An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Relative Sensitivity of the tandem multiplex real-time assay
Target DNA/RNA | Highest 10 fold dilution detected | |||
---|---|---|---|---|
Multiplex Tandem real time PCR | Singleplex real time PCR | Nested PCR[11-20] | ||
Adenovirus (Group B) | 10-4 | 10-4 | 10-6 | |
Bocavirus | 10-7 | 10-7 | NAb | |
Bordetella pertussis | 10-5 | 10-5 | 10-5 | |
Bordetella holmesii | 10-8 | 10-8 | 10-8 | |
Bordetella parapertussis | 10-8 | 10-7 | NA | |
Bordetella bronchoseptica | 10-8 | 10-8 | NA | |
Chlamydophila pneumoniae | 10-4 | 10-5 | 10-4 | |
Chlamydophila psittaci | 10-6 | 10-6 | 10-5 | |
Coronavirus 229E | 10-8 | 10-7 | 10-7 | |
Coronavirus HKU1 | 10-2 | 10-2 | NA | |
Coronavirus NL63 | 10-2 | 10-3 | NA | |
Coronavirus OC43 | 10-8 | 10-9 | 10-8 | |
Haemophilus influenzae | 10-5 | 10-5 | NA | |
Influenza virus A H1 a | 10-6 (Matrix 10-6) | 10-6 (Matrix 10-6) | 10-6 | |
Influenza virus A H3 a | 10-8 (Matrix 10-6) | 10-7 (Matrix 10-6) | 10-6 | |
Influenza virus B | 10-6 | 10-7 | 10-6 | |
Influenza virus C | 10-4 | 10-5 | 10-5 | |
Legionella longbeachae | 10-4 | 10-4 | 10-3 | |
Legionella pneumophila | 10-5 | 10-4 | 10-3 | |
Moraxella catarrhalis | 10-5 | 10-5 | NA | |
Mycoplasma pneumoniae | 10-5 | 10-5 | 10-5 | |
Parainfluenzavirus 1 | 10-8 | 10-7 | 10-8 | |
Parainfluenzavirus 2 | 10-6 | 10-6 | 10-6 | |
Parainfluenzavirus 3 | 10-6 | 10-5 | 10-5 | |
Parainfluenzavirus 4A | 10-6 | 10-6 | NA | |
Parainfluenzavirus 4B | 10-3 | 10-3 | NA | |
Pneumocystis jirovecii | 10-3 | 10-2 | 10-2 | |
Polyomavirus KI | 10-1 | 10-1 | NA | |
Polyomavirus WU | 10-5 | 10-3 | NA | |
RSV A | 10-7 | 10-7 | 10-7 | |
RSV B | 10-4 | 10-4 | 10-4 | |
Streptococcus pyogenes | 10-6 | 10-6 | NA | |
Streptococcus pneumoniae | 10-3 | 10-3 | NA | |
Equine herpesvirus 4c | 10-5 | 10-5 | NA | |
MS-2 RNA coliphage c | 10-8 | 10-7 | NA |
2.2. Clinical samples tested in the tandem multiplex real-time assay
Number of samples | Original reported result† | Tandem multiplex real-time PCR plus supplementary picornavirus and metapneumovirus semi-nested PCR result |
---|---|---|
12 | RSV | RSV A (4), RSV B (8) |
1 | RSV, PIV-1 | RSV B, PIV-1 |
12 | Human rhinovirus (HRV) | HRV |
1 | HRV, PIV-1 | HRV, PIV-1 |
4 | Influenza virus B | Influenza virus B |
1 | PIV-1 | PIV-1 |
2 | PIV-3 | PIV-3 |
1 | Human metapneumovirus | Human metapneumovirus (hMPV) |
31 | Neg | Neg |
4 | Neg | RSV A (2), RSV B (2) |
7 | Neg | HRV |
3 | Neg | HBoV |
1 | Neg | HRV, KI polyomavirus |
1 | Neg | HCoVHKU1 |
1 | Neg | HCoVNL63, Pneum jirovecii, WU polyomavirus |
1 | Neg | HCoVNL63 |
1 | Neg | PIV-3 |
4 | RSV | RSV A, HRV |
1 | RSV | RSV B, HRV |
2 | RSV | RSV A, HBoV, GAS |
1 | RSV | RSV A, HBoV |
1 | RSV | RSV B, HBoV |
2 | RSV | RSV A, HRV, KI polyomavirus |
2 | RSV | RSV B, HCoVHKU1 |
1 | HRV | HRV, HCoVNL63 |
1 | HRV | HRV, HBoV |
1 | AdV | HRV, AdV |
1 | Influenza virus B | Influenza virus B, HCoVHKU1 |
1 | RSV, AdV | RSV A, HRV, HBoV, GAS |
1 | RSV, AdV | RSV B, HRV, HBoV, GAS |
1 | RSV, AdV | RSV B, HRV, HBoV, HCoVNL63 |
1 | RSV, AdV | RSV A, GAS |
2 | RSV, AdV | RSV B |
1 | RSV, AdV | RSV A, HRV, KI polyomavirus |
1 | RSV, AdV | RSV B, HBoV |
1 | RSV,Haemophilus influenzae | RSV A |
1 | AdV | WU polyomavirus |
1 | CMV | HRV, WU polyomavirus |
1 | CMV | HRV |
1 | CMV | hMPV |
1 | Haemophilus influenzae | Neg |
1 | RSV, PIV-2 | RSV B |
1 | RSV, PIV-3 | RSV A, HBoV, HCoVHKU1,WU polyomavirus |
1 | Influenza virus B | Neg |
2 | HRV | Neg |
1 | hMPV | Neg |
2.3. Economies delivered by the tandem multiplex real-time PCR format
Target (Abbreviation) | Primer or Probe name | Sequence 5’-3’ | Size (bp) | PCR mixa |
---|---|---|---|---|
Gene target | ||||
Adenovirus (AdV) (Group B) Hexon gene | ADB-F | GACAGGATGCTTCGGAGTACCT | 91 | A-2 |
ADB-R | TTTCTAAACTTKTTYCCCAYAYTGAA | |||
ADBProbe1 | 6FAM-CACCAGACCCGGACT-MGBNFQ | |||
ADBProbe2 | 6FAM-CTGCACCAGACCCGG-MGBNFQ | |||
Bocavirus (HBoV) VP1 | BOCA-F | TGGGCCATTTAATCCACTTGA | 63 | A-2 |
BOCA-R | AATTGAGCAGCGCGATCAG | |||
BocaProbe | VIC-ATTTACAGGTTCACCGTT-MGBNFQ | |||
Bordetella species Insertion element | IS481-F | CGGATGAACACCCATAAGCA | 81 | A-5 |
IS481-R | AACTTGATGGGCGATCAATTG | |||
IS481 Probe | 6FAM-TCCTACGTCGACTCGAA-MGBNFQ | |||
B parapertussis &B bronchoseptica Pertussis toxin | BPA-F | ATCCCGCTACTGTAATCCAA | 64 | A-5 |
BPA-R | GGTACCATCGTGCGACTTT | |||
BPA Probe | 6FAM-CACGGCGCAAAC-MGBNFQ | |||
Chlamydophila pneumoniae MOMP | CPD-F | GAAGGGTTCCATGCAGTTAAGTTT | 75 | A-3 |
CPD-R | TGATGCTGATAACATCCGCATT | |||
CPD Probe | VIC-CTCAGCCAAARCTACCTACAGMGBNFQ | |||
Chlamydophila psittaci MOMP | CPSITT-F | CTCCTTACAAGCCTTGCCTGTAG | 68 | A-2 |
CPSITT-R | CCCACATAGTGCCATCGATTAA | |||
CPsittProbe | CY5.5C+CCAGC+TGAA+C+CAAG+TT-BHQ3 (LNA) | |||
Coronavirus 229E (HCoV229E) Nucleocapsid | 229E-F | CTGCCAAGAGTCTTGCTCGTT | 80 | A-6 |
229E-R | TCTTTTCCACCGTGGCTTTT | |||
229E Probe | VIC-AGAACAAAAGCATGAAATG-MGBFQ | |||
Coronavirus HKU1 (HCoVHKU1) ORF 1a/b | HKCOR-F | CCCGCAAACATGAATTTTGTT | 61 | A-7 |
HKCOR-R | CATTCATTCGCAAGGCGATA | |||
HKCoProbe | 6FAM-AATCTATCACCATGTGAA-MGBNFQ | |||
Coronavirus NL63 (HCoVNL63) Nucleocapsid | NL63-F | AACCTCGTTGGAAGCGTGTT | 61 | A-7 |
NL63-R | CGAGGACCAAAGCACTGAATAA | |||
NL63 Probe | VIC-ATTTTCCTCTCTGGTAG-MGBNFQ | |||
Coronavirus OC43 (HCoVOC43) Nucleocapsid | OC43-F | GACATGGCTGATCAAATTGCTAGT | 67 | A-6 |
OC43-R | GCTGAGGTTTAGTGGCATCCTT | |||
OC43 Probe | 6FAM-TCTGGCAAAACTTGG-MGBNFQ | |||
Equine herpesvirus 4 (EHV) Glycoprotein gB | EHV-F | GATGACACTAGCGACTTCGA | 81 | B-17 |
EHV-R | CAGGGCAGAAACCATAGACA | |||
EHV Probe | 6FAM-TTTCGCGTGCCTCCTCCAG-BHQ1 | |||
Haemophilus influenzae Serotype b capsulation locus | HINF-F | AGAAGTTTTACTGATGATATGGGTACATCT | 79 | B-14 |
HINF-R | GCTCGAAGAATGAGAAGTTTTGTG | |||
HINF Probe | 6FAM-TTCGCCATAACTTCATCT-MGBNFQ | |||
Influenza virus A Matrix [44] | FA-MATF | CTTCTAACCGAGGTCGAAACGTA | 155 | A-4 |
FA-MATR | GGTGACAGGATTGGTCTTGTCTTTA | |||
FA Probe | CALOTCAGGCCCCCTCAAAGCCGAGBHQ1 | |||
Influenza virus A H3 haemagglutinin | H3N2-F | ACGAAGTGGGAAAAGCTCAATAAT | 72 | A-11 |
H3N2-R | GGAGTGATGCATTCAGAATTGC | |||
H3HAProbe | 6FAM-ATGCACCCATTGGC-MGBNFQ | |||
Influenza virus A H1 haemagglutinin | H1N1-F | AAGCTCATGGCCCAACCA | 57 | A-12 |
H1N1-R | CCATTATGGGAGCATGATGCT | |||
H1HAProbe | 6FAM-ATACTCCGGTCACGGT-MGBNFQ | |||
Influenza virus B matrix | FBMAT-F | TGCCTACCTGCTTTMMYTRACA | 75 | A-4 |
FBMAT-R | CCRAACCAACARTGTAATTTTTCTG | |||
FB Probe | 6FAM-TGCTTTGCCTTCTCCA-MGBNFQ | |||
Influenza virus C NS1 | FLUC-F | CCTAGAACITGGGAAGAKGCR | 61 | A-4 |
FLUC-R | GCAGAATCGTYCCGTTGAA | |||
FLUCProbe | 6FAM-AGRAGCTCACMAYCTTTT-MGBNFQ | |||
Legionellalongbeachae mip gene | LLong-F | TGGTCACTGCGGCCATTA | 58 | A-3 |
LLong-R | CATCAGTTGCAGCCATTGCT | |||
LLongProbe | 6FAM-ACATTGCCAAACCCA-MGBNFQ | |||
Legionellapneumophila mip gene | LPN-F | CAATGGCTAAAGGCATGCAA | 61 | A-3 |
LPN-R | TGCTGTTCGGTTAAAGCCAAT | |||
LPN Probe | 6FAM-AGCGCCACTCATAGCGT-MGBNFQ | |||
Moraxellacatarrhalis OMP | MOR-F | TCGCCAAGGTGCRAAAATTAA | 63 | B-14 |
MOR-R | GCCGTGCTTTCGTCTTTTTC | |||
MOR Probe | VIC-ACCAATGTTGTTACCTTRCG-MGBNFQ | |||
MS-2 RNA coliphage Coat protein | MS2-F | GTCGACAATGGCGGAACTG | 66 | A-1 |
MS2-R | TTCAGCGACCCCGTTAGC | 74 | ||
MS2 Probe | CALOACGTGACTGTCGCCCCAAGCAACTT-BHQ1 | |||
Mycoplasmapneumoniae Cytadhesion P1 | MPN-F | AAGTACCACCACGACGCTCAA | 54 | A-10 |
MPN-R | TCGTCAGGGCGGGTGTAG | |||
MPN Probe | 6FAM–CGCCAGCAATTTA–MGBNFQ | |||
Parainfluenzavirus (PIV) Nucleoprotein | PF1-F | GCAAAGAGARAATGCRGATCTAG | 67 | A-8 |
PF1-R | AGCTCCGAGACATGCAGGAT | |||
PF1 Probe | 6FAMTCCATATGTCTGAAGCAATMGBNFQ | |||
PF2-F | ATTCCAGATGCTCGATCAACTATG | 65 | A-8 | |
PF2-R | TCYTCAGCTAATGCTTCRAARGC | |||
PF2 Probe | 6FAM-AGCACYTCTCCTCTGG-MGBNFQ | |||
PF3-F | CGCGCTCCWTTYATCTGTATC | 59 | A-8 | |
PF3-R | TTGCCTGGTGCGAACTCA | |||
PF3 Probe | VIC-TCAGAGATCCYATACATG-MGBNFQ | |||
PF4A-F | CACACACACAATGGGCACAA | 65 | A-9 | |
PF4A-R | GCGTATTTGGTGAGAGTTTTGAGTT | |||
PF4A Probe | VIC-CAATCCCACACTACAAC-MGBNFQ | |||
PF4B-F | CGCACACATACAATGAAAGCAA | 60 | A-9 | |
PF4B-R | TGGCGGGATTTCTGAGTTG | |||
PF4B Probe | VIC-CACTCCTGTCCCACATC-MGBNFQ | |||
Pneumocyctisjirovecii 5S rRNA | PN-F | CCATACCTCAGAGAATATACCGTATCC | 69 | A-10 |
PN-R | TACTGACGACGCCCTTCAGA | |||
PN Probe | 6FAM–TRACTTCGCAGATCG–MGBNFQ | |||
Polyomavirus VP1 | KI-F | GGTTCTGGAGCTGCCATAGC | 77 | B-16 |
KI-R | AAGAAGTGCAGCTCCCTCTGTT | |||
KI Probe | 6FAM-CCAAGGGCAGCTAAGCCTTCACCA-BHQ1 | |||
WU-F | AGTCAACCCACAAGAGTGCAAA | |||
WU-R | CAGCACGTCTACCCCTCCTTT | 63 | B-16 | |
WU Probe | VIC-CCTTCCAAAACAAGTCAG-MGBNFQ | |||
Respiratory syncytial virus A (RSV A) Nucleoprotein | RSVA-F | CAACTTCTGTCATCCAGCAAA | 77 | A-9 |
RSVA-R | TGCACATCATAATTAGGAGTATCAAT | |||
RSVAProbe | 6FAM-CACCATCCAACGGAGC-MGBNFQ | |||
Respiratory syncytial virus B (RSV B) Nucleoprotein | RSVB-F | ATTCAACGTAGTACAGGAGATAATA | 74 | A-5 |
RSVB-R | CCACATAGTTTGTTTAGGTGTTT | |||
RSVBProbe | VIC-TGACACTCCCAATTAT-MGBNFQ | |||
Group A Streptococcus speB gene | STAspeB-F | CTAAACCCTTCAGCTCTTGGTACTG | 77 | B-11 |
STAspeB-R | TTGATGCCTACAACAGCACTTTG | |||
STspBProbe | 6FAM-CGGCGCAGGCGGCTTCAAC-BHQ1 | |||
Streptococcuspneumoniae Pneumolysin gene | Pneum-F | CCACTCTTCTTGCGGTTGATC | 61 | B-14 |
Pneum-R | GCCAAACCAGGCAAATCAAT | |||
Pn Probe | 6FAM-TGCTCCGATGACTTATA-MGBNFQ |
3. Materials and Methods
3.1. Nucleic acid extraction
3.2. Primer and Probe Design
3.3. PCR
4. Conclusions
References
- van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; Wertheim-van Dillen, P.M.E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.K.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005, 79, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Drosten, C.; Gunther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguiere, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Muller, S.; Rickerts, V.; Sturmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.M.E.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.M.; Osterhaus, A.D.M.E. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Allander, T.; Tammi, M.; Eriksson, M.; Bjerkner, A.; Tivel-Lindell, A. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl Acad. Sci. USA 2005, 102, 12891–12896. [Google Scholar] [CrossRef]
- Allander, T.; Andreasson, K.; Gupta, S.; Bjerkner, A.; Bogdanovic, G.; Persson, M.A.A.; Dalianis, T.; Ramqvist, T.; Andersson, B. Identification of a third human polyomavirus. J. Virol. 2007, 81, 4130–4136. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, A.M.; Nissen, M.D.; Whiley, D.M.; Mackay, I.M.; Lambert, S.B.; Guang, W.; Brennan, D.C.; Storch, G.A.; Sloots, T.P.; Wang, D. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007, 3, e64. [Google Scholar] [CrossRef] [PubMed]
- Arden, K.E.; McErlean, P.; Nissen, M.D.; Sloots, T.P.; Mackay, I.M. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J. Med. Virol. 2006, 78, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Templeton, K.E.; Scheltinga, S.A.; van den Eeden, W.C.J.F.M.; Graffelman, A.W.; van den Broek, P.J.; Claas, E.C.J. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin. Infect. Dis. 2005, 41, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Stanley, K.K.; Szewczuk, E. Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection. Nucl. Acids Res. 2005, 33, e180. [Google Scholar] [CrossRef]
- Allard, A.; Albinsson, B.; Wadell, G. Detection of adenoviruses in stools from healthy persons and patients with diarrhea by two-step polymerase chain reaction. J. Med. Virol. 1992, 37, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Backman, A.; Johansson, B.; Olcen, P. Nested PCR optimized for detection of Bordetella pertussis in clinical nasopharyngeal samples. J. Clin. Microbiol. 1994, 32, 2544–2548. [Google Scholar] [PubMed]
- Messmer, T.O.; Skelton, S.K.; Moroney, J.F.; Daugharty, H.; Fields, B.S. Application of a nested, multiplex PCR to psittacosis outbreaks. J. Clin. Microbiol. 1997, 35, 2043–2046. [Google Scholar] [PubMed]
- Myint, S.; Johnston, S.; Sanderson, G.; Simpson, H. Evaluation of nested polymerase chain methods for the detection of human coronaviruses 229E and OC43. Mol Cell Probes. 1994, 8, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Evans, D.H. PCR detection and differentiation of influenza viruses A, B, and C strains. In Diagnostic Molecular Microbiology, Principles and Applications. Persing, D.H., Smith, T.F., Tenover, F.C., White, T.J., Eds.; 1993; ASM Press: Washington, DC, USA. [Google Scholar]
- Lindsay, D.S.; Abraham, W.H.; Fallon, R.J. Detection of mip gene by PCR for diagnosis of Legionnaires' disease. J. Clin. Microbiol. 1994, 32, 3068–3069. [Google Scholar] [PubMed]
- Williamson, J.; Marmion, B.P.; Worswick, D.A.; Kok, T.W.; Tannock, G.; Herd, R.; Harris, R.J. Laboratory diagnosis of Mycoplasma pneumoniae infection. 4. Antigen capture and PCR-gene amplification for detection of the Mycoplasma: Problems of clinical correlation. Epidem. Infect. 1992, 109, 519–537. [Google Scholar] [CrossRef]
- Echevarria, J.E.; Erdman, D.D.; Swierkosz, E.M.; Holloway, B.P.; Anderson, L.J. Simultaneous detection and identification of human parainfluenza viruses 1, 2, and 3 from clinical samples by multiplex PCR. J. Clin. Microbiol. 1998, 36, 1388–1391. [Google Scholar] [PubMed]
- Evans, R.; Joss, A.W.L.; Pennington, T.H.; Ho-Yen, D.O. The use of a nested polymerase chain reaction for detecting Pneumocystis carinii from lung and blood in rat and human infection. J. Med. Microbiol. 1995, 42, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Cubie, H.A.; Inglis, J.M.; Leslie, E.E.; Edmunds, A.T.; Totapally, B. Detection of respiratory syncytial virus in acute bronchiolitis in infants. J. Med. Virol. 1992, 38, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, R.K.; Holm, S.E.; Söderström, M. The prevalence of potential pathogenic bacteria in nasopharyngeal samples from healthy children and adults. Scand. J. Prim. Health Care. 1998, 16, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wang, L.; Fan, J.; Kraft, A.; Bose, M.E.; Tiwari, S.; Van Dyke, M.; Haigis, R.; Luo, T.; Ghosh, M.; Tang, H.; Haghnia, M.; Mather, E.L.; Weisburg, W.G.; Henrickson, K.J. Detection of 11 common viral and bacterial pathogens causing community-acquired pneumonia or sepsis in asymptomatic patients by using a multiplex reverse transcription-PCR assay with manual (enzyme hybridization) or automated (electronic microarray) detection. J. Clin. Microbiol. 2008, 46, 3063–3072. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, M.M.; Gent, J.F.; Revai, K.; Patel, J.A.; Chonmaitree, T. Microbial interactions during upper respiratory tract infections. Emerg. Infect. Dis. 2008, 14, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Bialasiewicz, S.; Whiley, D.M.; Lambert, S.B.; Jacob, K.; Bletchly, C.; Wang, D.; Nissen, M.D.; Sloots, T.P. Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J. Clin. Virol. 2008, 41, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Norja, P.; Ubillos, I.; Templeton, K.; Simmonds, P. No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J. Clin. Virol. 2007, 40, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.Y.; Yeung, A.C.M.; Tang, J.W.; Ip, M.; Chan, E.W.C.; Hui, M.; Chan, P.K.S. Rapid multiplex nested PCR for detection of respiratory viruses. J. Clin. Microbiol. 2007, 45, 3631–3640. [Google Scholar] [CrossRef] [PubMed]
- Pierangeli, A.; Gentile, M.; Di Marco, P.; Pagnotti, P.; Scagnolari, C.; Trombetti, S.; Lo Russo, L.; Tromba, V.; Moretti, C.; Midulla, F.; Antonelli, G. Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy. J. Med. Virol. 2007, 79, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Freymuth, F.; Vabret, A.; Cuvillon-Nimal, D.; Simon, S.; Dina, J.; Legrand, L.; Gouarin, S.; Petitjean, J.; Eckart, P.; Brouard, J. Comparison of multiplex PCR assays and conventional techniques for the diagnostic of respiratory virus infections in children admitted to hospital with an acute respiratory illness. J. Med. Virol. 2006, 78, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Semple, M.G.; Cowell, A.; Dove, W.; Greensill, J.; McNamara, P.S.; Halfhide, C.; Shears, P.; Smyth, R.L.; Hart, C.A. Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J. Infect. Dis. 2005, 191, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.G.; Moustaki, M.; Tsolia, M.; Bossios, A.; Astra, E.; Prezerakou, A.; Gourgiotis, D.; Kafetzis, D. Association of rhinovirus infection with increased disease severity in acute bronchiolitis. Am. J. Respir. Crit. Care Med. 2002, 165, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Andréoletti, L.; Lesay, M.; Deschildre, A.; Lambert, V.; Dewilde, A.; Wattré, P. Differential detection of rhinoviruses and enteroviruses RNA sequences associated with classical immunofluorescence assay detection of respiratory virus antigens in nasopharyngeal swabs from infants with bronchiolitis. J. Med. Virol. 2000, 61, 341–346. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, L.J.; Molijn, A.; Kleter, B.; Quint, W.; Colau, B. Highly effective detection of human papillomavirus 16 and 18 DNA by a testing algorithm combining broad-spectrum and type-specific PCR. J. Clin. Microbiol. 2006, 44, 3292–3298. [Google Scholar] [CrossRef] [PubMed]
- Grondahl, B.; Puppe, W.; Hoppe, A.; Kuhne, I.; Weigl, J.A.I.; Schmitt, H.J. Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: Feasibility study. J. Clin. Microbiol. 1999, 37, 1–7. [Google Scholar] [PubMed]
- Coiras, M.T.; Aguilar, J.C.; García, M.L.; Casas, I.; Pérez-Breña, P. Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays. J. Med. Virol. 2004, 72, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Reijans, M.; Dingemans, G.; Klaassen, C.H.; Meis, J.F.; Keijdener, J.; Mulders, B.; Eadie, K.; van Leeuwen, W.; van Belkum, A.; Horrevorts, A.M.; Simons, G. RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J. Clin. Microbiol. 2008, 46, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; Grindle, K.; Pappas, T.; Marshall, D.J.; Moser, M.J.; Beaty, E.L.; Shult, P.A.; Prudent, J.R.; Gern, J.E. High-throughput, sensitive, and accurate multiplex PCR-Microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses. J. Clin. Microbiol. 2007, 45, 2626–2634. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.; Cote, S.; Dery, P.; De Serres, G.; Bergeron, M.G. Multiplex real-time PCR assay for detection of Influenza and human respiratory syncytial viruses. J. Clin. Microbiol. 2004, 42, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Gunson, R.N.; Collins, T.C.; Carman, W.F. Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions. J. Clin. Virol. 2005, 33, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Templeton, K.E.; Scheltinga, S.A.; Beersma, M.F.C.; Kroes, A.C.M.; Claas, E.C.J. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza A and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J. Clin. Microbiol. 2004, 42, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Yip, C.C.Y.; Tsoi, H.W.; Lee, R.A.; So, L.Y.; Lau, Y.L.; Chan, K.H.; Woo, P.C.Y.; Yuen, K.Y. Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J. Clin. Microbiol. 2007, 45, 3655–3664. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; Kiesner, C.; Pappas, T.; Lee, I.; Grindle, K.; Jartti, T.; Jakiela, B.; Lemanske, R.F.; Shult, P.A.; Gern, J.E. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants . PLoS ONE 2007, 2, e966. [Google Scholar] [CrossRef] [PubMed]
- Druce, J.; Catton, M.; Chibo, D.; Minerds, K.; Tyssen, D.; Kostecki, R.; Maskill, B.; Leong-Shaw, W.; Gerrard, M.; Birch, C. Utility of a multiplex PCR assay for detecting herpesvirus DNA in clinical samples. J. Clin. Microbiol. 2002, 40, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.; Stormer, M.; Made, D.; Burkhardt, S.; Kleesiek, K. Enhanced reverse transcription-PCR assay for detection of norovirus genogroup I. J. Clin. Microbiol. 2006, 44, 2714–2720. [Google Scholar] [CrossRef] [PubMed]
- Whiley, D.M. Sloots, T. P. A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay for the detection of a broad range of influenza A subtypes, including H5N1. Diagn. Microbiol. Infect. Dis. 2005, 53, 335–337. [Google Scholar]
- Ireland, D.C.; Kent, J.; Nicholson, K.G. Improved detection of rhinoviruses in nasal and throat swabs by seminested RT-PCR. J. Med. Virol. 1993, 40, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Hyypia, T.; Auvinen, P.; Maaronen, M. Polymerase chain reaction for human picornaviruses. J. Gen. Virol. 1989, 70, 3261–3268. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chidlow, G.R.; Harnett, G.B.; Shellam, G.R.; Smith, D.W. An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens. Viruses 2009, 1, 42-56. https://doi.org/10.3390/v1010042
Chidlow GR, Harnett GB, Shellam GR, Smith DW. An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens. Viruses. 2009; 1(1):42-56. https://doi.org/10.3390/v1010042
Chicago/Turabian StyleChidlow, Glenys R., Gerry B. Harnett, Geoffrey R. Shellam, and David W. Smith. 2009. "An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens" Viruses 1, no. 1: 42-56. https://doi.org/10.3390/v1010042
APA StyleChidlow, G. R., Harnett, G. B., Shellam, G. R., & Smith, D. W. (2009). An Economical Tandem Multiplex Real-Time PCR Technique for the Detection of a Comprehensive Range of Respiratory Pathogens. Viruses, 1(1), 42-56. https://doi.org/10.3390/v1010042