491. [Google Scholar] [CrossRef]
- Cohen, J. Steep drop in Zika cases undermines vaccine trial. Science 2018, 361, 1055–1056. [Google Scholar] [CrossRef]
- Siedner, M.J.; Ryan, E.T.; Bogoch, I.I. Gone or forgotten? The rise and fall of Zika virus. Lancet Public Health 2018, 3, E109–E110. [Google Scholar] [CrossRef] [Green Version]
- Faria, N.R.; Kraemer, M.U.G.; Hill, S.C.; Goes de Jesus, J.; de Aguiar, R.S.; Iani, F.C.; Xavier, J.; Quick, J.; Du Plessis, L.; Dellicour, S.; et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 2019, 361, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auguste, A.J.; Lemey, P.; Pybus, O.G.; Suchard, M.A.; Salas, R.A.; Adesiyun, A.A.; Barrett, A.D.; Tesh, R.B.; Weaver, S.C.; Carrington, C.V. Yellow fever virus maintenance in Trinidad and its dispersal through the Americas. J. Virol. 2010, 84, 9967–9977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, O. Historia de Febre Amarela no Brasi; Superintendencia de Campahas de Saúde Pública, Ministerio da Saúde: Rio de Janeiro, Brasil, 1969; 208p.
- Johnson, C.K.; Hitchens, P.L.; Evans, T.S.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015, 5, 14830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.G.; Faria, N.R.; Reiner, R.C.; Golding, N.; Nikolay, B.; Stasse, S.; Johansson, M.A.; Salje, H.; Faye, O.; Wint, G.R.W.; et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015¨C16: A modeling study. Lancet Infect. Dis. 2017, 17, 330–338. [Google Scholar] [CrossRef]
- Dégallier, N.; Sa Filho, G.C.; Monteiro, H.A.O.; Castro, F.C.; da Silva, O.V.; Brandao, R.C.F.; Moyses, M.; Da Rosa, A.P. Release-recapture experiments with canopy mosquitoes in the genera Haemagogus and Sabethes (Diptera: Culicidae) in Brazilian Amazonia. J. Med. Entomol. 1998, 35, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Hendy, A.; Hernandez-Acosta, E.; Chaves, B.A.; Fé, N.F.; Valerio, D.; Mendonca, C.; De Lacerda, M.V.G.; Buenemann, M.; Vasilakis, N.; Hanley, K.A. Into the woods: Changes in mosquito community composition and presence of key vectors at increasing distances from the Urban edge in urban forest parks in Manaus, Brazil. Acta Trop. 2020, 206, 105449. [Google Scholar] [CrossRef]
- Fontenille, D.; Powell, J.R. From anonymous to public enemy: How does a mosquito become a feared arboviruses vectors? Pathogens 2020, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Dupont-Rouzeyrol, M.; Aubry, M.; O’Connor, O.; Rouche, C.; Gourinat, A.-C.; Guigon, A.; Pyke, A.T.; Grangeon, J.-P.; Nilles, E.J.; Chanteau, S.; et al. Epidemiological and molecular features of dengue virus type-1 in New Caledonia, South Pacific, 2001–2013. Virol. J. 2014, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Vasilakis, N.; Fokam, E.B.; Hanson, C.T.; Weinberg, E.; Sall, A.A.; Whitehead, S.S.; Hanley, K.A.; Weaver, S.C. Genetic and phylogenetic characterization of sylvatic dengue virus type 2 strains. Virology 2008, 377, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Pollett, S.; Melendrez, M.C.; Malikovic Berry, I.; Duchene, S.; Salje, H.; Cummings, D.A.T.; Jarman, R. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. Infect. Genet. Evol. 2018, 62, 279–295. [Google Scholar] [CrossRef]
- Marchoux, E.; Simond, P.-L. La transmission hérèditaire du virus de la fièvre jaune chez le Stegomyia fasciata. CR Soc. Biol. 1905, 59, 259–260. [Google Scholar]
- Fontenille, D.; Diallo, M.; Mondo, M.; Ndiage, M.; Thonnon, J. First evidence of natural vertical transmission of yellow fever virus in Aedes aegypti, its epidemic vector. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 533–535. [Google Scholar] [CrossRef]
- Mouchtouri, V.A.; Christoforidou, E.P.; an der Heiden, M.; Lemos, C.M.; Fanos, M.; Rexroth, U.; Grote, U.; Belfroid, E.; Swaan, C.; Hadjichristodoulou, C. Exit and early entry screening practices for infectious diseass among travelers at points of entry: Looking for evidence on public health impact. Int. J. Environ. Res. Public Health 2019, 16, 4638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Ghani, R.; Mahdy, M.A.K.; Al-Eryani, S.M.A.; Fouque, F.; Lenhart, A.E.; Aikwri, A.; Al-Mikhlafi, A.M.; Wilke, A.B.; Thabet, A.A.; Beier, J.C. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Trop. 2019, 197, 105066. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Mitchell, C.J.; Ballinger, M.E. Replication, tissue tropisms and transmission of yellow fever virus in Aedes albopictus. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 252–256. [Google Scholar] [CrossRef]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; dos Santos, F.B.; Vazeille, M.; Vasconcelos, P.F.; Lourenço-De-Oliveira, R.; Failloux, A.-B. Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef] [PubMed]
- Kamgang, B.; Vazeille, M.; Yougang, A.P.; Tedjou, A.N.; Wilson-Bahun, T.A.; Mousson, L.; Wondji, C.S.; Failloux, A.-B. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urbn areas in Central Africa. Emerg. Microbes Infect. 2019, 8, 1636–1641. [Google Scholar] [CrossRef] [Green Version]
- Miot, E.F.; Aubry, F.; Dabo, S.; Mendenhall, I.H.; Marcombe, S.; Tan, C.H.; Ng, L.C.; Failloux, A.-B.; Pompon, J.; Brey, P.T.; et al. A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. PLoS Negl. Trop. Dis. 2019, 13, e0007783. [Google Scholar] [CrossRef]
- Khaklang, S.; Kittayapong, P. Species composition and blood meal analysis of mosquitoes collected from a tourist island, Koh Chang, Thailand. J. Vector Ecol. 2014, 39, 448–452. [Google Scholar] [CrossRef]
- Levenbook, I.S.; Pelleu, L.J.; Elisberg, B.L. The monkey safety test for neurovirulence of yellow fever vaccines: The utility of quantitative clinical evaluation and histological examination. J. Biol. Stand. 1987, 15, 305–313. [Google Scholar] [CrossRef]
- Barrett, A.D.T.; Monath, T.P.; Cropp, C.B.; Adkins, J.A.; Ledger, T.N.; Gould, E.A.; Schlesinger, J.J.; Kinney, R.M.; Trent, D.W. Attenuation of wild-type yellow fever virus by passage in HeLa cells. J. Gen. Virol. 1990, 71, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Pettit, A.; Stefanopoulo, G. Infections expérimentales inapparentes provoquées par le virus amaril chez les singes réceotufs. CR Soc. Biol. 1929, 102, 719–722. [Google Scholar]
- Halstead, S.B. Reappearance of chikungunya formerly called dengue, in the Americas. Emerg. Infect. Dis. 2015, 21, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuno, G. A re-examination of the history of etiologic confusion between dengue and chikungunya. PLoS Negl. Trop. Dis. 2015, 9, e0004101. [Google Scholar] [CrossRef] [Green Version]
- Pan American Health Organization. Epidemiological Update. 10 June 2020. Available online: http://www.reliefweb.int/report/argentina/epidemiological-update-dengue-and-other-arboviruses-10-june-2020 (accessed on 2 October 2020).
- Rajagopalan, P.K. Medical entomology in public health-down the memory lane. J. Commun. Dis. 2016, 48, 33–39. [Google Scholar]
- Mattingly, P.F. The Biology of Mosquito-Borne Diseases; George Allen and Unwin Ltd.: London, UK, 1969; pp. 70–81. [Google Scholar]
- Reidenbach, K.R.; Cook, S.; Bertone, M.A.; Harbach, R.E.; Wiegman, B.M.; Besansky, N.J. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol. Biol. 2009, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubálek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate reservoirs of arboviruses: Myth, synonym of amplifier, or reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, A. Dengue virus ecology in Malaysia. In Dengue Fever Studies in Malaysia, Rudnick, A; Lim, T.W., Ed.; Institute for Medical Research: Kuala Lumpur, Malaysia, 1986; Bulletin 20; pp. 51–153. [Google Scholar]
- Young, K.I.; Murdis, S.; Widen, S.G.; Wood, T.G.; Tesh, R.B.; Cardosa, J.; Vasilakis, N.; Perera, D.; Hanley, K.A. Abundance and distribution of sylvatic dengue virus vectors in three different cover types in Sarawak, Malaysian Borneo. Parasite Vector 2017, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Beaty, B.J.; Tesh, R.B.; Aitken, T.H. Transovarial transmission of yellow fever virus in Stegomyia mosquitoes. Am. J. Trop. Med. Hyg. 1980, 29, 125–132. [Google Scholar] [CrossRef]
- Tesh, R.B.; Bolling, B.G.; Beaty, B.J. Role of vertical transmission in mosquito-borne arbovirus maintenance and evolution. In Arbovirus: Molecular Biology, Evolution and Control; Vasilakis, N., Gubler, D.J., Eds.; Caister Academic Press: Norfolk, UK, 2016; pp. 191–217. [Google Scholar]
- Cornet, M.; Robin, Y.; Heme, G.; Adam, C.; Renaudet, J.; Valade, M.; Eyraud, M. Une pousée épizootique de fièvre jaune selvatique aú Séenégal Oriental. Isolement du virus de lots de moustiques adultes males et femelles. Med. Malad. Infect. 1979, 9, 63–66. [Google Scholar] [CrossRef]
- Mondet, B. Considérations sur l’épidémiologie de la fievre jaune au Brésil. Bull. Soc. Pathol. Exot 2001, 94, 260–267. [Google Scholar] [PubMed]
- Alencar, J.; Mello, C.F.; Marcondes, C.B.; Guimares, A.E.; Toma, H.K.; Bastos, A.Q.; Silva, S.O.F.; Machado, S.L. Naturalization and vertical transmission of two flaviviruses (yellow fever and Zika) in mosquitoes in primary forests in the Brazilian state of Rio de Janeiro (Diptera: Culicidae). bioRxv 2019. [Google Scholar] [CrossRef]
- Gillett, J.D.; Ross, R.W.; Dick, G.W.A.; Haddow, A.J.; Hewitt, L.E. Experiments to test the possibility of transovarial transmission of yellow fever virus with mosquito Aedes (Stegomyia) africanus Theobald. Ann. Trop. Med. 1950, 44, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Grunnill, M.; Boots, M. How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culiciade)? J. Med. Entomol. 2016, 53, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lequime, S.; Paul, R.E.; Lambrechts, L. Determinants of arbovirus vertical transmission in mosquitoes. PLoS Pathog. 2016, 12, e1005548. [Google Scholar] [CrossRef] [PubMed]
- Whitman, L.; Antunes, P.C.A. Studies on Aedes aegypti infected in larval stage with virus of yellow fever. Proc. Soc. Exp. Biol. Med. 1938, 37, 664–666. [Google Scholar] [CrossRef]
- Kuno, G. The boundaries of arboviruses: Complexities revealed in their host ranges, virus-host interactions and evolutionary relationships. In Arboviruses: Molecular Biology, Evolution and Control; Vasilakis, N., Gublelr, D.J., Eds.; Caister Academic Press: Norfolk, UK, 2016; pp. 219–268. [Google Scholar]
- Yuval, B. The other habit: Sugar feeding by mosquitoes. Bull. Soc. Vector Ecol. 1992, 17, 150–156. [Google Scholar]
- Barredo, E.; DeGennaro, M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol. 2020, 36, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Jové, V.; Gong, Z.; Hol, F.J.H.; Zhao, Z.; Sorrells, T.R.; Carroll, T.S.; Prakash, V.N.; McBride, C.S.; Vosshall, L.B. The taste of blood in mosquitoes. bioRxiv 2020. [Google Scholar] [CrossRef]
- Sissoko, F.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Dembele, S.M.; Schlein, Y.; Traore, A.S.; Gergely, P.; Xue, R.-D. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLoS ONE 2019, 14, e0214170. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, A.L.; Van den Hurk, A.F.; Meyer, D.B.; Ritchie, S.A. Searching for the proverbial needle in a haystack: Advances in mosquito-borne arbovirus surveillance. Parasites Vectors 2018, 11, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, P. Bionomics of Sabethes chloropterus Humboldt, a vector of sylvan yellow fever in Middle America. Am. J. Trop. Med. Hyg. 1958, 7, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Tikasingh, E.S. Seasonal and vertical distribution of ovipositing Haemagogus mosquitoes in Trinidad. In Studies on the Natural History of Yellow Fever in Trinidad; Tikasingh, E.S., Ed.; CAREC Monograph Series; Epidemiology: Port of Spain, Trinidad and Tobago, 1991; Volume 1, pp. 76–87. [Google Scholar]
- Couto-Lima, D.; Andreazzi, C.S.; Leite, P.J.; Bersot, M.I.L.; Alencar, J.; Lourenco-de-Oliveria, R. Seasonal Population dynamics of the primary yellow fever vector Haemagogus leucocelaenus (Dyar & Shannon) (Diptera: Culicidae) is mainly influenced by temperature in the Atlantic Forest, Southeast Brazil. Memórias Inst. Oswaldo Cruz 2020, 115, e200218. [Google Scholar]
- Abresu, F.V.S.; Delatorre, E.; Dos Santos, A.A.C.; Ferreira-de-Brito, A.; de Castro, M.G.; Ribeiro, I.P.; Furtado, N.D.; Vargas, W.P.; Ribeiro, M.S.; Meneguete, P.; et al. Combination of surveillance tools reveals that yellow fever virus can remain in the same Atlantic Forest area at least for three transmission seasons. Memórias Inst. Oswaldo Cruz 2019, 114, e190070. [Google Scholar]
- Kiple, K.F.; Kiple, V.H. Black yellow fever immunity, innate and acquired, as revealed in the American South. Soc. Sci. Hist. 1977, 1, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.G. Factors influencing the behavior of viruses in their arthropod hosts. In Host-Parsite Relationship in Invertebrate Hosts; Taylor, A.E.R., Ed.; Blackwell Science Press: Oxford, UK, 1964; pp. 1–31. [Google Scholar]
- Lafferty, K.D.; McLaughlin, J.P.; Gruner, D.S.; Bogr, T.A.; Bui, A.; Childress, J.N.; Espinoza, M.; Forbes, E.S.; Johnston, C.A.; Klope, M.; et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 2018, 14, 20170743. [Google Scholar] [CrossRef]
- Diallo, D.; Fall, G.; Diagne, C.T.; Gaye, A.; Ba, Y.; Dia, I.; Faye, O.; Diallo, M. Concurrent amplification of Zika, chikungunya, and yellow fever viruses in sylvatic focus of arbovirues in Southeastern Senegal, 2015. BMC Microbiol. 2020, 20, 181. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Godsey, M.S.; King, R.J.; Guptill, S.C. Avian diversity and West Nile virus: Testing associations between biodiversity and infectious disease risk. Proc. R. Soc. B 2006, 273, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Holt, R.D.; Ostfeld, R.S. Effects of species diversity on disease risk. Ecol. Lett. 2006, 4, 485–498. [Google Scholar] [CrossRef]
- Moreno, E.S.; Spinola, R.; Tengan, C.H.; Brasil, R.A.; Siciliano, M.M.; Moraes, T.N.; Silveira, V.R.; Rocco, I.M.; Bisordi, I.; de Souza, R.P.; et al. Yellow fever epizootics in non-human primates, Sâo Paulo State, Brazil, 2008–2009. Rev. Inst. Med. Trop. São Paulo 2013, 55, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Davis, N.C. The transmission of yellow fever. On the possibility of immunity in Stegomyia mosquitoes. Am. J. Trop. Med. 1931, 11, 31–42. [Google Scholar] [CrossRef]
- Fine, P.; Eames, K.; Heyman, D.L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 2011, 52, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Downs, W.G. The known and the unknown in yellow fever ecology and epidemiology. Ecol. Dis. 1982, 1, 103–110. [Google Scholar] [PubMed]
- De Fillippis, V.R.; Villarreal, L.P. An introduction to the evolutionary ecology of viruses. In Viral Ecology; Hurst, C.J., Ed.; Academic Press: Cambridge, MA, USA, 2000; pp. 125–208. [Google Scholar]
- Vasilakis, N.; Cardosa, J.; Hanley, K.A.; Holmes, E.C.; Weaver, S.C. Fever from the forest: Prospects for the continuous emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Microbiol. 2011, 13, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Dennehy, J.J. Evolutionary ecology of virus emergence. Ann. N. Y. Acad. Sci. 2017, 1389, 124–146. [Google Scholar] [CrossRef] [PubMed]
- French, R.K.; Holmes, E.C. An ecosystems perspective on virus evolution and emergence. Trends Microbiol. 2019, 28, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, D. Fears rise over yellow fever’s next move. Nature 2016, 532, 155–156. [Google Scholar] [CrossRef] [Green Version]
Year | Event | Topics of Interest or Significance |
---|---|---|
1902 | Establishment of the International Sanitary Bureau (later Pan American Health Organization), Washington, D.C. | This was the first international organization established for epidemic intelligence sharing, collaboration and assistance in preventing dispersal of major disease agents including yellow fever among American states. |
1903 | International Sanitary Conference, Paris | At this conference, the transmission mechanism of yellow fever based on the reports of the Walter Reed Commission was accepted, and YF was provisionally adopted as one of five diseases requiring prevention of dispersal. The conclusions of the conference emphasized establishing maritime regulation, sharing disease intelligence, and quarantine. |
1905 | Second International (Pan American) Sanitary Convention, Washington, D.C. | For the first time in history, international sanitary procedures and responsibilities of participating countries were codified. Prevention of YF spread was the principal objective. This code known by Pan American Sanitary Code was further revised until 1924 and served as model in all subsequent international conferences and in the International Health Regulation of the WHO. |
1912 | International Sanitary Conference, Paris | This conference updated the 1903 regulations, despite a marked decline of interest in quarantine and other measures. YF was officially adopted as a quarantinable disease. |
1926 | International Sanitary Conference, Paris | This conference established more refined maritime regulations. However, some countries retained the right to renounce the treatise after ratification, making the agreement meaningless. |
1930 | Eastern Bureau of the League of Nations meeting, Singapore | This conference conditionally prohibited direct airplane communication between Eastern (Asian) countries and yellow fever-endemic areas. |
1932 | International Convention for Aerial Navigation, Cape Town | In this convention, it was proposed to establish yellow fever “buffers” by means of “anti-amaryl aerodromes” in Africa and Asia (“amaril” meaning YF in French). |
1933 | International Sanitary Convention for Aerial Navigation, The Hague | This convention ratified the Aerial Navigation negotiated in Cape Town. |
1944 | International Sanitary Conference, Washington, D.C. | The 1926 maritime regulations were amended, and the 1933 aerial navigation was modified by dropping the requirement for “anti-amaryl aerodromes.” The requirement for yellow fever vaccination certification for international travel was adopted, and the conference more clearly defined “yellow fever-endemic areas.” Still, disinsection of aircraft for international flight was emphasized. Also, it designated seven yellow fever laboratories in Bogotá, Colombia; Rio de Janeiro, Brazil; International Health Division, Rockefeller Foundation, New York; Rocky Mountain Laboratory, Hamilton, Montana; Institut Pasteur, Paris; Entebbe, Uganda. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuno, G. The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas. Viruses 2020, 12, 1349. https://doi.org/10.3390/v12121349
Kuno G. The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas. Viruses. 2020; 12(12):1349. https://doi.org/10.3390/v12121349
Chicago/Turabian StyleKuno, Goro. 2020. "The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas" Viruses 12, no. 12: 1349. https://doi.org/10.3390/v12121349
APA StyleKuno, G. (2020). The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas. Viruses, 12(12), 1349. https://doi.org/10.3390/v12121349