Advances in Honey Bee Virus Research
Acknowledgments
Conflicts of Interest
References
- Ryabov, E.V.; Christmon, K.; Heerman, M.C.; Posada-Florez, F.; Harrison, R.L.; Chen, Y.; Evans, J.D. Development of a honey bee RNA virus vector based on the genome of a deformed wing virus. Viruses 2020, 12, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Transmission, W.V.; Gusachenko, O.N.; Woodford, L.; Balbirnie-cumming, K. Green Bees: Reverse Genetic Analysis of Deformed. Viruses 2020, 12, 532. [Google Scholar]
- Jin, L.; Mehmood, S.; Zhang, G.; Song, Y.; Su, S.; Huang, S.; Huang, H.; Zhang, Y.; Geng, H.; Huang, W.F. Visualizing sacbrood virus of honey bees via transformation and coupling with enhanced green fluorescent protein. Viruses 2020, 12, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Goodman, C.L.; Stanley, D.W.; Bonning, B.C. Cell Lines for Honey Bee Virus Research. Virology 2020, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erez, T.; Chejanovsky, N. Infection of a Lepidopteran Cell Line with Deformed Wing Virus. Viruses 2020, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- McMenamin, A.J.; Daughenbaugh, K.F.; Flenniken, M.L. The heat shock response in thewestern honey bee (Apis mellifera) is antiviral. Viruses 2020, 12, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezal, A.G.; Harwood, G.P. Pesticide–Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020, 12, 566. [Google Scholar]
- Al Naggar, Y.; Paxton, R.J. Mode of transmission determines the virulence of black queen cell virus in adult honey bees, posing a future threat to bees and apiculture. Viruses 2020, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Amiri, E.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Honey bee queens and virus infections. Viruses 2020, 12, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.M.K.; Simbiken, N.; Dale, C.; Armstrong, J.; Anderson, D.L. Tolerance of honey bees to Varroa mite in the absence of deformed wing virus. Viruses 2020, 12, 575. [Google Scholar] [CrossRef]
- Highfield, A.; Kevill, J.; Mordecai, G.; Hunt, J.; Henderson, S.; Sauvard, D.; Feltwell, J.; Martin, S.J.; Sumner, S.; Schroeder, D.C. Detection and Replication of Moku Virus in Honey Bees and Social Wasps. Viruses 2020, 12, 607. [Google Scholar] [CrossRef] [PubMed]
- Dalmon, A.; Gayral, P.; Decante, D.; Klopp, C.; Bigot, D.; Thomasson, M.; AHerniou, E.; Alaux, C.; Conte, Y. Le Viruses in the invasive hornet vespa velutina. Viruses 2019, 11, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chejanovsky, N. Advances in Honey Bee Virus Research. Viruses 2020, 12, 1149. https://doi.org/10.3390/v12101149
Chejanovsky N. Advances in Honey Bee Virus Research. Viruses. 2020; 12(10):1149. https://doi.org/10.3390/v12101149
Chicago/Turabian StyleChejanovsky, Nor. 2020. "Advances in Honey Bee Virus Research" Viruses 12, no. 10: 1149. https://doi.org/10.3390/v12101149
APA StyleChejanovsky, N. (2020). Advances in Honey Bee Virus Research. Viruses, 12(10), 1149. https://doi.org/10.3390/v12101149