Biophysical Factors Affecting Forest Cover Changes in Community Forestry: A Country Scale Analysis in Cambodia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, A. Forests, Governance, and Sustainability: Common Property Theory and its Contributions. Int. J. Commons 2007, 1, 111–136. [Google Scholar] [CrossRef]
- Bixler, R.P. From community forest management to polycentric governance: Assessing evidence from the bottom up. Soc. Nat. Resour. 2014, 27, 155–169. [Google Scholar] [CrossRef]
- Pokharel, B.K.; Branney, P.; Nurse, M.; Malla, Y.B. Community forestry: Conserving forests, sustaining livelihoods and strengthening democracy. J. For. Livelihood 2007, 6, 8–19. [Google Scholar]
- Bowler, D.E.; Buyung-Ali, L.M.; Healey, J.R.; Jones, J.P.G.; Knight, T.M.; Pullin, A.S. Does community forest management provide global environmental benefits and improve local welfare? Front. Ecol. Environ. 2012, 10, 29–36. [Google Scholar] [CrossRef]
- Newton, P.; Schaap, B.; Fournier, M.; Cornwall, M.; Rosenbach, D.W.; DeBoer, J.; Whittemore, J.; Stock, R.; Yoders, M.; Brodnig, G.; et al. Community forest management and REDD+. For. Policy Econ. 2015, 56, 27–37. [Google Scholar] [CrossRef]
- Maraseni, T.N. Selection of Non-timber Forest Species for Community and Private Plantations in the High and Low Altitude Areas of Makawanpur District, Nepal. Small-Scale For. 2008, 7, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Ellis, E.A.; Porter-Bolland, L. Is community-based forest management more effective than protected areas?: A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. For. Ecol. Manag. 2008, 256, 1971–1983. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- Pandey, S.S.; Maraseni, T.N.; Reardon-Smith, K.; Cockfield, G. Analysing foregone costs of communities and carbon benefits in small scale community based forestry practice in Nepal. Land Use Policy 2017, 69, 160–166. [Google Scholar] [CrossRef]
- Pandey, S.S.; Cockfield, G.; Maraseni, T.N. Assessing the roles of community forestry in climate change mitigation and adaptation: A case study from Nepal. For. Ecol. Manag. 2016, 360, 400–407. [Google Scholar] [CrossRef]
- Pagdee, A.; Kim, Y.; Daugherty, P.J. What makes community forest management successful: A meta-study from community forests throughout the world. Soc. Nat. Resour. 2006, 19, 33–52. [Google Scholar] [CrossRef]
- Baynes, J.; Herbohn, J.; Smith, C.; Fisher, R.; Bray, D. Key factors which influence the success of community forestry in developing countries. Glob. Environ. Chang. 2015, 35, 226–238. [Google Scholar] [CrossRef]
- Agrawal, A.; Chhatre, A. Explaining success on the commons: Community forest governance in the Indian Himalaya. World Dev. 2006, 34, 149–166. [Google Scholar] [CrossRef]
- Nagendra, H. Drivers of reforestation in human-dominated forests. Proc. Natl. Acad. Sci. USA 2007, 104, 15218–15223. [Google Scholar] [CrossRef] [PubMed]
- Chhatre, A.; Agrawal, A. Forest commons and local enforcement. Proc. Natl. Acad. Sci. USA 2008, 105, 13286–13291. [Google Scholar] [CrossRef] [PubMed]
- Persha, L.; Agrawal, A.; Chhatre, A. Social and ecological synergy: Local rulemaking, forest livelihoods, and biodiversity conservation. Science 2011, 331, 1606–1608. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, W.; Vina, A.; Tuanmu, M.N.; He, G.; Dietz, T.; Liu, J. Nonlinear effects of group size on collective action and resource outcomes. Proc. Natl. Acad. Sci. USA 2013, 110, 10916–10921. [Google Scholar] [CrossRef] [PubMed]
- Chhatre, A.; Agrawal, A. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons. Proc. Natl. Acad. Sci. USA 2009, 106, 17667–17670. [Google Scholar] [CrossRef] [PubMed]
- Forestry Administration. Statistics of Community Forestry 2017; Forestry Administration: Phnom Penh, Cambodia, 2017.
- Ministry of Agriculture Forestry and Fishery (MAFF). National Forest Program 2010–2029; MAFF: Phnom Penh, Cambodia, 2010.
- Forestry Administration. Statistics of Community Forestry 2015; Forestry Administration: Phnom Penh, Cambodia, 2015.
- Sokh, H.; Iida, S. Community forestry models in Southeast Asia and Cambodia: A comparative study. J. Faculty Agric.-Kyushu Univ. Jpn. 2001, 46, 113–121. [Google Scholar]
- Sunderlin, W.D. Poverty alleviation through community forestry in Cambodia, Laos, and Vietnam: An assessment of the potential. For. Policy Econ. 2006, 8, 386–396. [Google Scholar] [CrossRef]
- Lambrick, F.H.; Brown, N.D.; Lawrence, A.; Bebber, D.P. Effectiveness of community forestry in prey long forest, Cambodia. Conserv. Biol. 2014, 28, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Prowse, M. Collective action on forest governance: An institutional analysis of the Cambodian community forest system. For. Policy Econ. 2017, 83, 70–79. [Google Scholar] [CrossRef]
- Nguon, P.; Kulakowski, D. Natural forest disturbances and the design of REDD+ initiatives. Environ. Sci. Policy 2013, 33, 332–345. [Google Scholar] [CrossRef]
- National Institute of Statistics (NIS). 2008 Census Map Layers and Databases; National Institute of Statistics: Phnom Penh, Cambodia, 2010.
- National Institute of Statistics (NIS). Statistical Year Book 2011; National Institute of Statistics: Phnom Penh, Cambodia, 2012.
- Forestry Administration. Statistics of Community Forestry 2010; Forestry Administration: Phnom Penh, Cambodia, 2010.
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C. Global Forest Change. 2018. Available online: https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html (accessed on 20 April 2018).
- Davis, K.F.; Yu, K.; Rulli, M.C.; Pichdara, L.; D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 2015, 8, 772–775. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Fox, J.; Weisberg, S.; Price, B.; Adler, D.; Bates, D.; Baud-Bovy, G.; Bolker, B.; Ellison, S.; Firth, D.; Friendly, M.; et al. Package ‘Car’; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://cran.r-project.org/web/packages/car/car.pdf (accessed on 15 May 2018).
- Top, N.; Mizoue, N.; Kai, S.; Nakao, T. Variation in woodfuel consumption patterns in response to forest availability in Kampong Thom Province, Cambodia. Biomass Bioenergy 2004, 27, 57–68. [Google Scholar] [CrossRef]
- Top, N.; Mizoue, N.; Ito, S.; Kai, S.; Nakao, T.; Ty, S. Effects of population density on forest structure and species richness and diversity of trees in Kampong Thom Province, Cambodia. Biodivers. Conserv. 2009, 18, 717–738. [Google Scholar] [CrossRef]
- Popradit, A.; Srisatit, T.; Kiratiprayoon, S.; Yoshimura, J.; Ishida, A.; Shiyomi, M.; Murayama, T.; Chantaranothai, P.; Outtaranakorn, S.; Phromma, I. Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep. 2015, 5, 14689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Htun, N.Z.; Mizoue, N.; Yoshida, S. Changes in determinants of deforestation and forest degradation in Popa Mountain Park, Central Myanmar. Environ. Manag. 2013, 51, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.F.; Carr, D.L. Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon. Glob. Planet. Chang. 2005, 47, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.L.; Hilborn, R.; Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 2011, 470, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [PubMed]
Variables | Unit | Mean | Median | Min. | Max. |
---|---|---|---|---|---|
Objective variable | |||||
Forest loss (1) | Binary (0,1) | ||||
No forest loss (0) | |||||
Explanatory variables | |||||
Group size | Number of households | 334.3 | 219.0 | 30.0 | 1663.0 |
Forest size | ha | 1995.3 | 1395.1 | 7.0 | 6112.8 |
Elevation | m | 88.5 | 73.0 | 0.0 | 589.0 |
Slope | % | 4.1 | 3.0 | 0.0 | 43.0 |
Distance to road | m | 4645.6 | 3679.2 | 0.1 | 17,512.6 |
Distance to market | m | 20,024.5 | 17,734.0 | 1449.5 | 45,340.5 |
Distance to village | m | 4480.6 | 3898.8 | 34.1 | 12,786.8 |
Distance to CF boundary | m | 524.2 | 417.3 | 0.0 | 3150.7 |
Coefficients | Estimate | Std. Error | z Value | Pr (>|z|) |
---|---|---|---|---|
(Intercept) | −2.718 | 0.3070 | −8.855 | <0.0001 |
Group size (households) | −0.0008990 | 0.0007648 | −1.175 | 0.240 |
Forest size (ha) | 0.001270 | 0.0002036 | 6.241 | <0.0001 |
Elevation (m) | −0.009288 | 0.0003745 | −24.802 | <0.0001 |
Slope (%) | −0.01822 | 0.003951 | −4.61 | <0.0001 |
Distance to road (m) | 0.00008554 | 0.00001012 | 8.456 | <0.0001 |
Distance to market (m) | −0.00002074 | 0.000006543 | −3.17 | 0.002 |
Distance to village (m) | −0.0001739 | 0.00001013 | −17.167 | <0.0001 |
Distance to CF boundary (m) | −0.0003640 | 0.00002883 | −12.626 | <0.0001 |
Models | Number of Variables | AIC | △AIC 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S.Group | S.Forest | Elevation | Slope | D.road | D.market | D.village | D.boundary | 8 | 46,920 | 0 |
S.Forest | Elevation | Slope | D.road | D.market | D.village | D.boundary | 7 | 46,920 | 0 | |
S.Group | Elevation | Slope | D.road | D.market | D.village | D.boundary | 7 | 46,950 | 30 | |
S.Group | S.Forest | Slope | D.road | D.market | D.village | D.boundary | 7 | 47,590 | 670 | |
S.Group | S.Forest | Elevation | D.road | D.market | D.village | D.boundary | 7 | 46,940 | 20 | |
S.Group | S.Forest | Elevation | Slope | D.market | D.village | D.boundary | 7 | 46,990 | 70 | |
S.Group | S.Forest | Elevation | Slope | D.road | D.village | D.boundary | 7 | 46,930 | 10 | |
S.Group | S.Forest | Elevation | Slope | D.road | D.market | D.boundary | 7 | 47,210 | 290 | |
S.Group | S.Forest | Elevation | Slope | D.road | D.market | D.village | 7 | 47,080 | 160 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonn, P.; Mizoue, N.; Ota, T.; Kajisa, T.; Yoshida, S. Biophysical Factors Affecting Forest Cover Changes in Community Forestry: A Country Scale Analysis in Cambodia. Forests 2018, 9, 273. https://doi.org/10.3390/f9050273
Lonn P, Mizoue N, Ota T, Kajisa T, Yoshida S. Biophysical Factors Affecting Forest Cover Changes in Community Forestry: A Country Scale Analysis in Cambodia. Forests. 2018; 9(5):273. https://doi.org/10.3390/f9050273
Chicago/Turabian StyleLonn, Pichdara, Nobuya Mizoue, Tetsuji Ota, Tsuyoshi Kajisa, and Shigejiro Yoshida. 2018. "Biophysical Factors Affecting Forest Cover Changes in Community Forestry: A Country Scale Analysis in Cambodia" Forests 9, no. 5: 273. https://doi.org/10.3390/f9050273