Deterministic Models of Growth and Mortality for Jack Pine in Boreal Forests of Western Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Description of Datasets
2.2. Diameter Growth Model
2.3. Height Growth Model
2.4. Statistical Fitting of Growth Models
2.5. Mortality Model
2.5.1. Variable Selection
2.5.2. Mortality Model Specification
2.6. Validation Methods and Metrics
3. Results
3.1. DBH and Height Increment
3.2. Mortality
3.3. Validation of MGM
4. Discussion
4.1. Ecological Significance
4.2. Application in Forest Management
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Canadian Forest Service Canada’s National Forest Inventory. Available online: https://nfi.nfis.org/home.php?lang=en (accessed on 5 February 2015).
- Burns, R.M.; Honkala, B.H. Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- Cayford, J.H.; Chrosciewicz, Z.; Sims, H.P. A Review of Silvicultural Research in Jack Pine; Northern Forest Research Centre: Edmonton, AB, Canada, 1967.
- Hamilton, W.N.; Krause, H.H. Relationship between jack pine growth and site variables in New Brunswick plantations. Can. J. For. Res. 1985, 15, 922–926. [Google Scholar] [CrossRef]
- Bell, F.W.; Ter-Mikaelian, M.T.; Wagner, R.G. Relative competitiveness of nine early-successional boreal forest species associated with planted jack pine and black spruce seedlings. Can. J. For. Res. 2000, 30, 790–800. [Google Scholar] [CrossRef]
- Day, M.E.; Schedlbauer, J.L.; Livingston, W.H.; Greenwood, M.S.; White, A.S.; Brissette, J.C. Influence of seedbed, light environment, and elevated night temperature on growth and carbon allocation in pitch pine (Pinus rigida) and jack pine (Pinus banksiana) seedlings. For. Ecol. Manag. 2005, 205, 59–71. [Google Scholar] [CrossRef]
- Coates, K.D.; Canham, C.D.; LePage, P.T. Above-versus below-ground competitive effects and responses of a guild of temperate tree species. J. Ecol. 2009, 97, 118–130. [Google Scholar] [CrossRef]
- Béland, M.; Bergeron, Y.; Zarnovican, R. Harvest treatment, scarification and competing vegetation affect jack pine establishment on three soil types of the boreal mixed wood of northwestern Quebec. For. Ecol. Manag. 2003, 174, 477–493. [Google Scholar] [CrossRef]
- Genries, A.; Drobyshev, I.; Bergeron, Y. Growth-climate response of Jack pine on clay soils in northeastern Canada. Dendrochronologia 2012, 30, 127–136. [Google Scholar] [CrossRef]
- Royer-Tardif, S.; Bradley, R.L. Evidence that soil fertility controls the mixing of jack pine with trembling aspen. For. Ecol. Manag. 2011, 262, 1054–1060. [Google Scholar] [CrossRef]
- Pinno, B.D.; Errington, R.C.; Thompson, D.K. Young jack pine and high severity fire combine to create potentially expansive areas of understocked forest. For. Ecol. Manag. 2013, 310, 517–522. [Google Scholar] [CrossRef]
- Smirnova, E.; Bergeron, Y.; Brais, S. Influence of fire intensity on structure and composition of jack pine stands in the boreal forest of Quebec: Live trees, understory vegetation and dead wood dynamics. For. Ecol. Manag. 2008, 255, 2916–2927. [Google Scholar] [CrossRef]
- Bella, I.E.; DeFranceschi, J.P. Commercial Thinning Improves Growth of Jack Pine; Northern Forest Research Centre, Canadian Forestry Service, Department of the Environment: Edmonton, AB, Canada, 1974.
- Moulinier, J.; Brais, S.; Harvey, B.D.; Koubaa, A. Response of boreal jack pine (Pinus banksiana Lamb.) stands to a gradient of commercial thinning intensities, with and without N fertilization. Forests 2015, 6, 2678–2702. [Google Scholar] [CrossRef]
- Bella, I.E.; DeFranceschi, J.P. Analysis of Jack Pine Thinning Experiments, Manitoba and Saskatchewan; Northern Forest Research Centre: Edmonton, AB, Canada, 1974.
- Tong, Q.J.; Zhang, S.Y.; Thompson, M. Evaluation of growth response, stand value and financial return for pre-commercially thinned jack pine stands in Northwestern Ontario. For. Ecol. Manag. 2005, 209, 225–235. [Google Scholar] [CrossRef]
- Mitchell, K.J. Dynamics and simulated yield of Douglas-fir. For. Sci. Monogr. 1975, 17, 1–39. [Google Scholar]
- Di Lucca, C.M. TASS/SYLVER/TIPSY: Systems for predicting the impact of silvicultural practices on yield, lumber value, economic return and other benefits. In Proceedings of the Stand Density Management Conference: Using the Planning Tools, Edmonton, AB, Canada, 23–24 November 1998; pp. 7–16. [Google Scholar]
- Marshall, P.; Parysow, P.; Akindele, S. Evaluating Growth Models: A Case Study Using PrognosisBC. In Proceedings of the HIRD Forest Vegetation Simulator Conference, Fort Collins, CO, USA, 13–15 February 2007. [Google Scholar]
- Temesgen, H.; LeMay, V. Examination of Large Tree Height and Diameter Increment Models Modified for PrognosisBC; Report Prepared for the Britisch Columbia Ministry of Forests, University of British Columbia: Vancouver, BC, Canada, 1999; Volume 143. [Google Scholar]
- Peng, C.; Liu, J.; Dang, Q.; Apps, M.J.; Jiang, H. TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 2002, 153, 109–130. [Google Scholar] [CrossRef]
- Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; de Coligny, F. Capsis: An open software framework and community for forest growth modelling. Ann. For. Sci. 2012, 69, 221–233. [Google Scholar] [CrossRef]
- Ashraf, M.I.; Meng, F.-R.; Bourque, C.P.-A.; MacLean, D.A. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change. PLoS ONE 2015, 10, e0132066. [Google Scholar] [CrossRef] [PubMed]
- Lacerte, V.; Larocque, G.R.; Woods, M.; Parton, W.J.; Penner, M. Calibration of the forest vegetation simulator (FVS) model for the main forest species of Ontario, Canada. Ecol. Model. 2006, 199, 336–349. [Google Scholar] [CrossRef]
- Pokharel, B.; Froese, R.E. Representing site productivity in the basal area increment model for FVS-Ontario. For. Ecol. Manag. 2009, 258, 657–666. [Google Scholar] [CrossRef]
- Government of Alberta Growth & Yield Projection System. Available online: http://www.agric.gov.ab.ca/app21/forestrypage?cat1=Forest Management&cat2=Growth %26 Yield&cat3=Growth %26 Yield Projection System (accessed on 15 August 2017).
- Subedi, N.; Sharma, M. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario. For. Ecol. Manag. 2011, 261, 2140–2148. [Google Scholar] [CrossRef]
- Bokalo, M.; Stadt, K.; Comeau, P.; Titus, S. The Validation of the Mixedwood Growth Model (MGM) for Use in Forest Management Decision Making. Forests 2013, 4, 1–27. [Google Scholar] [CrossRef]
- Comeau, P.G.; Kabzems, R.; McClarnon, J.; Heineman, J.L. Implications of selected approaches for regenerating and managing western boreal mixedwoods. For. Chron. 2005, 81, 559–574. [Google Scholar] [CrossRef]
- Pitt, D.G.; Mihajlovich, M.; Proudfoot, L.M. Juvenile stand responses and potential outcomes of conifer release efforts on Alberta’s spruce–aspen mixedwood sites. For. Chron. 2004, 80, 583–597. [Google Scholar] [CrossRef]
- Alberta Environment and Sustainable Resource Development. Permanent Sample Plot (PSP) Field Procedures Manual; Alberta Environment and Sustainable Resource Development: Edmonton, AB, Canada, 2005. [Google Scholar]
- Alberta Environment and Sustainable Resource Development. Stand Dynamic System Manual; Alberta Environment and Sustainable Resource Development: Edmonton, AB, Canada, 2005. [Google Scholar]
- TECO Natural Resource Group Limited. Saskathewan Permanent Sample Plots Data Consolidation and Database Development; TECO Natural Resource Group Limited: Edmonton, AB, Canada, 2011. [Google Scholar]
- Vyvere, D.V. Permanent Sample Plot Manual; Governament report for Manitoba Provincial Government Winnipeg; 2011. Available online: https://www.agric.gov.ab.ca/app21/forestrypage?cat1=Forest%20Management&cat2=Permanent%20Sample%20Plots (accessed on 15 August 2017).
- Ek, A.; Monserud, R.A. FOREST A Computer Model for Simulating the Growth and Reproduction of Mixed Species Forest Stands; School of Natural Resources, University of Wisconsin-Madison: Madison, WI, USA, 1974. [Google Scholar]
- Huang, J.-G.; Stadt, K.J.; Dawson, A.; Comeau, P.G. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada. PLoS ONE 2013, 8, e77607. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D. Mixed Effects Models in S and S-PLUS; Spinger: New York, NY, USA, 2000. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Development Core Team. nlme: Linear and Nonlinear Mixed Effects Models; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Monserud, R.; Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 1999, 113, 109–123. [Google Scholar] [CrossRef]
- Yao, X.; Titus, S.J.; MacDonald, S.E. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mi×edwood forests. Can. J. For. Res. 2001, 31, 283–291. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley& Sons: Toronto, ON, Canada, 2000; ISBN 0-471-35632-8. [Google Scholar]
- Monserud, R. Simulation of forest tree mortality. For. Sci. 1976, 22, 438–444. [Google Scholar]
- Yang, Y.; Titus, S.J.; Huang, S. Modeling individual tree mortality for white spruce in Alberta. Ecol. Model. 2003, 163, 209–222. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Grothendieck, G.; Green, P. lme4: Linear Mixed-Effects Models Using Eigen and S4, R package version 1.1-14; 2017. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 15 August 2017).
- Anagnostopoulos, C.; Hand, D.J. hmeasure: The H-Measure and Other Scalar Classification Performance Metrics, R package version 1.0; 2012. Available online: http://CRAN.R-project.org/package=hmeasure (accessed on 15 August 2017).
- Huang, S. A Versatile Height and Site Index Model for Jack Pine in Alberta; Alberta Environmental Protection Land and Forest Service: Edmonton, AB, Canada, 1997. [Google Scholar]
- Cieszewski, C.; Bella, I.E.; Yeung, D.P. Preliminary Site-Index Height Growth Curves for Eleven Timber Species in Saskatchewan; Canada–Saskatchewan Partnership Agreement in Forestry; Natural Resources Canada, Canada Forest Service: Prince Alberta, SK, Canada, 1993.
- Vanclay, J.K.; Skovsgaard, J.P. Evaluating forest growth models. Ecol. Model. 1997, 98, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Filipescu, C.N.; Comeau, P.G. Aspen competition affects light and white spruce growth across several boreal sites in western Canada. Can. J. For. Res. 2007, 37, 1701–1713. [Google Scholar] [CrossRef]
- Mugasha, A.G. Evaluation of simple competition indices for the prediction of volume increment of young jack pine and trembling aspen trees. For. Ecol. Manag. 1989, 26, 227–235. [Google Scholar] [CrossRef]
- Stadt, K.J.; Huston, C.; Coates, D.K.; Feng, Z.; Dale, M.R.T.; Lieffers, V.J.; Kenneth, J.S.; Carolyn, H.; David, K.C.; Zhili, F.; et al. Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann. For. Sci. 2007, 64, 477–490. [Google Scholar] [CrossRef]
- Canham, C.D.; Papaik, M.J.; Uriarte, M.; McWilliams, W.H.; Jenkins, J.C.; Twery, M.J. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol. Appl. 2006, 16, 540–554. [Google Scholar] [CrossRef]
- Carmean, W.H.; Lenthall, D.J. Height-growth and site-index curves for jack pine in north central Ontario. Can. J. For. Res. 1989, 19, 215–224. [Google Scholar] [CrossRef]
- Sharma, M.; Subedi, N.; Ter-Mikaelian, M.; Parton, J. Modeling climatic effects on stand Height/Site index of plantation-grown jack pine and black spruce trees. For. Sci. 2015, 61, 25–34. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Crookston, N.L.; Radtke, P.J. Linking climate, gross primary productivity, and site index across forests of the western United States. Can. J. For. Res. 2011, 41, 1710–1721. [Google Scholar] [CrossRef]
- Hamilton, D.A. A Logistic Model of Mortality in Thinned and Unthinned Mixed Conifer Stands of Northern Idaho. For. Sci. 1986, 32, 989–1000. [Google Scholar]
- Kenkel, N.C.; Hoskins, J.A.; Hoskins, W.D. Local competition in a naturally established jack pine stand. Can. J. Bot. 1989, 67, 2630–2635. [Google Scholar] [CrossRef]
- Cortini, F.; Comeau, P.G.; Strimbu, V.C.; Hogg, E.H.; Bokalo, M.; Huang, S. Survival functions for boreal tree species in northwestern North America. For. Ecol. Manag. 2017, 402, 177–185. [Google Scholar] [CrossRef]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. Bioscience 1997, 47, 235–242. [Google Scholar] [CrossRef]
- Kobe, R.K.; Coates, K.D. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 1997, 27, 227–236. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, C.; Dang, Q. Individual-tree basal area growth models for jack pine and black spruce in northern Ontario. For. Chron. 2004, 80, 366–374. [Google Scholar] [CrossRef]
Variable | Units | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Jack pine diameter at breast height (DBH) | cm | 10.67 | 6.14 | 0.20 | 58.50 |
Jack pine height | m | 10.65 | 5.17 | 1.30 | 31.60 |
Jack Pine DBH increment | cm/year | 0.14 | 0.14 | −0.2 | 1.16 |
Jack Pine height increment | m/year | 0.19 | 0.19 | −0.4 | 1.2 |
Measurement interval | years | 6.33 | 3.37 | 2.00 | 36.00 |
Jack Pine Mortality | % trees dead/plot | 14% | 17.8% | 0.8% | 100% |
Number of plot remesurements | 1.78 | 0.93 | 1.00 | 5.00 | |
Site Index | m | 16.53 | 2.78 | 7.73 | 25.69 |
Stand age | years | 54.17 | 24.84 | 6.00 | 154.00 |
Coniferous density | tph | 2587.58 | 5098.28 | 12.36 | 75,184.96 |
Deciduous density | tph | 230.86 | 679.44 | 0.00 | 12,230.00 |
Coniferous Avg DBH | cm | 13.30 | 5.35 | 0.63 | 35.50 |
Deciduous Avg DBH | cm | 5.99 | 7.42 | 0.00 | 37.80 |
Coniferous Avg Height | m | 12.52 | 4.31 | 1.50 | 23.49 |
Deciduous Avg Height | m | 6.15 | 7.01 | 0.00 | 27.30 |
Coniferous basal area | m2/ha | 21.22 | 9.66 | 0.10 | 47.44 |
Deciduous basal area | m2/ha | 2.06 | 5.26 | 0.00 | 38.35 |
Stand Quadratic Mean Diameter (QMD) | cm | 13.59 | 5.17 | 0.71 | 32.11 |
Stand volume | m3/ha | 148.98 | 88.13 | 0.54 | 450.14 |
Stand Basal area | m2/ha | 23.28 | 9.50 | 0.55 | 48.63 |
Stand Density | tph | 2783.42 | 5155.72 | 125.00 | 76,584.68 |
No Correlation Structure | Correlation Structure | |||||
---|---|---|---|---|---|---|
Variable | Parameter (Degrees of Freedom) | Estimate | SE | Estimate | SE | |
Diameter at breast height (DBH) increment | Rho | Not used | 0.1554 | |||
DDG | d (42817) | 6.2791 | 10.800 | 6.1838 | 10.900 | |
PDG | p (42817) | 4.9404 | 0.1640 | 5.0129 | 0.16500 | |
SDG | s (42817) | 36.324 | 4.2700 | 35.929 | 4.2400 | |
Height increment | Rho | Not used | −0.06087 | |||
DDG | d (40404) | 7.4728 | 0.40100 | 7.5410 | 0.39500 | |
PDG | p (40404) | 3.0850 | 0.018900 | 3.0890 | 0.018600 | |
SDG | s (40404) | 5.1236 | 0.43300 | 4.8842 | 0.42000 |
Variable | Random Effect | Standard Deviation | |
---|---|---|---|
DBH increment | Plot level | ||
DDG (deciduous trees) | σ1 | 6.59 | |
PDG (pine trees) | σ1 | 1.42 | |
SDG (spruce-fir trees) | σ1 | 5.68 | |
Tree level | |||
DDG | σ2 | 122 | |
PDG | σ2 | 2.63 | |
SDG | σ2 | 40.8 | |
Residual | 6850 | ||
Height increment | Tree level | ||
DDG | σ | 5.49 | |
PDG | σ | 1.25 | |
SDG | σ | 3.23 | |
Residual | 1480 |
Variable | Estimate | SE |
---|---|---|
Intercept | −3.39488 | 0.649369 |
DBH (Diameter at breast height) | 0.525338 | 0.016738 |
DBH2 | −0.01791 | 0.000783 |
DBH increment | 7.899263 | 0.280795 |
StComp | 3.700769 | 0.632396 |
DBH2/StBA | 0.044852 | 0.015472 |
BA greater | −0.00547 | 0.000235 |
L | −0.08825 | 0.009757 |
Mean | Median | Std. Dev. | Min | Max | ||
---|---|---|---|---|---|---|
DBH (Diameter at breast height) | AMB | 0.07 | 0.06 | 1.22 | −2.46 | 5.07 |
RMB % | 0.95% | 0.34% | 9.38% | −12.58% | 42.55% | |
EF | 0.7 | 0.81 | 0.38 | −1.15 | 0.98 | |
Height | AMB | 0.31 | 0.14 | 1.06 | −1.94 | 2.73 |
RMB % | 1.65% | 1.33% | 7.86% | −21.98% | 18.49% | |
EF | 0.05 | 0.25 | 0.7 | −2.23 | 0.82 |
Observed | Predicted | Residuals | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Std. Dev. | Mean | Min | Max | Std. Dev. | Mean | Min | Max | Std. Dev. | ||
Stand | Volume | 178.83 | 7.69 | 371.15 | 90.41 | 174.12 | 11.15 | 378.04 | 100.12 | 4.71 | −102.22 | 76.10 | 35.32 |
BA | 25.94 | 1.67 | 42.14 | 9.03 | 25.45 | 2.66 | 42.98 | 10.54 | 0.48 | −12.59 | 14.84 | 5.15 | |
Avg DBH | 14.22 | 4.14 | 22.36 | 4.55 | 13.73 | 5.58 | 22.63 | 4.65 | 0.50 | −1.44 | 3.57 | 1.11 | |
Avg Ht | 14.16 | 5.80 | 20.10 | 3.92 | 13.85 | 6.83 | 20.18 | 3.75 | 0.30 | −2.40 | 3.31 | 1.34 | |
Density | 2161.69 | 333.33 | 17,068.39 | 2827.84 | 2122.35 | 389.43 | 13,416.97 | 2269.25 | 39.35 | −1833.48 | 3651.42 | 911.00 | |
DBH increment | 0.20 | 0.07 | 0.70 | 0.13 | 0.18 | 0.04 | 0.57 | 0.13 | 0.01 | −0.29 | 0.24 | 0.10 | |
Height increment | 0.20 | 0 | 0.70 | 0.15 | 0.20 | 0.05 | 0.74 | 0.17 | −0.01 | −0.32 | 0.17 | 0.12 | |
Coniferous | Volume | 175.26 | 7.69 | 371.15 | 91.40 | 169.42 | 11.15 | 378.04 | 102.00 | 5.84 | −102.22 | 77.96 | 35.81 |
BA | 25.21 | 1.67 | 42.02 | 9.20 | 24.49 | 2.66 | 42.98 | 11.03 | 0.72 | −12.59 | 15.90 | 5.29 | |
Avg DBH | 14.46 | 4.11 | 22.36 | 4.30 | 13.87 | 5.58 | 22.63 | 4.49 | 0.60 | −1.46 | 4.39 | 1.13 | |
Avg Ht | 14.30 | 5.69 | 20.10 | 3.80 | 13.95 | 6.81 | 20.49 | 3.67 | 0.35 | −1.79 | 3.31 | 1.27 | |
Density | 1943.19 | 333.33 | 15,449.49 | 2516.60 | 1927.69 | 389.43 | 12,167.26 | 2070.99 | 15.51 | −1833.48 | 3282.24 | 741.63 | |
TopHt | 16.58 | 8.38 | 23.09 | 3.81 | 16.12 | 9.50 | 22.86 | 3.69 | 0.47 | −1.64 | 3.17 | 1.08 | |
DBH increment | 0.19 | 0.07 | 0.54 | 0.11 | 0.18 | 0.02 | 0.57 | 0.14 | 0.01 | −0.42 | 0.22 | 0.11 | |
Height increment | 0.19 | 0 | 0.54 | 0.14 | 0.21 | 0.04 | 0.76 | 0.19 | −0.02 | −0.58 | 0.17 | 0.14 | |
Deciduous | Volume | 8.09 | 0.41 | 31.99 | 8.62 | 10.00 | 1.44 | 34.81 | 9.84 | −2.41 | −8.83 | 2.89 | 3.13 |
BA | 1.64 | 0.09 | 7.46 | 1.91 | 2.05 | 0.26 | 7.68 | 2.25 | −0.51 | −3.29 | 0.41 | 0.87 | |
Avg DBH | 11.18 | 3.70 | 20.42 | 5.55 | 13.05 | 5.35 | 20.51 | 5.12 | −1.39 | −5.35 | 2.60 | 1.93 | |
Avg Ht | 11.67 | 5.64 | 19.33 | 4.38 | 13.21 | 6.14 | 18.65 | 4.02 | −1.34 | −4.60 | 1.25 | 1.91 | |
Density | 218.50 | 0.00 | 3720.64 | 696.25 | 194.66 | 0.00 | 2284.73 | 533.85 | 50.66 | −1325.38 | 1799.68 | 583.38 | |
TopHt | 12.76 | 8.02 | 19.33 | 3.61 | 13.80 | 7.27 | 18.65 | 3.26 | −0.87 | −4.60 | 2.17 | 2.13 | |
DBH increment | 0.05 | 0 | 0.59 | 0.25 | 0.13 | 0.00 | 0.54 | 0.17 | −0.04 | −0.33 | 0.19 | 0.11 | |
Height increment | 0.06 | 0 | 0.73 | 0.25 | 0.12 | 0.00 | 0.54 | 0.16 | −0.02 | −0.23 | 0.24 | 0.09 |
Coniferous | Deciduous | |||||
---|---|---|---|---|---|---|
AMB | RMB (%) | EF | AMB | RMB (%) | EF | |
Stand volume (m3/ha) | 5.84 | 3.33 | 0.84 | −2.41 | −29.8 | 0.78 |
Stand basal area (m2/ha) | 0.72 | 2.86 | 0.66 | −0.51 | 31.23 | 0.71 |
Average height (m) | 0.35 | 2.45 | 0.88 | −1.34 | −11.49 | 0.71 |
Top height (m) | 0.47 | 2.81 | 0.90 | −0.87 | −6.84 | 0.59 |
Average DBH (cm) | 0.6 | 4.13 | 0.91 | −1.39 | −12.42 | 0.81 |
Density (tph) | 15.51 | 0.8 | 0.91 | 50.66 | 23.19 | 0.68 |
DBH increment (cm/year) | 0.02 | 9.69 | 0.41 | −0.04 | −78.16 | 0.80 |
Height increment (m/year) | 0.01 | 0.65 | 0.43 | −0.02 | −35.14 | 0.84 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strimbu, V.C.; Bokalo, M.; Comeau, P.G. Deterministic Models of Growth and Mortality for Jack Pine in Boreal Forests of Western Canada. Forests 2017, 8, 410. https://doi.org/10.3390/f8110410
Strimbu VC, Bokalo M, Comeau PG. Deterministic Models of Growth and Mortality for Jack Pine in Boreal Forests of Western Canada. Forests. 2017; 8(11):410. https://doi.org/10.3390/f8110410
Chicago/Turabian StyleStrimbu, Vlad C., Mike Bokalo, and Philip G. Comeau. 2017. "Deterministic Models of Growth and Mortality for Jack Pine in Boreal Forests of Western Canada" Forests 8, no. 11: 410. https://doi.org/10.3390/f8110410
APA StyleStrimbu, V. C., Bokalo, M., & Comeau, P. G. (2017). Deterministic Models of Growth and Mortality for Jack Pine in Boreal Forests of Western Canada. Forests, 8(11), 410. https://doi.org/10.3390/f8110410