Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Modeling Approaches
2.4. Model Fitting and Evaluation
2.5. Classification of Fire Risk Zones
3. Results
3.1. Overview of LR and GWLR Models
3.1.1. Model Fitting
3.1.2. Residual Analysis
3.2. Spatial Distribution of Fire-Drivers
3.3. Fire Risk Classification
4. Discussion
5. Conclusions and Management Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grogan, P.; Bruns, T.D.; Chapin, F.S. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 2000, 122, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Randerson, J.T.; Lindfors, J.; Chapin, F.S. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Rodrigues, M.; de-la-Riva, J.; Fotheringham, S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl. Geogr. 2014, 48, 52–63. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.; Chuvieco, E.; Koutsias, N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
- Massada, A.B.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin. For. Ecol. Manag. 2009, 258, 1990–1999. [Google Scholar] [CrossRef]
- Sanmiguelayanz, J.; Carlson, J.D.; Alexander, M.; Tolhurst, K.; Morgan, G.; Sneeuwjagt, R. Current Methods to Assess Fire Danger Potential. In Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data; World Scientific Publishing: Singapore, 2015; pp. 21–61. [Google Scholar]
- Costafreda-Aumedes, S.; Cardil, A.; Molina, D.M.; Daniel, S.N.; Mavsar, R.; Vega-Garcia, C. Analysis of factors influencing deployment of fire suppression resources in Spain using artificial neural networks. iForest 2015, 56, 609. [Google Scholar] [CrossRef]
- Renard, Q. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int. J. Wildland Fire 2012, 21, 368–379. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Chas-Amil, M.L.; Touza, J.M.; Goodrick, S.L. Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations. Int. J. Wildland Fire 2012, 21, 743–754. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suarez-Seoane, S.; Kelly, M.; Luis, E. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sens. Environ. 2008, 112, 708–719. [Google Scholar] [CrossRef]
- Garcia, C.V.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A logit model for predicting the daily occurrence of human caused forest fires. Int. J. Wildland Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J.W. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suarez-Seoane, S.; de-Luis, E. Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modeling. Remote Sens. Environ. 2007, 107, 533–544. [Google Scholar] [CrossRef]
- Hernandez-Leal, P.A.; Gonzalez-Calvo, A.; Arbelo, M.; Barreto, A.; Alonso Benito, A. Synergy of GIS and remote sensing data in forest fire danger modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 240–247. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bacao, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martin, M.P.; Vilar, L.; Martinez, J.; Martin, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Reineking, B.; Weibel, P.; Conedera, M.; Bugmann, H. Environmental determinants of lightning vs. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int. J. Wildland Fire 2010, 19, 541–557. [Google Scholar] [CrossRef]
- Nieto, H.; Aguado, I.; Garcia, M.; Chuvieco, E. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agric. For. Meteorol. 2012, 162–163, 35–43. [Google Scholar] [CrossRef]
- Zhang, H.J.; Han, X.Y.; Dai, S. Fire occurrence probability mapping of Northeast China with binary logistic regression model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 121–127. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Rodrigues, M.; de-la-Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Guo, F.T.; Su, Z.W.; Wang, G.Y.; Sun, L.; Lin, F.F.; Liu, A.Q. Wildfire ignition in the forests of southeast china: Identifying drivers and spatial distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Gitas, L.Z.; San-Miguel-Ayanz, J.; Chuvieco, E.; Camia, A. Advances in remote sensing and GIS applications in support of forest fire management. Int. J. Wildland Fire 2014, 23, 603–605. [Google Scholar] [CrossRef]
- Preisler, H.K.; Westerling, A.L.; Gebert, K.M.; Munoz-Arriola, F.; Holmes, T.P. Spatially explicit forecasts of large wildland fire probability and suppression costs for California. Int. J. Wildland Fire 2011, 20, 508–517. [Google Scholar] [CrossRef]
- Matthews, S.A.; Yang, T. Mapping the results of local statistics: Using geographically weighted regression. Demogr. Res. 2012, 26, 121–166. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.T.; Selvaraj, S.; Lin, F.F.; Wang, G.Y.; Wang, W.H.; Su, Z.W.; Liu, A.Q. Geospatial information on geographical and human factors improved anthropogenic fire occurrence modeling in the Chinese boreal forest. Can. J. For. Res. 2016, 46, 582–594. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenco, L. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Zhang, H.J.; Qi, P.C.; Guo, G.M. Improvement of fire danger modelling with geographically weighted logistic model. Int. J. Wildland Fire 2014, 23, 1130–1146. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Goldammer, J.G. Fire situation in Russia. IFFN 2001, 24, 41–59. [Google Scholar]
- Guo, F.T.; Innes, J.L.; Wang, G.Y.; Ma, X.Q.; Sun, L.; Hu, H.Q.; Su, Z.W. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. J. Plant Ecol. 2015, 8, 1–10. [Google Scholar] [CrossRef]
- Hu, H.Q.; Li, N.; Sun, L.; San, L. Spatial and temporal distribution patterns of forest fires in Yichun, Heilongjiang Province. J. Northeast For. Univ. 2011, 39, 67–70. [Google Scholar]
- Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Kalabokidis, K.D.; Koutsias, N.; Konstantinidis, P.; Vasilakos, C. Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece. Area 2007, 39, 392–402. [Google Scholar] [CrossRef]
- Pew, K.L.; Larsen, C.P.S. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. For. Ecol. Manag. 2001, 140, 1–18. [Google Scholar] [CrossRef]
- Koutsias, N.; Martinez, J.; Chuvieco, E.; Alligower, B. Modeling wildland fire occurrence in southern Europe by a geographically weighted regression approach. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Universidad de Zaragoza, Spain, 2005; pp. 57–60. [Google Scholar]
- Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 14, 379–393. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in northeastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Burnham, K.; Anderson, D.R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Hurvich, C.M.; Simono, J.F.; Tsai, C.L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. 1998, 60, 271–293. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Zhou, X.H.; McClish, D.M.; Obuchowski, N.A. Statistical Methods in Diagnostic Medicine; John Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Franklin, J. Mapping Species Distributions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Hoyo, L.V.D.; Isabel, M.P.M.; Vega, F.J.M. Logistic regression models for human-caused wildfire risk estimation: Analysing the effect of the spatial accuracy in fire occurrence data. Eur. J. For. Res. 2011, 130, 983–996. [Google Scholar] [CrossRef]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Kissling, W.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 2008, 17, 59–71. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, P.; Guo, G. Improvement of fire danger modelling with geographically weighted logistic model. Int. J. Wildland Fire 2014, 23, 1130–1146. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Yang, J.; Liang, Y. Defining fire environment zones in the boreal forests of northeastern China. Sci. Total Environ. 2015, 518, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Koutsias, N.; Martínezfernández, J.; Allgöwer, B. Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GISci. Remote Sens. 2010, 47, 221–240. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, USA. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Brosofske, K.D.; Cleland, D.T.; Saunders, S.C. Factors influencing modern wildfire occurrence in the Mark Twain National Forest, Missouri. South J. Appl. For. 2007, 31, 73–84. [Google Scholar]
- Guo, F.T.; Zhang, L.J.; Jin, S.; Tigabu, M.; Su, Z.W.; Wang, W.H. Modeling anthropogenic fire occurrence in the boreal forest of China using logistic regression and random forests. Forests 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Guo, F.T.; Wang, G.Y.; Su, Z.W.; Liang, H.L.; Lin, F.F.; Liu, A.Q. What drives forest fire in Fujian, China? Evidence from logistic regression and random forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Martinez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, M.D.; Guo, F.S.; Lei, T.; Hui, W. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J. For. Res. 2005, 16, 169–174. [Google Scholar] [CrossRef]
- Maingi, J.K.; Henry, M.C. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int. J. Wildland Fire 2007, 16, 23–33. [Google Scholar] [CrossRef]
- Gowda, J.H.; Kitzberger, T.; Premoli, A.C. Landscape responses to a century of land use along the northern Patagonian forest-steppe transition. Plant Ecol. 2012, 213, 259–272. [Google Scholar] [CrossRef]
- Vasconcelos, M.J.P.; Sllva, S.; Tome, M.; Alvim, M.; Perelra, J.M.C. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Remot Sens. 2001, 67, 73–81. [Google Scholar]
- Yang, J.; He, H.S.; Shifley, S.R.; Gustafson, E.J. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For. Sci. 2007, 53, 1–15. [Google Scholar]
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Haqwbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Viegas, D.X.; Allgöwer, B.; Koutsias, N.; Eftichidis, G. Fire Spread and Urban Wildland Interface Problem. In Proceedings of the International Workshop on Forest Fires in the Wildland-Urban Interface and Rural Areas in Europe: An Intergral Planning and Management Challenge, Athens, Greece, 15–16 May 2003; Xanthopoulos, G., Ed.; MAICh: Chania, Greece, 2003; pp. 22–34. [Google Scholar]
- Gralewicz, N.J.; Nelson, T.A.; Wulder, M.A. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. Int. J. Wildland Fire 2012, 21, 230–242. [Google Scholar] [CrossRef]
- Kumar, S.; Meenakshi; Bairagi, G.D.; Vandana; Kumar, A. Identifying triggers for forest fire and assessing fire susceptibility of forests in Indian western Himalaya using geospatial techniques. Nat. Hazards 2015, 78, 203–217. [Google Scholar] [CrossRef]
- Flatley, W.T.; Lafon, C.W.; Grissino-Mayer, H.D. Climatic and topographic controls on patterns of fire in the southern and central Appalachian Mountains, USA. Landsc. Ecol. 2011, 26, 195–209. [Google Scholar] [CrossRef]
- Padilla, M.; Vega-Garcia, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildland Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Gray, M.E.; Dickson, B.G.; Zachmann, L.J. Modelling and mapping dynamic variability in large fire probability in the lower Sonoran Desert of south-western Arizona. Int. J. Wildland Fire 2014, 23, 1108–1118. [Google Scholar] [CrossRef]
- Hayes, G.L. Influences of Altitude and Aspect on Daily Variations in Factors of Forest Fire Danger; U.S. Department of Agriculture: Washington, DC, USA, 1941; p. 39.
- Haugo, R.D.; Hall, S.A.; Gray, E.M.; Gonzalez, P.; Bakker, J.D. Influences of climate, fire, grazing, and logging on woody species composition along an elevation gradient in the eastern Cascades, Washington. For. Ecol. Manag. 2010, 260, 2204–2213. [Google Scholar] [CrossRef]
- Holden, Z.A.; Jolly, W.M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest. Ecol. Manag. 2011, 262, 2133–2141. [Google Scholar] [CrossRef]
- Guyette, R.P.; Muzika, R.M.; Dey, D.C. Dynamics of an anthropogenic fire regime. Ecosystems 2002, 5, 472–486. [Google Scholar]
- Knies, C.; Elm, M.T.; Klar, P.J.; Stehr, J.; Hofmann, D.M.; Romanov, N. Fire–rainfall relationships in Argentine Chaco savannas. J. Arid. Environ. 2010, 74, 1319–1323. [Google Scholar]
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.A.; Larsen, C.P.S. Climatically induced change in fire frequency in the southern Canadian Rockies. Ecology 1991, 72, 194–201. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci. Total. Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-López, A.; Salvador-Civil, R.; Gonzalo-Jiménez, J. Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur. J. For. Res. 2008, 127, 149–163. [Google Scholar] [CrossRef]
- Burrows, N.D. Linking fire ecology and fire management in south-west Australian forest landscapes. For. Ecol. Manag. 2008, 255, 2394–2406. [Google Scholar] [CrossRef]
Variable Name | Code | Data Type/Resolution | Data Description and Extraction | Source |
---|---|---|---|---|
Climate Average monthly precipitation | Preci_m_avg | Raster/1 km | The climate factors of each fire point and control point were retrieved from the HADCM2 climate model. The HADCM2 climate model, developed by the Hadley Centre for Climate Research and Prediction, was used in coupled mode. The original dataset was collected from the Intergovernmental Panel on Climate Change (IPCC) and rescaled. The corresponding monthly climate factors for each fire and control point were retrieved from ArcGIS19.0 environment. | Earth System Science Data Sharing Platform, China |
Average monthly relative humidity | RH_m_avg | |||
Average monthly temperature | Temp_m_avg | |||
Topographic Elevation | Elev | Raster/25 m | Elevation, slope and aspect values were retrieved from the Digital Elevation Model (DEM) data with resolution of 25 m. Elevation and slope values for each fire and control point were used directly in the modelling process. The aspect was categorised as flat, North (315–45°), East (45–135°), South (135–225°) and West (225–315°). The proportion of each variant in the study area was calculated and the corresponding value for each fire and control point was used to develop the model. | National Administration of Surveying, Mapping and Geoinformation of China, 2002 |
Slope | Slope | |||
Aspect | Aspect | |||
Vegetation Forest type | Forest type | Raster/1 km | Forest vegetation types for each fire and non-fire point were extracted from the vegetation map (1 km resolution). Accordingly, four categories were identified: (1) needle leaf deciduous and needle leaf evergreen trees; (2) broadleaf deciduous trees and broadleaf deciduous shrubs; (3) grass and agricultural crops; and (4) urban construction land, permanent wetland and barren or sparsely vegetated land. These vegetation types were extracted from the vegetation map layer for each fire point and control point in ArcGIS 10.0; and the proportion of each vegetation type located in a fire or control point was used during modelling. | The Cold and Arid Regions Science Data Center, China, 2000 |
Infrastructure Distance to river | Dis_ river | Vector/1:250,000 | Basic geographic information was obtained from the National Administration of Surveying, Mapping and Geoinformation of China. The data were collected in 2000. The variables were retrieved based on a 1:250,000 Digital Line Graphic (DLG) map and included: distance to nearest railway, distance to nearest road and distance to nearest river. | National Administration of Surveying, Mapping and Geoinformation of China, 2002 |
Distance to railway | Dis_ railway | |||
Distance to road | Dis_road | |||
Distance to settlement | Dis_sett | |||
Socio-economic Per Capita GDP | CGDP | Raster/1 km | Two variables represent the Per Capita GDP and annual population density of the study area. This data was then correlated with fire points and control points using the ArcGIS Raster Extraction tool. | The Road of Revitalization-Thirty Years of Reform, Heilongjiang, 2009 Statistical Yearbook of China 2000, 2001 |
Density of population | Den_Pop |
Statistics | βintercept | βDis_railway | βDis_road | βDis_sett | βDis_river | βVeg_type | βSlop | βAspect | βElev | βRH | βTemp | βPreci | βCGDP | βDen_pop |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All variables | ||||||||||||||
LR model | ||||||||||||||
Estimate | 9.931 | −0.013 | 0.147 | −0.211 | 0.026 | 0.098 | −0.029 | 4.268 | −0.004 | −0.019 | 0.036 | 0.011 | −0.0002 | −0.219 |
S.D. | 1.101 | 0.005 | 0.031 | 0.027 | 0.012 | 0.279 | 0.017 | 3.204 | 0.0006 | 0.012 | 0.015 | 0.075 | 0.00003 | 0.030 |
Estimate − 1s.d. | 8.830 | −0.018 | 0.116 | −0.238 | 0.014 | −0.181 | −0.046 | 1.064 | −0.0046 | −0.031 | 0.021 | −0.064 | −0.00023 | −0.249 |
Estimate + 1s.d. | 11.032 | −0.008 | 0.178 | −0.184 | 0.038 | 0.377 | −0.012 | 7.472 | −0.0034 | −0.007 | 0.051 | 0.086 | −0.00017 | −0.189 |
GWLR model | ||||||||||||||
Minimum | 7.335 | −0.064 | −0.147 | −0.240 | −0.006 | −0.446 | −0.033 | 0.041 | −0.00583 | −0.064 | −0.0003 | −0.188 | −0.0003 | −0.233 |
25% quartile | 8.518 | −0.056 | 0.056 | −0.202 | −0.0003 | −0.277 | −0.024 | 1.514 | −0.0043 | −0.035 | 0.031 | −0.132 | −0.0003 | −0.211 |
Mean | 9.817 | −0.038 | 0.078 | −0.184 | 0.013 | −0.120 | −0.019 | 2.451 | −0.00358 | −0.019 | 0.045 | −0.065 | −0.0002 | −0.202 |
Median | 9.745 | −0.039 | 0.089 | −0.179 | 0.005 | −0.132 | −0.020 | 2.403 | −0.0034 | −0.014 | 0.050 | −0.062 | −0.0002 | −0.201 |
75% quartile | 11.268 | −0.020 | 0.136 | −0.164 | 0.029 | 0.059 | −0.016 | 3.484 | −0.00278 | −0.002 | 0.064 | −0.001 | −0.00008 | −0.192 |
Maximum | 12.449 | −0.014 | 0.173 | −0.145 | 0.044 | 0.143 | −0.002 | 4.580 | −0.00212 | 0.004 | 0.071 | 0.063 | −0.00002 | −0.176 |
Significant variables | ||||||||||||||
LR model | ||||||||||||||
Estimate | 0.047 | −0.015 | - | - | −0.033 | - | −0.063 | - | −0.004 | 0.018 | - | 0.099 | - | - |
p−value | 0.969 | <0.001 | - | - | <0.0001 | - | <0.001 | - | <0.001 | 0.005 | - | 0.03 | - | - |
S.D. | 0.308 | 0.004 | - | - | 0.007 | - | 0.011 | - | 0.0002 | 0.006 | - | 0.034 | - | - |
GWLR model | ||||||||||||||
Minimum | 4.740 | −0.068 | −0.159 | −0.241 | −0.003 | - | −0.036 | - | −0.006 | −0.058 | - | 0.037 | −0.0004 | - |
25% quartile | 5.333 | −0.061 | 0.055 | −0.206 | 0.002 | - | −0.028 | - | −0.004 | −0.048 | - | 0.045 | −0.0004 | - |
Mean | 5.824 | −0.043 | 0.080 | −0.190 | 0.015 | - | −0.023 | - | −0.004 | −0.041 | - | 0.069 | −0.0003 | - |
Median | 5.965 | −0.044 | 0.089 | −0.187 | 0.006 | - | −0.024 | - | −0.003 | −0.039 | - | 0.061 | −0.0004 | - |
75% quartile | 6.341 | −0.024 | 0.142 | −0.171 | 0.030 | - | −0.018 | - | −0.003 | −0.035 | - | 0.086 | −0.0002 | - |
Maximum | 6.707 | −0.018 | 0.178 | −0.150 | 0.049 | - | −0.005 | - | −0.002 | −0.030 | - | 0.116 | −0.0001 | - |
Dataset | Model | AIC | AICc | SSE | AUC | Cut-Off | Prediction Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training Set (60% Data) | Validation (40% Data) | ||||||||||||||
A.V. | S.V. | A.V. | S.V. | A.V. | S.V. | A.V. | S.V. | A.V. | S.V. | A.V. | S.V. | A.V. | S.V. | ||
Sample 1 | LR | 1603.59 | 1665.92 | 1603.85 | 1666.05 | 257.14 | 339.09 | 0.827 | 0.683 | 0.438 | 0.381 | 77.8 | 68.1 | 76.3 | 68.1 |
GWLR | 1504.49 | 1542.29 | 1507.32 | 1543.80 | 227.32 | 238.54 | 0.865 | 0.853 | 0.433 | 0.415 | 79.7 | 77.4 | 85.2 | 83.8 | |
Sample 2 | LR | 1615.02 | 1637.89 | 1615.28 | 1638.03 | 258.97 | 336.73 | 0.814 | 0.669 | 0.400 | 0.384 | 78.0 | 67.9 | 75.1 | 63.9 |
GWLR | 1516.63 | 1486.21 | 1519.49 | 1496.31 | 229.27 | 210.74 | 0.854 | 0.879 | 0.336 | 0.385 | 77.2 | 80.1 | 83.9 | 86.6 | |
Sample 3 | LR | 1599.73 | 1626.39 | 1599.99 | 1626.50 | 256.66 | 332.46 | 0.823 | 0.693 | 0.395 | 0.414 | 77.3 | 69.2 | 75.3 | 69.8 |
GWLR | 1491.39 | 1471.72 | 1496.36 | 1480.67 | 220.07 | 210.39 | 0.870 | 0.883 | 0.395 | 0.364 | 79.8 | 80.4 | 85.8 | 86.1 | |
Sample 4 | LR | 1567.02 | 1615.77 | 1567.28 | 1615.91 | 251.37 | 339.67 | 0.833 | 0.686 | 0.444 | 0.395 | 78.3 | 68.0 | 75.7 | 67.7 |
GWLR | 1451.52 | 1516.59 | 1469.29 | 1518.07 | 224.21 | 234.06 | 0.866 | 0.855 | 0.419 | 0.431 | 80.0 | 77.9 | 85.9 | 83.6 | |
Sample 5 | LR | 1560.97 | 1819.49 | 1561.23 | 1819.56 | 248.80 | 355.93 | 0.833 | 0.596 | 0.424 | 0.338 | 77.9 | 65.3 | 75.2 | 48.2 |
GWLR | 1478.60 | 1664.90 | 1480.13 | 1665.16 | 226.20 | 267.36 | 0.863 | 0.814 | 0.383 | 0.422 | 78.0 | 75.1 | 84.9 | 83.8 | |
Complete dataset | LR | 2670.82 | 3331.48 | 2670.97 | 3331.53 | 431.58 | 568.22 | 0.820 | 0.676 | 0.429 | 0.410 | 77.5 | 67.8 | - | - |
GWLR | 2534.87 | 2616.65 | 2535.87 | 2617.27 | 398.32 | 415.33 | 0.847 | 0.835 | 0.440 | 0.355 | 78.5 | 73.7 | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Su, Z.; Tigabu, M.; Yang, X.; Lin, F.; Liang, H.; Wang, G. Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China. Forests 2017, 8, 180. https://doi.org/10.3390/f8060180
Guo F, Su Z, Tigabu M, Yang X, Lin F, Liang H, Wang G. Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China. Forests. 2017; 8(6):180. https://doi.org/10.3390/f8060180
Chicago/Turabian StyleGuo, Futao, Zhangwen Su, Mulualem Tigabu, Xiajie Yang, Fangfang Lin, Huiling Liang, and Guangyu Wang. 2017. "Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China" Forests 8, no. 6: 180. https://doi.org/10.3390/f8060180
APA StyleGuo, F., Su, Z., Tigabu, M., Yang, X., Lin, F., Liang, H., & Wang, G. (2017). Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China. Forests, 8(6), 180. https://doi.org/10.3390/f8060180