Next Article in Journal
Is Resistance to Mountain Pine Beetle Associated with Genetic Resistance to White Pine Blister Rust in Limber Pine?
Previous Article in Journal
Macronutrient Stocks in Scots Pine Stands of Different Densities
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessShort Note
Forests 2018, 9(10), 594;

Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics

Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia
Natural Resources Institute Finland (Luke), Plant Production, 00790 Helsinki, Finland
Ruhr-University Bochum, Institute of Geography, Soil Science/Soil Ecology, Universitätsstrasse 150, 44801 Bochum, Germany
Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
National Institute of Forest Science, 57 Heogi-ro, Dongdaemu-gu, Seoul 02455, Korea
Author to whom correspondence should be addressed.
Received: 2 August 2018 / Revised: 15 September 2018 / Accepted: 18 September 2018 / Published: 23 September 2018
(This article belongs to the Section Forest Ecology and Management)
Full-Text   |   PDF [685 KB, uploaded 23 September 2018]


Bioenergy can produce at least 25% of the global energy demand to combat climate change through reducing emissions in the energy sector. However, information on the bioenergy production potential of woody species and their suitability for silviculture on various soils in the humid tropics is limited. This review aims to identify tree species suitable for bioenergy production under these conditions. Data were compiled from 241 publications and nine freely available databases to assess environmental and silvicultural information on tropical tree species. Energy outputs were derived from the estimated productivity of the reviewed species and ranged from 0.2 to 24.0 Mg biomass ha−1 yr−1, 0.1 to 9.0 Mg bio-oil ha−1 yr−1, and 0.2 to 20.0 Mg sugar ha−1 yr−1, equivalent to an energy yield between 2 and 444 GJ ha−1 yr−1. As such, these bioenergy yields are within the range reported for the lignocellulosic biomass of energy crops cultivated in Europe, the USA, and Brazil. Our review identified some high-yielding species (e.g., Dyera polyphylla (Miq.) Steenis, Metroxylon sagu (Rottb.), Pongamia pinnata (L.)) and leguminous species that could be beneficial in mixed stands (e.g., Elaeis oleifera (Kunth) and Pongamia pinnata) or are suitable species to grow on wet or re-wetted peatland (Dyera polyphylla). However, there are limitations to cultivate woody bioenergy species on wet peatland. Sustainable methods for managing and harvesting forests, particularly on wet or re-wetted peatland, need to be developed. View Full-Text
Keywords: tropics; paludiculture; biomass; biofuel; biodiesel; bioethanol tropics; paludiculture; biomass; biofuel; biodiesel; bioethanol
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Borchard, N.; Bulusu, M.; Hartwig, A.-M.; Ulrich, M.; Lee, S.M.; Baral, H. Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics. Forests 2018, 9, 594.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top