Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Layout
2.2. Growth Medium Sampling and Measurement
2.3. Plant Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Properties of the Growing Media
3.2. Seedling Growth and Biomass
3.3. Seedling Root Morphology
4. Discussion
4.1. Effects of Container Type and Growth Medium on Seedling Quality
4.2. Correlation among the Seedling Morphological Characteristics
4.3. Potential Option for the Practical Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Close, D.C.; Paterson, S.; Corkrey, R.; McArthur, C. Influences of seedling size, container type and mammal browsing on the establishment of Eucalyptus globulus in plantation forestry. New For. 2010, 39, 105–115. [Google Scholar] [CrossRef]
- Dey, D.C.; Parker, W.C. Morphological indicators of stock quality and field performance of red oak (Quercus rubra L.) seedlings underplanted in a central Ontario shelterwood. New For. 1997, 14, 145–156. [Google Scholar] [CrossRef]
- South, D.B.; Mitchell, R.J. Determining the ‘‘optimum’’ slash pine seedling size for use with four levels of vegetation management on a flatwoods site in Georgia USA. Can. J. For. Res. 1999, 29, 1039–1046. [Google Scholar] [CrossRef]
- Cuesta, B.; Villar-Salvador, P.; Puértolas, J.; Jacobs, D.F.; Benayas, J.M.R. Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For. Ecol. Manag. 2010, 260, 71–78. [Google Scholar] [CrossRef]
- Trubat, R.; Cortina, J.; Vilagrosa, A. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol. Eng. 2011, 37, 1164–1173. [Google Scholar] [CrossRef]
- Puértolas, J.; Jacobs, D.F.; Benito, L.F.; Peñuelas, J.L. Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol. Eng. 2012, 44, 210–215. [Google Scholar] [CrossRef]
- Akpo, E.; Stomph, T.J.; Kossou, D.K.; Omore, A.O.; Struik, P.C. Effects of nursery management practices on morphological quality attributes of tree seedlings at planting: The case of oil palm (Elaeis guineensis Jacq.). For. Ecol. Manag. 2014, 324, 28–36. [Google Scholar] [CrossRef]
- South, D.B.; Harris, S.W.; Barnett, J.P.; Hainds, M.J.; Gjerstad, D.H. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.A. For. Ecol. Manag. 2005, 204, 385–398. [Google Scholar] [CrossRef]
- Aisueni, N.O.; Ikuenobe, C.E.; Okolo, E.C.; Ekhator, F. Response of date palm (Phoenix dactylifera) seedlings to organic manure, N and K fertilizers in polybag nursery. Afr. J. Agric. Res. 2009, 4, 162–165. [Google Scholar]
- Dumroese, R.K.; Davis, A.S.; Jacobs, D.F. Nursery response of Acacia koa seedlings to container size, irrigation method, and fertilization rate. J. Plant Nutr. 2011, 34, 877–887. [Google Scholar] [CrossRef]
- Aghai, M.M.; Pinto, J.R.; Davis, A.S. Container volume and growing density influence western larch (Larix occidentalis Nutt.) seedling development during nursery culture and establishment. New For. 2014, 45, 199–213. [Google Scholar] [CrossRef]
- Stein, W.I.; Edwards, J.L.; Tinus, R.W. Outlook for container-grown seedling use in reforestation. J. For. 1975, 73, 337–341. [Google Scholar]
- Tsakaldimi, M.; Zagas, T.; Tsitsoni, T.; Ganatsas, P. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 2005, 278, 85–93. [Google Scholar] [CrossRef]
- Heiskanen, J. Effects of compost additive in sphagnum peat growing medium on Norway spruce container seedlings. New For. 2013, 44, 101–118. [Google Scholar] [CrossRef]
- Marianthi, T. Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresour. Technol. 2006, 97, 1631–1639. [Google Scholar] [PubMed]
- Manh, V.H.; Wang, C.H. Vermicompost as an important component in substrate: Effects on seedling quality and growth of Muskmelon (Cucumis melo L.). APCBEE Procedia 2014, 8, 32–40. [Google Scholar] [CrossRef]
- Veijalainen, A.M.; Juntunen, M.L.; Heiskanen, J.; Lilja, A. Growing Picea abies container seedlings in peat and composted forest-nursery waste mixtures for forest regeneration. Scand. J. For. Res. 2007, 22, 390–397. [Google Scholar] [CrossRef]
- Veijalainen, A.M.; Heiskanen, J.; Juntunen, M.L.; Lilja, A. Tree-seedling compost as a component in Sphagnum peat-based growing media for conifer seedlings: Physical and chemical properties. Acta Hortic. 2008, 779, 431–438. [Google Scholar] [CrossRef]
- Ge, M.; Chen, G.; Hong, J.; Huang, X.; Zhang, L.; Wang, L.; Ye, L.; Wang, X. Screening for formulas of complex substrates for seedling cultivation of tomato and marrow squash. Procedia Environ. Sci. 2012, 16, 606–615. [Google Scholar] [CrossRef]
- Fang, S.Z.; Wang, J.; Wei, Z.; Zhu, Z. Methods to break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja. Sci. Hortic. 2006, 110, 305–309. [Google Scholar] [CrossRef]
- Deng, B.; Fang, S.Z.; Yang, W.X.; Tian, Y.; Shang, X.L. Provenance variation in growth and wood properties of juvenile Cyclocarya paliurus. New For. 2014, 45, 625–639. [Google Scholar] [CrossRef]
- Kurihara, H.; Fukami, H.; Kusumoto, A.; Toyoda, Y.; Shibata, H.; Matsui, Y.; Tanaka, T. Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci. Biotechnol. Biochem. 2003, 67, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, C.; Fang, S.; Wang, J.; Ji, Y.; Shang, X.; Ni, Y.; Yin, Z.; Zhang, J. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J. Ethnopharmacol. 2013, 150, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Lin, Z.; Jiang, C.; Gao, M.; Wang, Q.; Yao, N.; Ma, Y.; Li, Y.; Fang, S.; Shang, X.; et al. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague–Dawley rats. Can. J. Physiol. Pharmacol. 2015, 93, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, N.; Lu, J.; Li, X.; Wang, Y.; Yang, L.; Xiao, K. Water-soluble phenolic compounds and their anti-HIV-1 activities from the leaves of Cyclocarya paliurus. J. Food Drug Anal. 2010, 18, 398–404. [Google Scholar]
- Xie, J.H.; Xie, M.Y.; Nie, S.P.; Shen, M.Y.; Wang, Y.X.; Li, C. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 2010, 119, 1626–1632. [Google Scholar] [CrossRef]
- Xie, J.H.; Liu, X.; Shen, M.Y.; Nie, S.P.; Zhang, H.; Li, C.; Xie, M.Y. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chem. 2013, 136, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.Z.; Chu, X.L.; Shang, X.L.; Yang, W.X.; Fu, X.X.; She, C.Q. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarea paliurus. Food Chem. 2011, 124, 1382–1386. [Google Scholar] [CrossRef]
- Fu, X.; Feng, L.; Fang, S.; Mao, J. Observation on flowering habits and anatomy of stamen development in Cyclocarya paliurus. J. Nanjing For. Univ. 2010, 34, 67–71. (In Chinese) [Google Scholar]
- Arshad, M.A.; Lowery, B.; Grossman, B. Physical Tests for Monitoring Soil Quality. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 123–141. [Google Scholar]
- Perrier, E.R.; Kellogg, M. Colorimetric determination of soil organic matter. Soil Sci. 1960, 90, 104–106. [Google Scholar] [CrossRef]
- Haase, D.L. Morphological and Physiological Evaluation of Seedling Quality. In National Proceedings: Forest and Conservation Nursery Associations; Riley, L.E., Dumreoese, R.K., Landis, T.D., Eds.; Proc RMRS-P-50: Fort Collins, CO, USA, 2007; pp. 3–8. [Google Scholar]
- Brissette, J.C.; Barnett, J.P.; Landis, T.D. Container Seedlings. In Forest Regeneration Manual; Duryea, M.L., Dougherty, P.M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1991; pp. 117–141. [Google Scholar]
- Vaknin, Y.; Dudai, N.; Murkhovsky, L.; Gelfandbein, L.; Fischer, R.; Degani, A. Effects of pot size on leaf production and essential oil content and composition of Eucalyptus citriodora Hook. (Lemon-Scented Gum). J. Herbs Spices Med. Plants 2009, 15, 164–176. [Google Scholar] [CrossRef]
- Dominguez-Lerena, S.; Herrero Sierra, N.; Carrasco Manzano, I.; Ocaña Bueno, L.; Peñuelas Rubira, J.L.; Mexal, J.G. Container characteristics influence Pinus pinea seedling development in the nursery and field. For. Ecol. Manag. 2006, 221, 63–71. [Google Scholar] [CrossRef]
- Thomas, B.R.; Schreiber, S.G.; Kamelchuk, D.P. Impact of planting container type on growth and survival of three hybrid poplar clones in central Alberta, Canada. New For. 2016, 47, 815–827. [Google Scholar] [CrossRef]
- Aphalo, P.; Rikala, R. Field performance of silver-birch planting-stock grown at different spacing and in containers of different volume. New For. 2003, 25, 93–108. [Google Scholar] [CrossRef]
- Close, D.C.; Bail, I.; Hunter, S.; Beadle, C.L. Defining seedling specifications for Eucalyptus globulus: Effects of seedling size and container type on early after-planting performance. Aust. For. 2006, 69, 2–8. [Google Scholar] [CrossRef]
Growth Medium | pH Value | Bulk Density | Organic Matter | Total Nitrogen | Total Phosphorus | Total Potassium |
---|---|---|---|---|---|---|
(g cm−3) | (g kg−1) | (g kg−1) | (g kg−1) | (g kg−1) | ||
F1 | 6.11 ± 0.04 b | 0.85 ± 0.04 a | 75.58 ± 0.45 a | 0.50 ± 0.60 c | 0.99 ± 1.91 c | 8.25 ± 0.27 c |
F2 | 6.44 ± 0.02 a | 0.77 ± 0.07 a | 73.3 ± 0.30 b | 0.72 ± 1.52 b | 2.81 ± 4.10 b | 9.55 ± 0.15 b |
F3 | 6.66 ± 0.13 a | 0.73 ± 0.09 a | 71.39 ± 0.41 c | 0.88 ± 2.21 a | 3.70 ± 4.66 a | 10.25 ± 0.1 a |
Factors | df | Seedling Growth | Seedling Biomass | |||||
---|---|---|---|---|---|---|---|---|
Height (cm) | Root-Collar Diameter (mm) | Ratio of Height to Diameter | Shoot (g) | Root (g) | Total (g) | Root-to-Shoot Ratio | ||
Growth Medium (F) | 2 | 19.37 *** | 29.61 *** | 17.35 *** | 8.89 ** | 3.71 * | 12.77 *** | 0.62 ns |
Container type (C) | 3 | 333.94 *** | 176.89 *** | 158.44 *** | 75.75 *** | 34.16 *** | 111.68 *** | 2.62 ns |
F × C | 6 | 6.22 *** | 2.86 ** | 10.02 *** | 1.38 ns | 0.57 ns | 0.69 ns | 3.65 * |
Container Type | Growing Medium | Seedling Height (cm) | Root-Collar Diameter (mm) | Ratio of Height to Diameter |
---|---|---|---|---|
C1 | F1 | 63.92 ± 1.01 a | 7.89 ± 0.17 ab | 81.16 ± 1.27 a |
C2 | F1 | 43.44 ± 3.34 d | 6.77 ± 0.28 e | 64.88 ± 4.00 b |
C3 | F1 | 21.32 ± 2.64 h | 5.23 ± 0.06 h | 38.99 ± 1.71 f |
C4 | F1 | 36.25 ± 0.57 f | 6.80 ± 0.33 de | 54.23 ± 4.00 c |
C1 | F2 | 63.90 ± 3.51 a | 8.16 ± 0.43 a | 76.91 ± 4.83 a |
C2 | F2 | 45.16 ± 4.38 cd | 7.18 ± 0.17 cd | 64.51 ± 5.51 b |
C3 | F2 | 28.15 ± 0.11 g | 6.17 ± 0.23 f | 44.67 ± 0.16 e |
C4 | F2 | 48.80 ± 1.46 c | 7.60 ± 0.15 b | 64.52 ± 2.09 b |
C1 | F3 | 57.46 ± 2.99 b | 8.22 ± 0.17 a | 69.00 ± 5.08 b |
C2 | F3 | 38.67 ± 2.08 ef | 7.54 ± 0.06 bc | 50.11 ± 0.62 cd |
C3 | F3 | 25.77 ± 1.43 g | 5.71 ± 0.12 g | 46.45 ± 3.04 de |
C4 | F3 | 41.94 ± 2.05 de | 7.71 ± 0.24 b | 55.04 ± 0.01 c |
Average of the treatments | 42.9 | 7.08 | 59.21 |
Factors | df | Root Morphology | |||
---|---|---|---|---|---|
Length of Total Root (m) | Root Surface Area (cm2) | Root Volume (cm3) | Mean Root Diameter (mm) | ||
Growth Medium (F) | 2 | 9.18 ** | 10.25 *** | 4.20 * | 2.37 ns |
Container type (C) | 3 | 19.02 *** | 24.57 *** | 12.78 ** | 3.90 * |
F × C | 6 | 2.28 ns | 2.37 ns | 0.64 ns | 1.05 ns |
Treatment | Length of Total Root (m) | Root Surface Area (m2) | Root Volume (cm3) | Mean Root Diameter (mm) |
---|---|---|---|---|
Container type | ||||
C1 | 51.71 ± 19.39 a | 0.08 ± 0.02 a | 12.18 ± 4.33 a | 3.61 ± 2.02 a |
C2 | 31.45 ± 10.97 b | 0.04 ± 0.01 b | 5.92 ± 2.19 bc | 3.01 ± 0.61 ab |
C3 | 16.43 ± 8.19 c | 0.02 ± 0.10 c | 3.51 ± 1.38 c | 2.04 ± 1.20 b |
C4 | 31.11 ± 11.49 b | 0.04 ± 0.01 b | 7.59 ± 4.15 b | 3.38 ± 0.55 a |
Growth medium | ||||
F1 | 23.36 ± 8.74 b | 0.03 ± 0.01 b | 5.23 ± 2.96 b | 2.83 ± 1.57 a |
F2 | 40.65 ± 17.91 a | 0.06 ± 0.03 a | 8.01 ± 4.98 a | 2.74 ± 0.76 a |
F3 | 34.00 ± 21.41 a | 0.05 ± 0.03 a | 8.66 ± 4.82 a | 3.49 ± 1.54 a |
Variables | Height | RCD | HDR | Shoot Biomass | Root Biomass | Total Biomass | RSR | TRL | RSA | RV |
---|---|---|---|---|---|---|---|---|---|---|
RCD | 0.886 ** | |||||||||
HDR | 0.925 ** | 0.765 ** | ||||||||
Shoot biomass | 0.841 ** | 0.826 ** | 0.803 ** | |||||||
Root biomass | 0.875 ** | 0.860 ** | 0.808 ** | 0.872 ** | ||||||
Total biomass | 0.885 ** | 0.869 ** | 0.835 ** | 0.978 ** | 0.955 ** | |||||
RSR | −0.227 | −0.198 | −0.299 | −0.430 ** | −0.023 | −0.278 | ||||
TRL | 0.721 ** | 0.726 ** | 0.593 ** | 0.712 ** | 0.760 ** | 0.754 ** | −0.076 | |||
RSA | 0.719 ** | 0.720 ** | 0.620 ** | 0.742 ** | 0.797 ** | 0.788 ** | −0.057 | 0.936 ** | ||
RV | 0.686 ** | 0.693 ** | 0.587 ** | 0.670 ** | 0.722 ** | 0.714 ** | −0.074 | 0.724 ** | 0.875 ** | |
MRD | 0.450 ** | 0.498 ** | 0.308 | 0.362 * | 0.345 * | 0.369 * | −0.171 | 0.421 * | 0.410 * | 0.575 ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, N.; Fang, S.; Yang, W.; Shang, X.; Fu, X. Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture. Forests 2017, 8, 387. https://doi.org/10.3390/f8100387
Tian N, Fang S, Yang W, Shang X, Fu X. Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture. Forests. 2017; 8(10):387. https://doi.org/10.3390/f8100387
Chicago/Turabian StyleTian, Ning, Shengzuo Fang, Wanxia Yang, Xulan Shang, and Xiangxiang Fu. 2017. "Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture" Forests 8, no. 10: 387. https://doi.org/10.3390/f8100387
APA StyleTian, N., Fang, S., Yang, W., Shang, X., & Fu, X. (2017). Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture. Forests, 8(10), 387. https://doi.org/10.3390/f8100387