Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea
Abstract
:1. Introduction
2. Material and Methods
2.1. Sites and Sampling
2.2. X-Ray Microdensitometry
2.3. Data Analysis
3. Results
3.1. Variation of Ring Width Components
3.2. Variation of Wood Density Components
4. Discussion
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Capelo, J.; Catry, F. A distribuição do carvalho-português em Portugal. In Os Carvalhais: Um Património a Conserver; Silva, J.S., Ed.; Liga Para a Protecção da Natureza: Lisbon, Portugal, 2007; pp. 83–94. (In Portuguese) [Google Scholar]
- Ramos, S.; Knapič, S.; Machado, J.S.; Nunes, L.; Pereira, H. Potencial tecnológico da madeira de Quercus faginea Lam. para revestimentos de superficies. In Proceedings of the 6th Congresso Florestal Nacional, Ponta Delgada, Portugal, 6–9 October 2009. (In Portuguese). [Google Scholar]
- Knapič, S.; Louzada, J.L.; Pereira, H. Variation of wood density components within and between Quercus faginea trees. Can. J. For. Res. 2011, 41, 1212–1219. [Google Scholar] [CrossRef]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE 2017, 12, e0179268. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.B.; Cardoso, S.; Pereira, H. Age trends in the wood anatomy of Quercus faginea. IAWA J. 2014, 35, 293–306. [Google Scholar] [CrossRef]
- Vilà, M.; Vayreda, J.; Comas, L.; Ibáñez, J.J.; Mata, T.; Obón, B. Species richness and wood production: A positive association in Mediterranean forests. Ecol. Lett. 2007, 10, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Vayreda, J.; Gracia, M.; Martinez-Vilalta, J.; Retana, J. Patterns and drivers of regeneration of tree species in forests of peninsular Spain. J. Biogeogr. 2013, 40, 1252–1265. [Google Scholar] [CrossRef]
- Saranpӓӓ, P. Wood density and growth. In Wood Quality and Its Biological Basis; Barnett, J., Jeronimidis, G., Eds.; Blackwell Publishing Ltd.: Victoria, TX, USA; CRC Press: Oxford, UK, 2003; pp. 87–113. [Google Scholar]
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation, Its Causes and Control; Springer: Berlin, Germany, 1989; p. XV-363. [Google Scholar]
- Lei, H.; Milota, M.R.; Gӓrtner, B.L. Between-and within-tree variation in the anatomy and specific gravity of wood in Oregon white oak (Quercus garryana Dougl.). IAWA J. 1996, 17, 445–461. [Google Scholar] [CrossRef]
- Paul, B.H. The Application of Silviculture in Controlling the Specific Gravity of Wood; Technical Bulletin No. 1288; USDA Forest Service: Washington, DC, USA, 1963.
- Zhang, S.Y.; Owoundi, R.E.; Nepveu, G.; Mothe, F.; Dhôte, J.F. Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence. Can. J. For. Res. 1993, 23, 2587–2593. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Coussea, G.; Ducos, Y. Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann. For. Sci. 2004, 61, 361–372. [Google Scholar] [CrossRef]
- Sousa, V.B.; Cardoso, S.; Pereira, H. Ring width variation and heartwood development in Quercus faginea. Wood Fiber Sci. 2013, 45, 1–10. [Google Scholar]
- Knapič, S.; Louzada, J.L.; Leal, S.; Pereira, H. Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry 2008, 81, 465–473. [Google Scholar] [CrossRef]
- Bergès, L.; Dupouey, J.-L.; Franc, A. Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 2000, 14, 398–408. [Google Scholar] [CrossRef]
- Bakour, R. Infuence de L’espèce et de la Provenance des deux Principaux Chênes Français (Quercus robur L.). Ph.D. Thesis, ENGREF (AgroParisTech), Paris, France, 2003. [Google Scholar]
- Polge, H.; Keller, R. Qualité du bois et largeur d’accroissements en foret de trançais. Ann. Sci. For. 1973, 30, 91–125. [Google Scholar] [CrossRef]
- Burdon, R.; Walker, J.; Megraw, B.; Evans, R.; Cown, D. Juvenile wood (sensu novo) in pine, conflicts and possible opportunities for growing, processing and utilisation. N. Z. J. For. 2004, 49, 24–31. [Google Scholar]
- Bamber, R.K. Heartwood, its function and formation. Wood Sci. Technol. 1976, 10, 1–8. [Google Scholar] [CrossRef]
- Hillis, W.E. Heartwood formation and its influence on utilization. Wood Sci. Technol. 1968, 2, 260–267. [Google Scholar] [CrossRef]
- Meyer, R.W. Tyloses development in white oak. For. Prod. J. 1967, 17, 50–56. [Google Scholar]
- Bamber, R.K. Sapwood and Heartwood; Technical Submission nr 2; Wood Technology and Forest Research Division: New South Wales, Australia, 1961.
- Gaspar, M.J.; Louzada, J.L.; Silva, M.E.; Aguiar, A.; Almeida, M.H. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can. J. For. Res. 2008, 38, 1470–1477. [Google Scholar] [CrossRef]
- Rozenberg, P.; Franc, A.; Cahalan, C. Incorporating wood density in breeding programs for softwoods in Europe: A strategy and associated methods. Silvae Genet. 2001, 50, 1–7. [Google Scholar]
- Ferrand, J.C. Réflexions sur la densité du bois. 2e partie: Calcul de la densité et de son hétérogénéité. Holzforschung 1982, 36, 153–157. [Google Scholar] [CrossRef]
- Nepveau, G. Déterminisme génotypique de la structure anatomique du bois chez Quercus robur. Silvae Genet. 1984, 33, 91–95. [Google Scholar]
- Ackermann, F. Influence du type de station forestière sur les composantes intracernes de la densité du bois du chêne pédonculé (Quercus robur L.) dans les chênaies de l’Adour et des coteaux basco-béarnais. Ann. For. Sci. 1995, 52, 635–652. [Google Scholar] [CrossRef]
- Bergès, L.; Nepveau, G.; Franc, A. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For. Ecol. Manag. 2008, 255, 567–579. [Google Scholar] [CrossRef]
- Guilley, E.; Hervé, J.-C.; Huber, F.; Nepveu, G. Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density. Ann. For. Sci. 1999, 56, 449–458. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Castro-Díez, P.; Pérez-Rontomé, C.; Montserrat-Martí, G. Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees 1997, 12, 90–96. [Google Scholar] [CrossRef]
- Alla, A.Q.; Camarero, J.J. Contrasting responses of radial growth and wood anatomy to climate in a Mediterranean ring-porous oak: Implications for its future persistence or why the variance matters more than the mean. Eur. J. For. Res. 2012, 131, 1537–1550. [Google Scholar] [CrossRef]
- Corcuera, L.; Camarero, J.J.; Gil-Pelegrin, E. Effects of a severe drought on growth and anatomical properties of Quercus faginea. IAWA J. 2004, 25, 185–204. [Google Scholar] [CrossRef]
- Degron, R.; Nepveu, G. Prévision de la variabilité intra- et interarbre de la densité du bois de chêne rouvre (Quercus petraea Liebl) par modélisation des largeurs et des densités des bois initial et final en fonction de l’âge cambial, de la largeur de cerne et du niveau dans l’arbre. Ann. Sci. For. 1996, 53, 1019–1030. [Google Scholar]
- Tavares, F.; Louzada, J.L.; Pereira, H. Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal. Eur. J. For. Res. 2014, 133, 31–39. [Google Scholar] [CrossRef]
- Pereira, H.; Graça, J.; Rodrigues, J.C. Wood chemistry in relation to quality. In Wood Quality and Its Biological Basis; Barnett, J., Jeronimidis, G., Eds.; Blackwell Publishing Ltd.: Victoria, TX, USA, 2003; pp. 53–86. [Google Scholar]
- Guilley, E.; Nepveu, G. Interprétation anatomique des composantes d’un modèle mixte de densité du bois chez le chêne sessile (Quercus petraea Liebl.): Âge du cerne compté depuis la moelle, largeur de cerne, arbre, variabilité interannuelle et duraminisation. Ann. Sci. For. 2003, 60, 331–346. [Google Scholar]
- Weigl, M.; Grabner, M.; Helle, G.; Schleser, G.H.; Wimmer, R. Variability of latewood-widths and -stable isotope ratios in a sessile oak tree (Quercus petraea (Matt.) Liebl.). Dendrochronologia 2007, 24, 117–122. [Google Scholar] [CrossRef]
- Sousa, V.B.; Louzada, J.L.; Pereira, H. Age trends and within-site effects in wood density and radial growth in Quercus faginea mature trees. For. Syst. 2016, 25, E053. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Passialiset, C.; Voulgaridis, E. Ring width, latewood proportion and density relationships in black locust wood of different origins and clones. IAWA J. 2010, 31, 169–178. [Google Scholar] [CrossRef]
- Sousa, V.B.; Louzada, J.L.; Pereira, H. Earlywood vessel features in Quercus faginea: Relationship between ring width and wood density at two sites in Portugal. iForest 2015, 8, 866–873. [Google Scholar] [CrossRef]
Macedo de Cavaleiros (MC) | Vimeiro (VI) | |
---|---|---|
Latitude | 41°31′ N | 39°29′ N |
Longitude | 06°51′ W | 09°01′ W |
Altitude (m) | 540 | 100 |
Soil | Orthic Dystric and Eutric Leptosols | Chromic Cambisols |
Annual precipitation (mm) | 700 ± 141 | 890 ± 249 |
Annual mean temperature (°C) | 12 ± 1 | 15 ± 3 |
Q. faginea basal area (m2/ha) | 18 | 102 |
Stand density (trees/ha) | 327 | 300 |
Tree height (m) | 10.5 ± 0.7 | 14.8 ± 2.3 |
Diameter (cm) * | 20.9 ± 4.2 | 36.7 ± 5.9 |
Crown height (m) ** | 8.3 ±1.3 | 8.5 ± 2.3 |
Radius crown (m) | 2.4 ± 0.7 | 4.4 ± 1.1 |
Tree age *** | 40 ± 8 | 125 ± 11 |
Source of Variation | Degrees of Freedom | Expected Variance | Error Term |
---|---|---|---|
(1) Sites (S) | s − 1 | σ2ε + rl σ2T/S + rlt σ2S | (2) |
(2) Trees/Sites (T/S) | (t − 1)s | σ2ε + rl σ2T/S | (11) |
(3) Levels (L) | l − 1 | σ2ε + rts σ2L | (11) |
(4) L × S | (l − 1)(s − 1) | σ2ε + r σ2LT/S + rt σ2LS | (5) |
(5) L × T/S | (l − 1)(t − 1)s | σ2ε + r σ2LT/S | (11) |
(6) Rings (R) | r − 1 | σ2ε + lts σ2R | (11) |
(7) R × S | (r − 1)(s − 1) | σ2ε + l σ2RT/S + lt σ2RS | (8) |
(8) R × T/S | (r − 1)(t − 1)s | σ2ε + l σ2RT/S | (11) |
(9) R × L | (r − 1)(l − 1) | σ2ε + ts σ2RL | (11) |
(10) R × L × S | (r − 1)(l − 1)(s − 1) | σ2ε + t σ2RLS | (11) |
(11) Residual (R × L × T/S) | (r − 1)(l − 1)(t − 1)s | σ2ε |
Analysis | Site | RD (g/cm3) | EWD (g/cm3) | LWD (g/cm3) | HI (g/cm3) | RW (mm) | LWP (%) |
---|---|---|---|---|---|---|---|
Core | MC | 0.914 ± 0.114 a | 0.790 ± 0.148 a | 0.963 ± 0.103 a | 0.057 ± 0.039 a | 2.52 ± 1.27 a | 68.54 ± 14.11 a |
VI | 1.037 ± 0.117 b | 0.965 ± 0.144 b | 1.076 ± 0.108 b | 0.085 ± 0.042 b | 1.83 ± 0.92 b | 60.25 ± 15.80 b | |
Sheath | MC | 0.751 ± 0.132 a | 0.611 ± 0.160 a | 0.827 ± 0.129 a | 0.114 ± 0.056 a | 2.11 ± 1.15 a | 63.01 ± 13.79 a |
VI | 0.680 ± 0.131 a | 0.623 ± 0.148 a | 0.722 ± 0.130 b | 0.055 ± 0.050 b | 0.77 ± 0.47 b | 54.88 ± 15.83 b |
Analysis Source of Variation | RD | EWD | LWD | HI | RW | LWP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | EV% | P | EV% | P | EV% | P | EV% | P | EV% | P | EV% | ||
Core | S | 0.0009 | 29.7 | 0.0002 | 34.5 | 0.001 | 30.8 | 0.0017 | 13.8 | 0.0005 | 13.6 | 0.0008 | 11.4 |
T/S | 0.0001 | 19.6 | 0.0001 | 16.1 | 0.0001 | 20.8 | 0.0001 | 10.2 | 0.0001 | 7.1 | 0.0001 | 6.4 | |
L | 0.0001 | 4.7 | 0.0001 | 4.4 | 0.0001 | 2.9 | 0.0001 | 4.8 | 0.0001 | 3.1 | 0.0121 | 0.6 | |
L × S | 0.0156 | 4.2 | 0.0288 | 3.0 | 0.0093 | 4.8 | 0.1506 | 1.1 | 0.0015 | 6.2 | 0.2877 | 0.3 | |
L × T/S | 0.0001 | 13.5 | 0.0001 | 11.8 | 0.0001 | 13.4 | 0.0001 | 10.6 | 0.0001 | 9.2 | 0.0001 | 5.9 | |
R | 0.0001 | 2.3 | 0.0001 | 4.2 | 0.0001 | 1.9 | 0.0001 | 7.4 | 0.0424 | 0.5 | 0.0001 | 4.2 | |
R × S | 0.0003 | 1.1 | 0.0001 | 1.6 | 0.0584 | 0.4 | 0.0001 | 3.4 | 0.0163 | 1.7 | 0.3907 | 0.1 | |
R × T/S | 0.1774 | 0.5 | 0.1518 | 0.6 | 0.1437 | 0.6 | 0.1683 | 1.1 | 0.0151 | 3.2 | 0.5134 | 0 | |
R × L | 0.0001 | 3.0 | 0.0001 | 2.2 | 0.0001 | 3.2 | 0.1648 | 0.5 | 0.0046 | 1.8 | 0.783 | 0 | |
R × L × S | 0.4006 | 0.1 | 0.3661 | 0.1 | 0.3865 | 0.1 | 0.0987 | 1.4 | 0.2017 | 1.0 | 0.735 | 0 | |
R × L × T/S | 21.2 | 21.4 | 21.0 | 45.7 | 52.7 | 71.1 | |||||||
Sheath | S | 0.0834 | 8.1 | 0.7508 | 0.0 | 0.0142 | 19.7 | 0.0001 | 34.8 | 0.0001 | 49.3 | 0.0010 | 11.9 |
T/S | 0.0001 | 33.5 | 0.0001 | 24.5 | 0.0001 | 30.2 | 0.0001 | 8.0 | 0.0001 | 16.2 | 0.0001 | 6.5 | |
L | 0.0199 | 0.4 | 0.0641 | 0.3 | 0.0104 | 0.4 | 0.0054 | 0.6 | 0.0212 | 0.1 | 0.1428 | 0.3 | |
L × S | 0.2046 | 1.5 | 0.6622 | 0.0 | 0.0849 | 2.6 | 0.7768 | 0.0 | 0.7583 | 0.0 | 0.4874 | 0.0 | |
L × T/S | 0.0001 | 23.6 | 0.0001 | 31.8 | 0.0001 | 17.1 | 0.0001 | 17.7 | 0.0001 | 7.2 | 0.0015 | 5.3 | |
R | 0.1279 | 0.2 | 0.1193 | 0.3 | 0.5498 | 0.0 | 0.0807 | 0.3 | 0.0001 | 2.5 | 0.3660 | 0.1 | |
R × S | 0.5109 | 0.0 | 0.5135 | 0.0 | 0.7115 | 0.0 | 0.2645 | 0.3 | 0.0097 | 2.1 | 0.1030 | 1.3 | |
R × T/S | 0.2312 | 0.7 | 0.6063 | 0.0 | 0.1754 | 0.9 | 0.3528 | 0.4 | 0.0001 | 10.8 | 0.1821 | 2.2 | |
R × L | 0.7859 | 0.0 | 0.9702 | 0.0 | 0.1462 | 0.4 | 0.4881 | 0.0 | 0.2901 | 0.1 | 0.5253 | 0.0 | |
R × L × S | 0.1578 | 0.9 | 0.1273 | 1.4 | 0.2448 | 0.5 | 0.1898 | 0.9 | 0.4690 | 0.0 | 0.4859 | 0.0 | |
R × L × T/S | 31.2 | 41.7 | 28.2 | 37.0 | 11.6 | 72.5 |
Analysis | Height (m) | RD (g/cm3) | EWD (g/cm3) | LWD (g/cm3) | HI (g/cm3) | RW (mm) | LWP (%) |
---|---|---|---|---|---|---|---|
Core | 5.5 | 0.943 ± 0.102 a | 0.842 ± 0.134 a | 0.998 ± 0.097 a | 0.080 ± 0.047 c | 1.9 ± 1.4 a | 62.1 ± 16.8 a |
3.4 | 0.958 ± 0.124 b | 0.849 ± 0.165 a | 1.006 ± 0.116 a | 0.078 ± 0.046 c | 2.1 ± 1.1 b | 65.2 ± 14.6 b | |
1.3 | 0.980 ± 0.144 c | 0.881 ± 0.187 b | 1.022 ± 0.130 b | 0.070 ± 0.040 b | 2.3 ± 1.0 b | 65.3 ± 15.6 b | |
0.5 | 1.021 ± 0.137 d | 0.938 ± 0.177 c | 1.053 ± 0.125 c | 0.056 ± 0.034 a | 2.4 ± 1.0 c | 65.0 ± 14.7 b | |
Sheath | 5.5 | 0.717 ±0.120 ab | 0.618 ±0.146 ab | 0.782 ±0.120 bc | 0.089 ± 0.059 b | 1.41 ± 1.0 a | 58.2 ± 13.8 a |
3.4 | 0.703 ± 0.134 a | 0.600 ± 0.135 a | 0.763 ± 0.147 a | 0.087 ± 0.062 b | 1.44 ± 1.1 b | 59.5 ± 14.7 a | |
1.3 | 0.728 ± 0.144 b | 0.624 ± 0.173 b | 0.786 ± 0.145 c | 0.085 ± 0.068 b | 1.39 ± 1.1 b | 60.5 ± 15.7 a | |
0.5 | 0.713 ±0.144 ab | 0.626 ± 0.160 b | 0.767 ±0.146 ab | 0.075 ± 0.055 a | 1.52 ± 1.1 c | 57.6 ± 17.1 a |
Sapwood | ||||||
---|---|---|---|---|---|---|
Heartwood | RD | EWD | LWD | RW | LWP | |
RD | 1 | 0.893 | 0.948 | 0.061 | 0.099 | |
EWD | 0.904 | 1 | 0.772 | −0.128 | −0.163 | |
LWD | 0.969 | 0.842 | 1 | 0.087 | 0.027 | |
RW | −0.037 | −0.186 | −0.044 | 1 | 0.385 | |
LWP | −0.013 | −0.287 | −0.072 | 0.371 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, V.B.; Louzada, J.L.; Pereira, H. Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea. Forests 2018, 9, 44. https://doi.org/10.3390/f9010044
Sousa VB, Louzada JL, Pereira H. Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea. Forests. 2018; 9(1):44. https://doi.org/10.3390/f9010044
Chicago/Turabian StyleSousa, Vicelina B., José Luís Louzada, and Helena Pereira. 2018. "Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea" Forests 9, no. 1: 44. https://doi.org/10.3390/f9010044
APA StyleSousa, V. B., Louzada, J. L., & Pereira, H. (2018). Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus faginea. Forests, 9(1), 44. https://doi.org/10.3390/f9010044