Long-Term Effect of Prescribed Burning Regimes and Logging on Coarse Woody Debris in South-Eastern Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Coarse Woody Debris and Hollow Surveys
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bunnell, F.L.; Houde, I. Down wood and biodiversity—Implications to forest practices. Environ. Rev. 2010, 18, 397–421. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Claridge, A.W.; Gilmore, A.M.; Micheal, D.; Lindenmayer, B.D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pac. Conserv. Biol. 2002, 8, 121–140. [Google Scholar] [CrossRef]
- Graham, R.T.; Harvey, A.E.; Jurgensen, M.F.; Jain, T.B.; Tonn, J.R.; Pagedumroese, D.S. Managing Coarse Woody Debris in Forests of the Rocky Mountains. USDA For. Serv. Intermt. Res. Stn. Res. Pap. 1994, 1–13. [Google Scholar] [CrossRef]
- Hollis, J.J.; Anderson, W.R.; McCaw, W.L.; Cruz, M.G.; Burrows, N.D.; Ward, B.; Tolhurst, K.G.; Gould, J.S. The effect of fireline intensity on woody fuel consumption in southern Australian ecualypt forest fires. Aust. For. 2010, 74, 81–96. [Google Scholar] [CrossRef]
- Hyde, J.C.; Smith, A.M.S.; Ottmar, R.D.; Alvardo, E.C.; Morgan, P. The combustion of sound and rotten coarse woody debris: A review. Int. J. Wildland Fire 2011, 20, 163–174. [Google Scholar] [CrossRef]
- Dickman, C.R. Use of trees by ground-dwelling mammals: Implications for management. Conserv. Aust. For. Fauna 1991, 125–136. [Google Scholar]
- Webb, G.A. Habitat Use and Activity Patterns in Some Southeastern Australian Skinks; Surrey Beatty: Sydney, NSW, Australia; Royal Zoological Society of NSW: Mosman, NSW, Australia, 1985. [Google Scholar]
- Aponte, C.; Tolhurst, K.G.; Bennett, L.T. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest. Ecol. Appl. 2014, 24, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.; Bradstock, R.A.; Tasker, E.M.; Whelan, R.J. Impact of fire regimes, logging and topography on hollows in fallen logs in eucalypt forest of south eastern Australia. Biol. Conserv. 2012, 149, 23–31. [Google Scholar] [CrossRef]
- Vanderwel, M.C.; Thorpe, H.C.; Caspersen, J.P. Contributions of harvest slash to maintaining downed woody debris in selection-managed forests. Can. J. For. Res. 2010, 40, 1680–1685. [Google Scholar] [CrossRef]
- Whitford, K.R.; Williams, M.R. Survival of jarrah (Eucalyptus marginata Sm.) and marri (Corymbia calophylla Lindl.) Habitat trees retained after logging. For. Ecol. Manag. 2001, 146, 181–197. [Google Scholar] [CrossRef]
- Inions, G.B.; Tanton, M.T.; Davey, S.M. Effect of Fire on the Avaliability of Hollows in Trees Used by the Common Brushtail Possum, Trichosurus vulpecula Kerr, 1792, and the Ringtail Possum, Pseudocheirus peregrinus Boddaerts, 1785. Aust. Wildland Res. 1989, 16, 449–458. [Google Scholar] [CrossRef]
- Mackowski, C.M. The Ontogeny of Hollows in Blackbutt (Eucalyptus Pilularis) and Its Relevance to the Management of Forests for Possums, Gliders and Timber; Possums and gliders; Surrey Beatty: Sydney, NSW, Australia, 1984. [Google Scholar]
- Remm, J.; Lõhmus, A. Tree cavities in forests—The broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 2011, 262, 579–585. [Google Scholar] [CrossRef]
- McLean, C.M.; Bradstock, R.; Price, O.; Kavanagh, R.P. Tree hollows and forest stand structure in Australian warm temperate Eucalyptus forests are adversely affected by logging more than wildfire. For. Ecol. Manag. 2015, 341, 37–44. [Google Scholar] [CrossRef]
- Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest. For. Ecol. Manag. 2005, 208, 383–397. [Google Scholar] [CrossRef]
- Grigg, A.H.; Steele, A.J. The longevity of constructed log pile fauna habitats in restored bauxite mines in relation to recurrent wildfire in the jarrah forest of Western Australia. Ecol. Manag. Restor. 2011, 12, 138–140. [Google Scholar] [CrossRef]
- Penman, T.D.; Christie, F.J.; Andersen, A.N.; Bradstock, R.A.; Cary, G.J.; Henderson, M.K.; Price, O.; Tran, C.; Wardle, G.M.; Williams, R.J.; et al. Prescribed burning: How can it work to conserve the things we value? Int. J. Wildland Fire 2011, 20, 721–733. [Google Scholar] [CrossRef]
- Morrison, D.A.; Buckney, R.T.; Bewick, B.J. Conservation conflicts over burning bush in south-eastern Australia. Biol. Conserv. 1996, 76, 167–175. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Penman, T.D.; Binns, D.L.; Shiels, R.J.; Allen, R.M.; Kavanagh, R.P. Changes in understorey plant species richness following logging and prescribed burning in shrubby dry sclerophyll forests of south-eastern Australia. Austral Ecol. 2008, 33, 197–210. [Google Scholar] [CrossRef]
- Penman, T.D.; Binns, D.L.; Shiels, R.J.; Allen, R.M.; Penman, S.H. Hidden effects of forest management practices: Responses of a soil stored seed bank to logging and repeated prescribed fire. Austral Ecol. 2011, 36, 571–580. [Google Scholar] [CrossRef]
- Bassett, M.; Chia, E.K.; Leonard, S.W.J.; Nimmo, D.G.; Holland, G.J.; Ritchie, E.G.; Clarke, M.F.; Bennett, A.F. The effects of topographic variation and the fire regime on coarse woody debris: Insights from a large wildfire. For. Ecol. Manag. 2015, 340, 126–134. [Google Scholar] [CrossRef]
- Grove, S.J. Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. For. Ecol. Manag. 2001, 154, 35–53. [Google Scholar] [CrossRef]
- Florence, R.G. Ecology and Silviculture of Eucalypt Forests; CSIRO Publishing: Melbourne, Australia, 2004; ISBN 0643057994. [Google Scholar]
- Nicholson, E. Winds of change for silvicultural practice in NSW native forests. Aust. For. 1999, 62, 223–235. [Google Scholar] [CrossRef]
- Binns, D.L.; Bridges, R.G. Ecological Impacts and Sustainability of Timber Harvesting and Burning in Coastal Forests on the Eden Area Establishment and Progress of the Eden Burning Study; Research and Development Division State Forests of New South Wales: Sydney, Australia, 2003. [Google Scholar]
- Penman, T.D.; Kavanagh, R.P.; Binns, D.L.; Melick, D.R. Patchiness of prescribed burns in dry sclerophyll eucalypt forests in South-eastern Australia. For. Ecol. Manag. 2007, 252, 24–32. [Google Scholar] [CrossRef]
- Williams, M.R.; Faunt, K. Factors affecting the abundance of hollows in logs in jarrah forest of south-western Australia. For. Ecol. Manag. 1997, 95, 153–160. [Google Scholar] [CrossRef]
- Gibbons, P.; Lindenmayer, D. Tree Hollows and Wildlife Conservation in Australia; CSIRO Publishing: Melbourne, Australia, 2002; ISBN 0643067051. [Google Scholar]
- Woldendorp, G. Coarse Woody Debris in Australian Forest Ecosystems. In A Report for the National Greenhouse Strategy, Module 6.6.; Bureau of Statistics: Canberra, Australia, 2002. [Google Scholar]
- Adkins, M.F. A burning issue: Using fire to accelerate tree hollow formation in Eucalyptus species. Aust. For. 2006, 69, 107–113. [Google Scholar] [CrossRef]
- Parnaby, H.; Lunney, D.; Shannon, I.; Fleming, M. Collapse rates of hollow-bearing trees following low intensity prescription burns in the Pilliga forests, New South, Wales. Pac. Conserv. Biol. 2010, 16, 209–220. [Google Scholar] [CrossRef]
- Woinarski, J.C.Z.; Recher, H.F. Impact and response: A review of the effects of fire on the Australian avifauna. Pac. Conserv. Biol. 1997, 3, 183–205. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002; ISBN 0521009766. [Google Scholar]
- Fox, J.C.; Hamilton, F.; Ades, P.K. Models of tree-level hollow incidence in Victorian State forests. For. Ecol. Manag. 2008, 255, 2846–2857. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team R. A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 24 May 2015).
- West, B.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007; ISBN 15848848009781584884804. [Google Scholar]
- Bretz, F.; Hothorn, T.; Westfall, P. Multiple Comparisons Using R; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Lininger, K.B.; Wohl, E.; Sutfin, N.A.; Rose, J.R. Floodplain downed wood volumes: A comparison across three biomes. Earth Surf. Process. Landf. 2017, 42, 1248–1261. [Google Scholar] [CrossRef]
- Bennett, L.T.; Aponte, C.; Tolhurst, K.G.; Löw, M.; Baker, T.G. Decreases in standing tree-based carbon stocks associated with repeated prescribed fires in a temperate mixed-species eucalypt forest. For. Ecol. Manag. 2013, 306, 243–255. [Google Scholar] [CrossRef]
- Rothe, A.; Moroni, M.; Neyland, M.; Wilnhammer, M. Current and potential use of forest biomass for energy in Tasmania. Biomass Bioenerg. 2015, 80, 162–172. [Google Scholar] [CrossRef]
- Collins, L.; Bradstock, R.A.; Tasker, E.M.; Whelan, R.J. Can gullies preserve complex forest structure in frequently burnt landscapes? Biol. Conserv. 2012, 153, 177–186. [Google Scholar] [CrossRef]
- Slade, C.; Law, B. The other half of the coastal State Forest estate in New South Wales; the value of informal forest reserves for conservation. Aust. Zool. 2017, 39, 359–370. [Google Scholar] [CrossRef]
- Sutherland, E.F.; Dickman, C.R. Mechanisms of recovery after fire by rodents in the Australian environment: A review. Wildland Res. 1999, 26, 405–419. [Google Scholar] [CrossRef]
- Fischer, A.L.; Moncalvo, J.M.; Klironomos, J.N.; Malcolm, J.R. Fruiting body and molecular rDNA sampling of fungi in woody debris from logged and unlogged boreal forests in northeastern Ontario. Ecoscience 2012, 19, 374–390. [Google Scholar] [CrossRef]
- Tedersoo, L.; Kõljalg, U.; Hallenberg, N.; Larsson, K.-H. Fine Scale Distribution of Ectomycorrhizal Fungi and Roots across Substrate Layers Including Coarse Woody Debris in a Mixed Forest. New Phytol. 2003, 159, 153–165. [Google Scholar] [CrossRef]
- Edman, M.; Eriksson, A.-M. Competitive outcomes between wood-decaying fungi are altered in burnt wood. FEMS Microbiol. Ecol. 2016, 92, fiw068. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, D.; Imbeau, L.; Drapeau, P.; Mazerolle, M.J. Small mammal responses to coarse woody debris distribution at different spatial scales in managed and unmanaged boreal forests. For. Ecol. Manag. 2012, 266, 194–205. [Google Scholar] [CrossRef]
- Mac Nally, R.; Parkinson, A.; Horrocks, G.; Conole, L.; Tzaros, C. Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biol. Conserv. 2001, 99, 191–205. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Klooster, W.S.; Barrington, W.T.; Herms, D.A. Impacts of emerald ash borer-induced tree mortality on leaf litter arthropods and exotic earthworms. Pedobiol. Int. J. Soil Biol. 2011, 54, 261–265. [Google Scholar] [CrossRef]
Variable | Variable Code | Description |
---|---|---|
Log variables | ||
Small-end Diameter | SDIAM | Small-end diameter (cm). |
Large-end Diameter | LDIAM | Large-end diameter (cm). |
Length | LEN | Length (to nearest 10 cm) from LDIAM to SDIAM. |
Decay state Adapted from Williams and Faunt [29] and Bunnell and Houde [1] | DEC | Decay State of CWD (1–5) 1: Freshly fallen, bark intact, no cambium/sapwood can be pulled off. 2: No bark, small amounts of cambium/sapwood pulled off, full structural integrity. 3: Can pull moderate pieces of cambium or sapwood apart, will show bending when pressure is applied, fissures present. 4: Large pieces of cambium or sapwood can be pulled off, log will maintain shape but collapse under pressure. 5: No structural integrity, log has collapsed on itself. |
CWD Fire Damage Adapted from Williams and Faunt [29] | EXCHAR | Amount of fire damage across the whole piece (none, low, high). None: ≤1% surface area fire damage; Low: >1–25%; High: >25%. |
Hollow Entry Width | WIDTH | Minimum entry width of hollow (cm). Hollows tapering in to smaller entry size within 10 cm of initial entry will be measured at the smallest entry size. |
Hollow Depth | DEPTH | Hollow depth (cm) measured from hollow entry to the end of hollow. |
Internal charring | INCHAR | Internal charring of hollow (none, low, high) None: No sign of charring; Low: ≤2 mm of charring; High: >2 mm of charring, chunks of charcoal visible. |
Site variables | ||
Fire Frequency | FREQ | Continuous measure of prescribed burn frequency that incorporates fire patchiness at the site scale since 1986. Calculated as the sum of the proportion of a site burnt following each prescribed burn over the course of the experiment. See Penman et al. [28] for this method. Frequency—0–4.0 fires. |
Logging Treatment | LOGT | Amount of timber removed from a site, categorised as a nominal factor. Unlogged: 0 m2/ha; Logged: >0 m2/ha. |
Response Variable | Model Terms | AICc | ΔAICc | W |
---|---|---|---|---|
CWD Volume | NULL | 763.3 | 0.00 | 0.449 |
LOGT | 764.7 | 1.37 | 0.226 | |
Hollow-Bearing CWD | LOGT | 409.1 | 0.00 | 0.424 |
NULL | 409.8 | 0.76 | 0.290 | |
High Decay | FREQ | 199.6 | 0.00 | 0.618 |
Moderate Decay | LOGT + FREQ | 192.0 | 0.00 | 0.640 |
LOGT + FREQ + LOGT × FREQ | 193.3 | 1.30 | 0.334 | |
Low Decay | NULL | 198.3 | 0.00 | 0.398 |
FREQ | 198.7 | 0.40 | 0.326 | |
Hollow Presence | EXCHAR + DEC + LDIAM + DEC × LDIAM | 1811.4 | 0.00 | 0.791 |
Hollow Size | EXCHAR + DEC + INCHAR + LDIAM | 1018.5 | 0.00 | 0.478 |
EXCHAR + DEC + INCHAR + LDIAM + DEC + LDIAM | 1019.7 | 1.18 | 0.265 | |
EXCHAR + INCHAR + LDIAM | 1020.0 | 1.53 | 0.222 |
Model Terms | Coefficient | SE | Test Statistic | p-Value |
---|---|---|---|---|
High Decay | t-value | |||
Intercept | 1.817 | 0.191 | 9.533 | 0.000 |
FREQ | −0.429 | 0.101 | −4.244 | >0.001 |
Moderate Decay | ||||
Intercept | 3.218 | 0.203 | 15.831 | 0.000 |
FREQ | −0.346 | 0.095 | −3.632 | 0.0007 |
LOGT | −0.704 | 0.228 | −3.082 | 0.0034 |
Hollow Presence | z-value | |||
Intercept | −1.857 | 0.178 | −10.421 | >0.001 |
LDIAM | 0.053 | 0.007 | 7.850 | >0.001 |
DEC (low) | ||||
DEC (mod) | 0.920 | 0.265 | 3.69 | >0.001 |
(high) | 0.468 | 0.379 | 1.237 | 0.216 |
EXCHAR (none) a,b | ||||
(low) a | 0.231 | 0.144 | 1.602 | 0.109 |
(high) b | −0.379 | 0.171 | −2.214 | 0.027 |
LDIAM:DEC (low) | ||||
LDIAM:DEC (mod) | −0.023 | 0.011 | −2.128 | 0.033 |
(high) | −0.027 | 0.013 | −2.135 | 0.032 |
Hollow Size | t-value | |||
Intercept | −0.150 | 0.152 | −0.988 | 0.324 |
LDIAM | 0.716 | 0.047 | 15.159 | >0.001 |
EXCHAR (none) a | ||||
(low) b | −0.163 | 0.064 | −2.544 | 0.011 |
(high) b | −0.292 | 0.080 | −3.636 | >0.001 |
INCHAR (none) a | ||||
(low) b | 0.166 | 0.070 | 2.356 | 0.020 |
(high) b | 0.216 | 0.066 | 3.253 | 0.001 |
No Char | z-value | |||
Intercept | 0.320 | 0.252 | 1.267 | 0.205 |
FREQ (low) a | ||||
(moderate) b | −1.300 | 0.2165 | −6.006 | >0.001 |
(high) b | −1.125 | 0.2216 | −5.077 | >0.001 |
Low vs. High Char | z-value | |||
Intercept | 0.417 | 0.231 | 1.808 | 0.071 |
FREQ (low) a | ||||
(moderate) a | −0.153 | 0.2543 | −0.601 | 0.548 |
(high) a | −0.0983 | 0.2548 | −0.386 | 0.699 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stares, M.G.; Collins, L.; Law, B.; French, K. Long-Term Effect of Prescribed Burning Regimes and Logging on Coarse Woody Debris in South-Eastern Australia. Forests 2018, 9, 242. https://doi.org/10.3390/f9050242
Stares MG, Collins L, Law B, French K. Long-Term Effect of Prescribed Burning Regimes and Logging on Coarse Woody Debris in South-Eastern Australia. Forests. 2018; 9(5):242. https://doi.org/10.3390/f9050242
Chicago/Turabian StyleStares, Mitchell G., Luke Collins, Bradley Law, and Kristine French. 2018. "Long-Term Effect of Prescribed Burning Regimes and Logging on Coarse Woody Debris in South-Eastern Australia" Forests 9, no. 5: 242. https://doi.org/10.3390/f9050242