Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of the Species
2.3. Forest Zoning
2.4. Field Information
Sampling Design and Characteristics of Sites
2.5. Information Processing
2.5.1. Calculation of Volumetric Stocks
2.5.2. Volumetric Increment
2.5.3. Aerial Biomass Content
2.5.4. Carbon Content
2.5.5. Carbon Sequestration Rate
3. Results
3.1. Forest Zoning and Field Information
3.2. Volumetric Stocks
3.3. Volumetric Increment
3.4. Carbon Content
3.5. Carbon Sequestration
4. Discussion
4.1. Carbon Content
4.2. Carbon Sequestration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bassi, A.M.; Yudken, J.S.; Ruth, M. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors. Energy Policy 2009, 37, 3052–3060. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Getzner, M. The quantitative and qualitative impacts of clean technologies on employment. J. Clean. Prod. 2002, 10, 305–319. [Google Scholar] [CrossRef]
- Gossling, S. Carbon Management in Tourism: Mitigating the Impacts on Climate Change; Routledge: Abingdon, UK, 2011. [Google Scholar]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Rivers, N. Impacts of climate policy on the competitiveness of Canadian industry: How big and how to mitigate? Energy Econ. 2010, 32, 1092–1104. [Google Scholar] [CrossRef]
- Sano, F.; Akimoto, K.; Wada, K. Impacts of different diffusion scenarios for mitigation technology options and of model representations regarding renewables intermittency on evaluations of CO2 emissions reductions. Clim. Chang. 2014, 123, 665–676. [Google Scholar] [CrossRef]
- Valerio, F. Environmental impacts of post-consumer material managements: Recycling, biological treatments, incineration. Waste Manag. 2010, 30, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- Bank, W. Towards Sustainable Mineral-Intensive Growth in Orissa: Managing Environmental and Social Impacts; World Bank: Washington, DC, USA, 2007; p. 78. [Google Scholar]
- Brown, S. Present and Future Role of Forests in Global Climate Change. In Ecology Today: An Anthology of Contemporary Ecological Research; Goapl, B., Pathak, P.S., Saxena, K.G., Eds.; International Scientific Publications: New Delhi, India, 1998; pp. 59–74. [Google Scholar]
- Metz, B.; Davidson, O.; Swart, R.; Pan, J. Climate Change 2001: Mitigation; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Change, I.P.O.C. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Nauclér, T.; Enkvist, P.-A. Pathways to a Low-Carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve; McKinsey & Company: New York, NY, USA, 2009. [Google Scholar]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietasch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [PubMed]
- Venter, O.; Laurance, W.F.; Iwamura, T.; Wilson, K.A.; Fuller, R.A.; Possingham, H.P. Harnessing carbon payments to protect biodiversity. Science 2009, 326, 1368. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Baker, J.S. Opportunities and constraints for forest climate mitigation. BioScience 2010, 60, 698–707. [Google Scholar] [CrossRef]
- Lippke, B.; Perez-Garcia, J.; Manriquez, C. Executive Summary: The Impact of Forests and Forest Management on Carbon Storage, Rural Technological Initiative, College of Forest Resources; Box: Redwood City, CA, USA, 2003. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015; Organización de las Naciones Unidas Para la Alimentación y la Agricultura: Rome, Italy, 2015. [Google Scholar]
- Oates, J.F. Myth and Reality in the Rain Forest: How Conservation Strategies Are Failing in West Africa; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
- Ferraro, P.J.; Pattanayak, S.K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 2006, 4, e105. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015; How Are the World’s Forests Changing? Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Leverington, F.; Hockings, M.; Costa, K.L. Management Effectiveness Evaluation in Protected Areas—A Global Study; Supplementary Report No. 1. Overview of Approaches and Methodologies; World Commission on Protected Areas: Brisbane, Australia, 2008. [Google Scholar]
- Nolte, C.; Leverington, F.; Kettner, A.; Marr, M.; Nielsen, G.; Bomhard, B.; Stolton, S.; Stoll-Kleemann, S.; Hockings, M.; World Conservation Union (IUCN)-World Commission on Protected Areas (WCPA). Protected Area Management Effectiveness Assessments in Europe; A Review of Application, Methods and Results; BfN-Skripten: Bonn, Germany, 2010; p. 69. [Google Scholar]
- Zabala, F. Análisis demográfico preliminar de Taxus globosa Schlecht en el Parque Nacional El Chico, Hidalgo, Mexico. I: Población de adultos y algunas características del hábitat. CIENCIA Ergo-Sum 2001, 8, 169–174. [Google Scholar]
- Razo Zárate, R.; Martínez, A.J.G.; Laguna, R.R.; Maycotte Morales, C.C.; Acevedo Sandoval, O.A. Coeficientes de carbono para arbustos y herbáceas del bosque de oyamel del Parque Nacional El Chico. Rev. Mex. Cienc. For. 2016, 6, 10. [Google Scholar]
- Melo Gallegos, C.; López García, J. Parque Nacional El Chico, marco geográfico-natural y propuesta de zonificación para su manejo operativo. Investig. Geogr. 1994, 28, 65–128. [Google Scholar] [CrossRef]
- Cervantes, Á.; Reyes, E. Efectos Ecológicos de los Incendios Forestales Sobre el Bosque de Oyamel. Ph.D. Thesis, Colegio de Postgraduados Campus Montecillo, Texcoco, Mexico, 2010. [Google Scholar]
- Leopold, A.S. Vegetation zones of Mexico. Ecology 1950, 31, 507–518. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de Mexico. 1ra; Edición Digital; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2006; p. 504. [Google Scholar]
- Castellanos Bolaños, J.F.; Gómez Cárdenas, M.; Contreras Hinojosa, J.R.; González Cubas, R. Metodologías Para Cuantificar Biomasa y Carbono en Bosques; Centro de Investigación Regional del Pacífico Sur: Oaxaca, Mexico, 2013. [Google Scholar]
- Návar-Cháidez, J.D.J.; Domínguez-Calleros, P.A. Modelo de incremento y rendimietno: Ejemplos y aplicaciones para bosques templados mexicanos. Rev. Mex. Cienc. For. 2013, 4, 8–27. [Google Scholar]
- Rafael Domingo, C.M. Monitoreo de bosques utilizando ndvi rededge de rapideye. Instr. Gener. Para Autores 2013, 10, 58–71. [Google Scholar]
- Aguilar Arias, H.; Zamora, R.M.; Bolaños, C.V. MetodologÍa Para La Corrección Atmosférica De Imágenes Aster, Rapideye, Spot 2 Y Landsat 8 Con El MÓdulo Flaash Del Software Envi. Atmospheric Correction Methodology for Aster, Rapideye, Spot 2 and Landsat 8 Images with Envi Flaash Module Software. Rev. Geogr. Am. Cent. 2015, 2. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Tapsall, B.; Milenov, P.; Tasdemir, K. Analysis of RapidEye Imagery for Annual landcover Mapping As an Aid to European Union (EU) Common Agricultural Policy. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vienna, Austria, 5–7 July 2010; pp. 568–573. [Google Scholar]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivaed, B.; Feng, J. Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [Google Scholar] [CrossRef]
- Roslani, M.A.; Mustapha, M.A.; Lihan, T.; Wan Juliana, W.A. Applicability of Rapideye Satellite Imagery in Mapping Mangrove Vegetation Species at Matang Mangrove Forest Reserve, Perak, Malaysia. J. Environ. Sci. Technol. 2014, 7, 123. [Google Scholar]
- Aguirre, O.; Jiménez, J.; Treviño, E.; Meraz, B. Evaluación de diversos tamaños de sitio de muestreo en inventarios forestales. Madera Bosques 1997, 3, 71–79. [Google Scholar] [CrossRef]
- Juárez Castillo, S. Trial to Determine Comparative Efficiency of Sampling Sites in Temperate-and Cold-Climate Forests; Centro Interamericano de Fotointerpretación: Bogotá, Colombia, 1974. [Google Scholar]
- Fedrigo, M.; Kasel, S.; Bennett, L.T.; Roxburgh, S.H.; Nitschke, C.R. Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions. For. Ecol. Manag. 2014, 334, 129–143. [Google Scholar] [CrossRef]
- Klepac, D. Crecimiento e Incremento de Árboles y Masas Forestales; Universidad Autónoma Chapingo: Texcoco, Mexico, 1976. [Google Scholar]
- Muñoz-Ruiz, M.Á.; Valdez-Lazalde, J.R.; de los Santos-Posadas, H.M.; Ángeles-Pérez, G.; Monterroso-Rivas, A.I. Inventario y mapeo del bosque templado de Hidalgo, Mexico mediante datos del satélite SPOT y de campo. Agrociencia 2014, 48, 847–862. [Google Scholar]
- Hernández-Díaz, J.C.; Corral-Rivas, J.J.; Quiñones-Chávez, A.; Bacon-Sobbe, J.R.; Vargas-Larreta, B. Evaluación del manejo forestal regular e irregular en bosques de la Sierra Madre Occidental. Madera Bosques 2008, 14, 25–41. [Google Scholar] [CrossRef]
- Razo-Zárate, R.; Gordillo-Martínez, A.J.; Rodríguez-Laguna, R.; Maycotte-Morales, C.C.; Acevedo-Sandoval, O.A. Estimación de biomasa y carbono almacenado en árboles de oyamel afectados por el fuego en el Parque nacional “El Chico”, Hidalgo, Mexico. Madera Bosques 2013, 19, 73–86. [Google Scholar] [CrossRef]
- Villa Salas, A.B.; Aguilar Ramírez, M. Rutinas de cálculo de once métodos para determinar el incremento en volumen de conífertas. Rev. Mex. Cienc. For. 2012, 20, 77. [Google Scholar]
- Avendaño Hernandez, D.M.; Mireles, M.A.; Anzures, F.C.; Etchevers Barra, J.D. Estimación de Biomasa y Carbono en un Bosque de Abies Religiosa. Rev. Fitotec. Mex. 2009, 32, 233–238. [Google Scholar]
- Leñero, L.A.; Nava, M.; Ramos, A.; Espinosa, M.; De Jesus Ordonez, M.; Jujnovsky, J. Servicios ecosistémicos en la cuenca del río Magdalena, Distrito Federal, Mexico. Gaceta Ecol. 2007, 84–85, 53–64. [Google Scholar]
- Ávila-Akerberg, V. Forest Quality in the Southwest of Mexico City: Assessment towards Ecological Restoration of Ecosystem Services; Institut für Landespflege: Freiburg im Breisgau, Germany, 2010. [Google Scholar]
- Razo-Zárate, R.; Gordillo-Martínez, A.; Rodríguez-Laguna, R.; Maycotte-Morales, C.; Acevedo-Sandoval, O. Escenarios de carbono para el bosque de oyamel del Parque Nacional El Chico, Hidalgo, Mexico. Rev. Latinoam. Rec. Nat. 2013, 9, 17–21. [Google Scholar]
- Mendoza-Ponce, A.; Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 2010, 83, 497–506. [Google Scholar] [CrossRef]
- Maass, S.F. Estimación de la Captura de Carbono en Zonas Forestales: El Caso del Parque Nacional Nevado de Toluca; Universidad Autónoma del Estado de Mexico: Toluca, Mexico, 2009. [Google Scholar]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Aguirre-Salado, C.A.; Valdez-Lazalde, J.R.; Ángeles-Pérez, G.; de los Santos-Posadas, H.M.; Haapanen, R.; Aguirre-Salado, A.I. Mapeo de carbono arbóreo aéreo en bosques manejados de pino Patula en Hidalgo, Mexico. Agrociencia 2009, 43, 209–220. [Google Scholar]
- Masera, O.R.; Cerón, A.D.; Ordóñez, A. Forestry mitigation options for Mexico: Finding synergies between national sustainable development priorities and global concerns. Mitig. Adapt. Strateg. Glob. Chang. 2001, 6, 291–312. [Google Scholar] [CrossRef]
- Huntington, T.G. Carbon Sequestration in an Aggrading Forest Ecosystem in the Southeastern USA. Soil Sci. Soc. Am. J. 1995, 59, 1459–1467. [Google Scholar] [CrossRef]
- Rojo, J.M.T.; Sanginés, A.G. El potencial de Mexico para la producción de servicios ambientales: Captura de carbono y desempeño hidráulico. Gac. Ecol. 2002, 63, 40–59. [Google Scholar]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Raupach, M.R. Managing Forests for Climate Change Mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed]
- Seely, B.; Welham, C.; Kimmins, H. Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, FORECAST. For. Ecol. Manag. 2002, 169, 123–135. [Google Scholar] [CrossRef]
- Chacón, P.; Leblanc, H.; Russo, R. Fijación de carbono en un bosque secundario de la región tropical húmeda de Costa Rica. Tierra Trop. 2007, 3, 1–11. [Google Scholar]
- Figueroa-Navarro, C.M.; Ángeles-Pérez, G.; Velázquez-Martínez, A.; de los Santos-Posadas, H.M. Estimación de la biomasa en un bosque bajo manejo de Pinus patula Schltdl. et Cham. en Zacualtipán, Hidalgo. Rev. Mex. Cienc. For. 2010, 1, 105–112. [Google Scholar]
- Harmon, M.E.; Harmon, J.M.; Ferrell, W.K.; Brooks, D. Modeling carbon stores in Oregon and Washington forest products: 1900–1992. Clim. Chang. 1996, 33, 521–550. [Google Scholar] [CrossRef]
- CCMSS. El Manejo Sostenible de los Bosques Como Estrategia de Combate al Cambio Climático en México; Punto Verde Consultores, S.C.: Monterrey, Mexico, 2010. [Google Scholar]
- Liu, J.; Liu, S.; Loveland, T.R. Temporal evolution of carbon budgets of the Appalachian forests in the US from 1972 to 2000. For. Ecol. Manag. 2006, 222, 191–201. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, Y.; Chang, J.; Jiang, B.; Jiang, H.; Peng, C.; Zhu, J.; Yuan, W.; Qi, L.; Yu, S. Carbon storage by ecological service forests in Zhejiang Province, subtropical China. For. Ecol. Manag. 2007, 245, 64–75. [Google Scholar] [CrossRef]
- Manzanilla, H. Investigaciones Epidométricas y Silvícolas en Bosques Mexicanos de Abies Religiosa; Secretaría de Agricultura y Ganadería, Dirección General de Información y Relaciones Públicas: Mexico City, Mexico, 1974. [Google Scholar]
Stand | NDVI | Orientation | Slope | Species Composition | ||
---|---|---|---|---|---|---|
Mean | Min | Max | ||||
1 | 0.3495 | 0.1764 | 0.4350 | North | 10–25° | Abies |
2 | 0.3709 | 0.2043 | 0.4681 | North | 10–25° | Abies |
3 | 0.3678 | 0.3016 | 0.4806 | Southeast | 10–25° | Abies |
4 | 0.3900 | 0.2004 | 0.4613 | Northwest | 10–25° | Abies |
5 | 0.3849 | 0.2773 | 0.4510 | Northwest | 10–25° | Abies-Quercus |
6 | 0.3603 | 0.2751 | 0.4360 | North | 10–25° | Abies-Quercus |
7 | 0.3849 | 0.3228 | 0.4228 | East | 10–25° | Abies-Quercus |
8 | 0.3441 | 0.2841 | 0.4064 | Northwest | 4–9° | Abies-Pinus-Quercus |
Other * | 0.2753 | 0.0228 | 0.3990 | - | - | - |
Stand | Surface (Hectares) | Number of Trees ha−1 | Basal Area m2 ha−1 | Volumetric Stocks m3 ha−1 | Volumetric Stocks m3 Stndl−1 |
---|---|---|---|---|---|
1 | 263.43 | 220 | 47.37 | 771.57 | 203,252.50 |
2 | 194.20 | 210 | 35.18 | 716.46 | 139,139.25 |
3 | 153.63 | 210 | 32.63 | 672.41 | 103,299.63 |
4 | 223.27 | 282 | 40.44 | 789.37 | 176,238.35 |
5 | 178.26 | 140 | 22.02 | 462.22 | 82,392.82 |
6 | 203.92 | 70 | 11.86 | 239.33 | 48,805.67 |
7 | 3.29 | 270 | 36.84 | 727.16 | 2524.82 |
8 | 9.66 | 140 | 12.37 | 223.86 | 1770.21 |
Stand | Sampling Plot | Step Time Average | Drilled Trees | Current Annual Increase | |
---|---|---|---|---|---|
m3 | % | ||||
1 | 4 | 19 | 20 | 6.616 | 3.007 |
2 | 3 | 22 | 15 | 4.440 | 2.114 |
3 | 4 | 24 | 20 | 4.870 | 2.319 |
4 | 9 | 17 | 45 | 7.077 | 2.508 |
5 | 5 | 16 | 25 | 5.261 | 3.758 |
6 | 4 | 15 | 20 | 2.605 | 3.722 |
7 | 2 | 23 | 10 | 4.662 | 1.554 |
8 | 2 | 26 | 10 | 1.164 | 0.831 |
Stand | Surface ha−1 | Content of C ha−1 (MgC) | Content of C Stand−1 (MgC) |
---|---|---|---|
1 | 263.43 | 164.25 | 43,268.71 |
2 | 194.20 | 110.92 | 21,540.97 |
3 | 153.63 | 100.44 | 15,430.38 |
4 | 223.27 | 129.55 | 28,925.22 |
5 | 178.26 | 70.95 | 12,646.44 |
6 | 203.92 | 36.25 | 7392.48 |
7 | 3.29 | 120.68 | 396.63 |
8 | 9.66 | 41.72 | 403.18 |
Author | Place of Study | Status of the Area | Species | Carbonor Estimated Mg ha−1 | Observations |
---|---|---|---|---|---|
Present study | Hidalgo, Mexico | Protected | Abies religiosa | 105.72 | Long-lived forest mass and scarce natural regeneration. |
[51] | Mexico City, Mexico | Protected | Abies religiosa | 117.00 | The author makes reference to 3 associations Abies religiosa with shrub and/or herbaceous species. It is not mentioned the method to determine the carbon content. |
[52] | Mexico City, Mexico | Protected | Abies religiosa | 136.41 | A conserved forest was studied. |
[53] | Hidalgo, Mexico | Protected | Abies religiosa | 138.62 | The author details 3 carbon scenarios for this type of forest, in which include disturbed areas, the area studied was 212.95 hectares. |
[54] | Veracruz, Mexico | Protected | Various conifers | 146.30 | It is a protected forest, the authors detail scenarios where the species of Abies religiosa is combined with other conifers. |
[55] | Mexico State, Mexico | Protected | Abies religiosa | 163.62 | A similar methodology was used to calculate the carbon content. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragoso-López, P.I.; Rodríguez-Laguna, R.; Otazo-Sánchez, E.M.; González-Ramírez, C.A.; Valdéz-Lazalde, J.R.; Cortés-Blobaum, H.J.; Razo-Zárate, R. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest. Forests 2017, 8, 429. https://doi.org/10.3390/f8110429
Fragoso-López PI, Rodríguez-Laguna R, Otazo-Sánchez EM, González-Ramírez CA, Valdéz-Lazalde JR, Cortés-Blobaum HJ, Razo-Zárate R. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest. Forests. 2017; 8(11):429. https://doi.org/10.3390/f8110429
Chicago/Turabian StyleFragoso-López, Pablo I., Rodrigo Rodríguez-Laguna, Elena M. Otazo-Sánchez, César A. González-Ramírez, José René Valdéz-Lazalde, Hermann J. Cortés-Blobaum, and Ramón Razo-Zárate. 2017. "Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest" Forests 8, no. 11: 429. https://doi.org/10.3390/f8110429
APA StyleFragoso-López, P. I., Rodríguez-Laguna, R., Otazo-Sánchez, E. M., González-Ramírez, C. A., Valdéz-Lazalde, J. R., Cortés-Blobaum, H. J., & Razo-Zárate, R. (2017). Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest. Forests, 8(11), 429. https://doi.org/10.3390/f8110429