High Mortality and Low Net Change in Live Woody Biomass of Karst Evergreen and Deciduous Broad-Leaved Mixed Forest in Southwestern China
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Mortality and Recruitment
3.2. ANPPlw
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rees, M.; Condit, R.; Crawley, M.; Pacala, S.; Tilman, D. Long-term studies of vegetation dynamics. Science 2001, 293, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.B. Retrospective studies. In Long-Term Studies in Ecology; Likens, D.E., Ed.; Springer: New York, NY, USA, 1989; pp. 3–20. [Google Scholar]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long term studies. In Long-Term Studies in Ecology; Likens, G.E., Ed.; Springer: New York, NY, USA, 1989; pp. 110–135. [Google Scholar]
- Yang, H.C.; Xie, H.S. Study on the reconstruction of disturbance history of Pinus koraiensis mixed forest in Changbai Mountain. Acta Phytoecol. Sin. 1994, 18, 201–208. (In Chinese) [Google Scholar]
- Hara, T. A model for mortality in a self-thinning plant population. Ann. Bot. 1985, 55, 667–674. [Google Scholar] [CrossRef]
- Kenkel, N.C.; Hendrie, M.L.; Bella, I.E. A long-term study of Pinus banksiana population dynamics. J. Veg. Sci. 1997, 8, 241–254. [Google Scholar] [CrossRef]
- Condit, R. Ecological implications of changes in drought patterns: Shifts in forest composition in Panama. Clim. Chang. 1998, 39, 413–427. [Google Scholar] [CrossRef]
- Umeki, K.; Kikuzawa, K. Long-term growth dynamics of natural forests in Hokkaido, northern Japan. J. Veg. Sci. 1999, 10, 815–824. [Google Scholar] [CrossRef]
- Hou, J.H.; Huang, J.H.; Ma, K.P. Eleven-year population growth dynamics of major species in a Quercus Liaotungensis forest in the Dongling mountains, northern China. Acta Phytoecol. Sin. 2004, 28, 609–615. (In Chinese) [Google Scholar]
- Condit, R. Research in large, long-term tropical forest plots. Trends Ecol. Evol. 1995, 10, 18–22. [Google Scholar] [CrossRef]
- Takahashi, K.; Mitsuishi, D.; Uemura, S.; Suzuki, J.I.; Hara, T. Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan. For. Ecol. Manag. 2003, 174, 39–50. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Wright, S.J.; Abu Salim, K.; Almeyda Zambrano, A.M.; Alonso, A.; Baltzer, J.L.; et al. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 2015, 21, 528–549. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Sanders, N.J. Multi-scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography 2012, 35, 1072–1082. [Google Scholar] [CrossRef]
- Manchester, S.R.; Chen, Z.D.; Lu, A.M.; Uemura, K. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J. Syst. Evol. 2009, 47, 1–42. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.N.; Li, Y.D.; Wang, B.S. Tree population mortality, recruitment and growth during a 15-year period of secondary succession in tropical montane rainforests at Jianfengling on Hainan Island, China. Acta Phytoecol. Sin. 2000, 24, 710–717. (In Chinese) [Google Scholar]
- Peng, S.L.; Fang, W. Studies on dynamics of Castanopsis chinensis and Schima Superba population in forest succession of Dinghushan mountain. Acta Phytoecol. Sin. 1995, 19, 311–318. (In Chinese) [Google Scholar]
- Peng, S.L.; Fang, W.; Ren, H.; Huang, Z.L.; Kong, G.H.; Yu, Q.F.; Zhang, D.Q. The dynamics on organization in the successional process of Dinghushan Cryptocarya community. Acta Phytoecol. Sin. 1998, 21, 245–249. (In Chinese) [Google Scholar]
- Wang, Y.H.; Mi, X.C.; Chen, S.W.; Li, M.H.; Yu, M.J. Regeneration dynamics of major tree species during 2002–2007 in a subtropical evergreen broad-leaved forest in Gutianshan nature reserva in east China. Biodivers. Sci. 2011, 19, 178–189. (In Chinese) [Google Scholar]
- Chen, X.R.; Chen, Y.Y.; Luo, Z.R.; Ding, B.Y. A 5-year mid-mountain subtropical evergreen broad-leaved forest study in Baishanzu, east China. J. Zhejiang A F Univ. 2013, 30, 821–829. (In Chinese) [Google Scholar]
- Jin, Y.; Chen, J.H.; Mi, X.C.; Ren, H.B.; Ma, K.P.; Yu, M.J. Impacts of the 2008 ice storm on structure and composition of an evergreen broad-leaved forest community in eastern China. Biodivers. Sci. 2015, 23, 610–618. (In Chinese) [Google Scholar] [CrossRef][Green Version]
- Ge, J.L.; Xiong, G.M.; Deng, L.Q.; Zhao, C.M.; Shen, G.Z.; Xie, Z.Q. Community dynamics of a montane Fagus engleriana-Cyclobalanopsis multiervis mixed forest in Shennongjia, Hubei, China. Biodivers. Sci. 2012, 20, 643–653. (In Chinese) [Google Scholar]
- Wu, G.; Dai, L.M. Structure and dynamics of a temperate deciduous-conifer mixed forest in Changbai Mountain. Acta Ecol. Sin. 1998, 18, 470–477. (In Chinese) [Google Scholar]
- Wang, L.W.; Li, B.H.; Ye, J.; Bai, X.J.; Yuan, Z.Q.; Xing, D.L.; Lin, F.; Shi, S.; Wang, X.G.; Hao, Z.Q. Dynamics of short-term tree mortality in broad-leaved Korean pine (Pinus koraiensis) mixed forest in the Changbai mountains. Biodivers. Sci. 2011, 19, 260–270. (In Chinese) [Google Scholar]
- Wang, H.J. Community Dynamic and Influencing Factors of 8 ha Dynamics Plots in Picea schrenkiana Forest in Tianshan Mountains. Master’s Thesis, Xinjiang University, Ürümqi, China, 2016. (In Chinese). [Google Scholar]
- Editorial Committee of Vegetation Map of the People’s Republic of China (ECVMC), Chinese Academy of Sciences. Vegetation Map of the People’s Republic of China (1:1 000 000); Geology Press: Xi’an, China, 2007. (In Chinese) [Google Scholar]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Liu, C.C.; Wei, Y.F.; Liu, Y.G.; Guo, K. Biomass of canopy and shrub layers of karst forest in Puding, Guizhou, China. Chin. J. Plant Ecol. 2009, 33, 698–705. (In Chinese) [Google Scholar]
- Liu, Y.G.; Liu, C.C.; Wang, S.J.; Guo, K.; Yang, J.; Zhang, X.S.; Li, G.Q. Organic carbon storage in four ecosystem types in the karst region of southwestern China. PLoS ONE 2013, 8, e56443. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Liu, Y.G.; Guo, K.; Wang, S.J.; Liu, H.M.; Zhao, H.W.; Qiao, X.G.; Hou, D.J.; Li, S.B. Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agric. Ecosyst. Environ. 2016, 235, 91–100. [Google Scholar] [CrossRef]
- Liu, L.B.; Wu, Y.Y.; Hu, G.; Zhang, Z.H.; Cheng, A.Y.; Wang, S.J.; Ni, J. Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou province, southwestern China: A comprehensive inventory of a 2 ha plot. Silva Fennica 2016, 50, 1492. [Google Scholar] [CrossRef]
- Guo, K.; Liu, C.C.; Dong, M. Ecological adaptation of plants and control of rocky-desertification on karst region of southwest China. Chin. J. Plant Ecol. 2011, 35, 991–999. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hu, G.; Zhu, J.D.; Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 2012, 24, 498–506. [Google Scholar]
- Zhang, Z.H.; Hu, G.; Zhu, J.D.; Ni, J. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. J. Plant Ecol. 2013, 6, 131–140. [Google Scholar] [CrossRef]
- Ni, J.; Luo, D.H.; Xia, J.; Zhang, Z.H.; Hu, G. Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth 2015, 6, 799–810. [Google Scholar] [CrossRef]
- Wen, L.; Song, T.Q.; Du, H.; Wang, K.L.; Peng, W.X.; Zeng, F.P.; Zeng, Z.X.; He, T.G. The succession characteristics and its driving mechanism of plant community in karst region, southwest China. Acta Ecol. Sin. 2015, 35, 5822–5833. (In Chinese) [Google Scholar] [CrossRef][Green Version]
- Murphy, P.G.; Luge, A.E. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 1986, 18, 89–96. [Google Scholar] [CrossRef]
- McLaren, K.P.; McDonald, M.A. Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica. For. Ecol. Manag. 2003, 180, 99–111. [Google Scholar] [CrossRef]
- RuizJaé, M.C.; Aide, T.M. Vegetation structure, species diversity and ecosystem processes as measures of restoration success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar]
- Felfili, J.M.; Nascimento, A.R.T.; Fagg, C.W.; Meirelles, E.M. Floristic composition and community structure of a seasonally deciduous forest on limestone outcrops in Central Brazil. Revista Brasileira De Botânica 2007, 30, 611–621. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Wei, L.M.; Chen, Z.R.; Zhang, C.G. A preliminary study on biomass components of karst forest in Maolan of Guizhou province, China. Acta Phytoecol. Sin. 1995, 19, 358–367. (In Chinese) [Google Scholar]
- Ni, J.; Xu, H.Y.; Liu, L.B. Low net primary productivity of dominant tree species in a karst forest, southwestern China: First evidence from tree ring width and girth increment. Acta Geochim. 2017, 36, 482–485. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, X.S.; Scurlock, J.M.O. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Ann. For. Sci. 2001, 58, 351–384. [Google Scholar] [CrossRef]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulze, E.D.; Wingate, L.; Matteucci, G.; et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Chang. Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef]
- Liu, L.B.; Yang, H.M.; Xu, Y.; Guo, Y.M.; Ni, J. Forest biomass and net primary productivity in southwestern China: A meta-analysis focusing on environmental driving factors. Forests 2016, 7, 173. [Google Scholar] [CrossRef]
- Editorial Board of “The Forest of Guizhou”. The Forest of Guizhou; Guizhou Science and Technology Publishing House: Guiyang, China, 1992. [Google Scholar]
- National Development and Reform Commission. Comprehensive Planing Brief of Rocky Desertification in Karst Area (Year 2006–2015); National Development and Reform Commission: Beijing, China, 2008. (In Chinese)
- Chen, Q.H. Flora Guizhouensis; Guizhou Science and Technology Publishing House: Guiyang, China, 1982–2004. (In Chinese) [Google Scholar]
- Harcombe, P.A.; Marks, P.L. Five years of tree death in a Fagus-Magnolia forest. Oecologia 1983, 57, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, P.A. Tree Life Table. Simple birth, growth, and death data encapsu late life histories and ecological roles. BioScience 1987, 37, 557–574. [Google Scholar] [CrossRef]
- Nakashizuka, T. Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest. J. Veg. Sci. 1991, 2, 413–418. [Google Scholar] [CrossRef]
- Nakashizuka, T.; Iida, S.; Tanaka, H.; Shibata, M.; Abe, S.; Masaka, T.; Niiyama, K. Community dynamics of Ogawa Forest Reserve, a species rich deciduous forest, central Japan. Vegetatio 1992, 103, 105–112. [Google Scholar]
- Lewis, S.L.; Phillips, O.L.; Sheil, D.; Vinceti, B.; Baker, T.R.; Brown, S.; Graham, A.W.; Higuchi, N.; Hilbert, D.W.; Laurance, W.F.; et al. Tropical forest tree mortality, recruitment and turnover rate: Calculation, interpretation and comparison when census intervals vary. J. Ecol. 2004, 92, 929–944. [Google Scholar] [CrossRef]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.H.; Luo, Y.; Reich, P.B.; Searle, E.B.; Biswas, S.R. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. Ecol. Lett. 2016, 19, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Condit, R.; Hubbell, S.P.; Foster, R.B. Short-term dynamics of a neotropical forest. BioScience 1992, 42, 822–828. [Google Scholar] [CrossRef]
- Miura, M.; Manabe, T.; Nishimura, N.; Yamamoto, S. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, southwestern Japan: A 7-year study of a 4-ha plot. J. Ecol. 2001, 89, 841–849. [Google Scholar] [CrossRef]
- Ayyappan, N.; Parthasarathy, N. Short-term changes in tree population in a tropical evergreen forest at Varagalaiar, western Ghats, India. Biodivers. Conserv. 2004, 13, 1843–1851. [Google Scholar] [CrossRef]
- Werneck, M.D.S.; Franceschinelli, E.V. Dynamics of a dry forest fragment after the exclusion of human disturbance in southeastern Brazil. Plant Ecol. 2004, 174, 339–349. [Google Scholar] [CrossRef]
- Monserud, R.A.; Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 1999, 113, 109–123. [Google Scholar] [CrossRef]
- Lorimer, C.G.; Dahir, S.E.; Nordheim, E.V. Tree mortality rates and longevity in mature and old-growth hemlock-hardwood forests. J. Ecol. 2001, 89, 960–971. [Google Scholar] [CrossRef]
- Umeki, K. Tree mortality of five major species on Hokkaido island, northern Japan. Ecol. Res. 2002, 17, 575–589. [Google Scholar] [CrossRef]
- Coomes, D.A.; Duncan, R.P.; Allen, R.B.; Truscott, J. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 2003, 6, 980–989. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 2007, 95, 27–40. [Google Scholar] [CrossRef]
- Chao, K.J.; Phillips, O.L.; Gloor, E.; Monteagudo, A.; Torres-Lezama, A. Growth and wood density predict tree mortality in Amazon forests. J. Ecol. 2008, 96, 281–292. [Google Scholar] [CrossRef]
- Guarin, A.; Taylor, A.H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Purves, D.W.; Lichstein, J.W.; Strigul, N.; Pacala, S.W. Predicting and understanding forest dynamics using a simple tractable model. Proc. Natl. Acad. Sci. USA 2008, 105, 17018–17022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, D.Z.; Shi, J.H.; Li, L.; Wei, S.G.; Li, J. Dynamics and causes of woody plant death in the monsoon evergreen broad-leaved forest in Dinghushan Nature Reserve. Acta Ecol. Sin. 2006, 26, 2457–2462. [Google Scholar]
- Condit, R.; Ashton, P.S.; Manokaran, N.; LaFrankie, J.V.; Hubbell, S.P.; Foster, R.B. Dynamics of the forest communities at Pasoh and Barro Colorado: Comparing two 50-ha plots. Philos. Trans. Biol. Sci. 1999, 354, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, D.; Nishimura, N.; Yamamoto, S. Dynamics of major conifer and deciduous broad-leaved tree species in an old-growth Chamaecyparis obtusa forest, central Japan. For. Ecol. Manag. 2002, 159, 133–144. [Google Scholar] [CrossRef]
- Gomes, E.P.; Mantovani, W.; Kageyama, P.Y. Mortality and recruitment of trees in a secondary montane rain forest in southeastern Brazil. Braz. J. Biol. 2003, 63, 47–60. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, Z.C.; Hao, Z.Q.; Ye, J.; Lin, F.; Yuan, Z.Q.; Xing, D.L.; Shi, S.; Wang, X.G. Short-term death dynamics of trees in natural secondary poplar-birch forest in Changbai Mountains of Northeast China. Chin. J. Appl. Ecol. 2013, 24, 303–310. (In Chinese) [Google Scholar]
- Luo, T.X. Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models; The Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Park, B.B.; Yanai, R.D.; Vadeboncoeur, M.A.; Hamburg, S.P. Estimating root biomass in rocky soils using pits, cores, and allometric equations. Soil Sci. Soc. Am. J. 2007, 71, 206–213. [Google Scholar] [CrossRef]
- Luo, D.H. Biomass and Net Primary Productivity in Different Successional Stages of Karst Vegetation in Maolan, Guizhou Province, SW China. Master’s Thesis, East China Normal University, Shanghai, China, 2009. (In Chinese). [Google Scholar]
- Zhang, Z.H. Ecological Research on Population and Community Stability in Karst Forest Vegetation. Ph.D. Thesis, East China Normal University, Shanghai, China, 2010. (In Chinese). [Google Scholar]
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.D.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Köhl, M.; Lasco, R.; Cifuentes, M.; Jonsson, Ö.; Korhonen, K.T.; Mundhenk, P.; de Jesus Navar, J.; Stinson, G. Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. For. Ecol. Manag. 2015, 352, 21–34. [Google Scholar] [CrossRef]
- Liu, Y.G.; Liu, C.C.; Wei, Y.F.; Liu, Y.G.; Guo, K. Species composition and community structure at different vegetation successional stages in Puding, Guizhou province, China. Chin. J. Plant Ecol. 2011, 35, 1009–1018. (In Chinese) [Google Scholar]
Species | Evergreen/Deciduous | Abundance | Net Change | Death | Percent of Death (%) | Recruitment | |
---|---|---|---|---|---|---|---|
2012 | 2015 | ||||||
Trees | |||||||
Lithocarpus confinis Huang | Evergreen | 4346 | 3749 | −597 | 888 | 20.4 | 291 |
Platycarya strobilacea Sieb. | Deciduous | 3062 | 2654 | −408 | 464 | 15.2 | 56 |
Machilus cavaleriei H. Lév. | Evergreen | 2340 | 2004 | −336 | 411 | 17.6 | 75 |
Itea yunnanensis Franch. | Evergreen | 1869 | 1600 | −269 | 304 | 16.3 | 35 |
Carpinus pubescens Burkill | Deciduous | 705 | 702 | −3 | 23 | 3.3 | 20 |
Pittosporum brevicalyx (Oliv.) | Evergreen | 630 | 656 | 26 | 14 | 2.2 | 40 |
Lindera communis Hemsl. | Evergreen | 605 | 588 | −17 | 42 | 6.9 | 25 |
Celtis sinensis Pers. | Deciduous | 464 | 475 | 11 | 13 | 2.8 | 24 |
Ilex corallina Franch. | Evergreen | 308 | 287 | −21 | 33 | 10.7 | 12 |
Rhamnella franguloides (Maxim.) | Deciduous | 194 | 179 | −15 | 17 | 8.8 | 2 |
Fraxinus chinensis Roxb. | Deciduous | 154 | 156 | 2 | 8 | 5.2 | 10 |
Toona sinensis (A. Juss.) Roem. | Deciduous | 80 | 72 | −8 | 10 | 12.5 | 2 |
Cinnamomum bodinieri Levl. | Evergreen | 56 | 46 | −10 | 11 | 19.6 | 1 |
Machilus microcarpa Hemsl. | Evergreen | 47 | 47 | 0 | 1 | 2.1 | 1 |
Eriobotrya japonica (Thunb.) Lindl. | Evergreen | 43 | 37 | −6 | 7 | 16.3 | 1 |
Photinia tushanensis Yu | Evergreen | 37 | 36 | −1 | 3 | 8.1 | 2 |
Cerasus scopulorum (Koehne) Yu et Li | Deciduous | 31 | 27 | −4 | 5 | 16.1 | 1 |
Albizia julibrissin Durazz. | Deciduous | 24 | 21 | −3 | 4 | 16.7 | 1 |
Diospyros kaki Thunb. | Deciduous | 24 | 22 | −2 | 2 | 8.3 | 0 |
Ligustrum lucidum Ait. | Evergreen | 21 | 18 | −3 | 7 | 33.3 | 4 |
Ilex macrocarpa Oliv. | Deciduous | 18 | 16 | −2 | 2 | 11.1 | 0 |
Corylus heterophylla Fisch. | Deciduous | 13 | 8 | −5 | 5 | 38.5 | 0 |
Other tree species | 19 | 17 | −2 | 2 | 10.5 | 0 | |
Shrubs | |||||||
Stachyurus obovatus (Rehd.) | Evergreen | 581 | 498 | −83 | 132 | 22.7 | 49 |
Zanthoxylum dimorphophyllum Hemsl. | Evergreen | 413 | 452 | 39 | 13 | 3.1 | 52 |
Rhamnus heterophylla Oliv. | Evergreen | 221 | 195 | −26 | 53 | 24.0 | 27 |
Mahonia eurybracteata Fedde subsp. Ganpinensis (Levl.) Ying et Burff. | Evergreen | 83 | 95 | 12 | 1 | 1.2 | 13 |
Cotoneaster dielsianus Pritz. | Deciduous | 23 | 18 | −5 | 6 | 26.1 | 1 |
Rhamnus leptophylla Schneid. | Deciduous | 14 | 5 | −9 | 9 | 64.3 | 0 |
Zanthoxylum calcicola Huang | Evergreen | 14 | 14 | 0 | 0 | 0.0 | 0 |
Pyracantha fortuneana (Maxim.) Li | Evergreen | 13 | 9 | −4 | 4 | 30.8 | 0 |
Ligustrum sinense Lour. | Deciduous | 12 | 14 | 2 | 1 | 8.3 | 3 |
Other shrub species | 18 | 8 | −10 | 10 | 55.6 | 0 | |
Lianas | |||||||
Dallergia hancai Benth | Deciduous | 105 | 97 | −8 | 13 | 12.4 | 5 |
Rosa cymosa Tratt. | Deciduous | 57 | 48 | −9 | 10 | 17.5 | 1 |
Clematis uncinata Champ. | Evergreen | 47 | 23 | −24 | 24 | 51.1 | 0 |
Sageretia hamosa (Wall.) Brongn. | Evergreen | 35 | 34 | −1 | 2 | 5.7 | 1 |
Millettia dielsiana Harms | Evergreen | 21 | 19 | −2 | 2 | 9.5 | 0 |
Periploca forrestii Schltr. | Evergreen | 20 | 18 | −2 | 2 | 10.0 | 0 |
Embelia laeta (L.) Mez | Evergreen | 17 | 15 | −2 | 4 | 23.5 | 2 |
Rosa odorata (Andr.) Sweet | Evergreen | 17 | 14 | −3 | 3 | 17.6 | 0 |
Other liana species | 20 | 10 | −10 | 13 | 65.0 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ni, J.; Zhong, Q.; Hu, G.; Zhang, Z. High Mortality and Low Net Change in Live Woody Biomass of Karst Evergreen and Deciduous Broad-Leaved Mixed Forest in Southwestern China. Forests 2018, 9, 263. https://doi.org/10.3390/f9050263
Liu L, Ni J, Zhong Q, Hu G, Zhang Z. High Mortality and Low Net Change in Live Woody Biomass of Karst Evergreen and Deciduous Broad-Leaved Mixed Forest in Southwestern China. Forests. 2018; 9(5):263. https://doi.org/10.3390/f9050263
Chicago/Turabian StyleLiu, Libin, Jian Ni, Qiaolian Zhong, Gang Hu, and Zhonghua Zhang. 2018. "High Mortality and Low Net Change in Live Woody Biomass of Karst Evergreen and Deciduous Broad-Leaved Mixed Forest in Southwestern China" Forests 9, no. 5: 263. https://doi.org/10.3390/f9050263
APA StyleLiu, L., Ni, J., Zhong, Q., Hu, G., & Zhang, Z. (2018). High Mortality and Low Net Change in Live Woody Biomass of Karst Evergreen and Deciduous Broad-Leaved Mixed Forest in Southwestern China. Forests, 9(5), 263. https://doi.org/10.3390/f9050263