Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
3.1. Fire Event Selection
Number | Area (ha) | Year of disturbance | TSD | ||||
---|---|---|---|---|---|---|---|
Image 1985 | Image 1995 | Image 2000 | Image 2005 | ||||
Fires | f1 | 2,026 | 1996 | nd | nd | 4 | 9 |
f2 | 2,486 | 1987 | nd | nd | 13 | 18 | |
f4 | 3,162 | 1976 | nd | nd | 24 | 29 | |
f5 | 3,271 | 1996 | nd | nd | 4 | 9 | |
f7 | 4,243 | 1986 | 0.25 | nd | 14 | 19 | |
f9 | 5,175 | 1997 | nd | nd | 3 | 8 | |
f10 | 5,383 | 1986 | nd | nd | 14 | 19 | |
f13 | 5,703 | 1986 | 0.25 | 9 | 14 | 19 | |
f14 | 5,853 | 1988 | nd | nd | 12 | 17 | |
f15 | 6,129 | 1980 | nd | 15 | 20 | 25 | |
f17 | 6,973 | 1996 | nd | nd | 4 | 9 | |
f18 | 7,376 | 1976 | 4 | 9 | nd | nd | |
f20 | 10,177 | 1996 | nd | nd | 4 | 9 | |
f21 | 10,373 | 1995 | nd | nd | 5 | 10 | |
f22 | 11,220 | 1986 | nd | nd | 14 | 19 | |
f26 | 20,152 | 1986 | nd | nd | 14 | 19 | |
f27 | 21,262 | 1996 | nd | nd | 4 | 9 | |
f28 | 20,914 | 1976 | nd | nd | 24 | 29 | |
f29 | 33,325 | 1986 | nd | nd | 14 | 19 | |
f30 | 36,325 | 1983 | nd | nd | 17 | 22 | |
f32 | 42,753 | 1996 | nd | nd | 3 | 8 | |
f33 | 51,882 | 1986 | nd | nd | 14 | 19 | |
Harvest | c1 | 15,932 | 1976 (1971–1980) | 9 | 19 | 24 | 29 |
c2 | 27,152 | 1978 (1974–1982) | 7 | 17 | 22 | 27 | |
c3 | 48,121 | 1978 (1976–1981) | 7 | 17 | 22 | 27 | |
c4 | 7,626 | 1980 (1978–1982) | 5 | 15 | 20 | 25 | |
c5 | 16,923 | 1976 (1971–1979) | 9 | 19 | 24 | 29 | |
c6 | 12,595 | 1981 (1978–1984) | 4 | 14 | 19 | 24 | |
c7 | 96,574 | 1978 (1976–1983) | 7 | 17 | 22 | 27 | |
c8 | 43,823 | 1988 (1984–1993) | bh | 7 | 12 | 17 | |
c9 | 4,165 | 1985 (1984–1985) | 0 | 10 | 15 | 20 | |
c10 | 14,379 | 1986 (1984–1988) | bh | 9 | 14 | 19 | |
c11 | 11,878 | 1990 (1987–1994) | bh | 5 | 10 | 15 | |
c12 | 47,982 | 1989 (1984–1993) | bh | 6 | 11 | 16 | |
c13 | 34,146 | 1987 (1985–1990) | bh | 8 | 13 | 18 | |
c14 | 35,403 | 1988 (1984–1992) | bh | 7 | 12 | 17 |
3.2. Delineation of Harvested Agglomerations
3.3. Pre-Disturbance States
3.4. Post-Disturbance Changes
3.4.1. Post-Disturbance Successional Pathways
3.4.2. Rate of Forest Revegetation
3.4.3. Post-Disturbance Composition
4. Results
4.1. Pre-Disturbance States
4.2. Post-Disturbance Changes
4.2.1. Post-Disturbance Successional Pathways
4.2.2. Post-Disturbance Forest Revegetation Rates
No fire | Mature cover (%) | No harvest | Mature cover (%) |
---|---|---|---|
f28* | 75.7 | c10 | 88.3 |
f10 | 75.3 | c04 | 83.7 |
f33 | 72.1 | c07 | 83.1 |
f21 | 67.7 | c11 | 82.5 |
f27 | 67.7 | c02 | 80.3 |
f17 | 65.7 | c03 | 77.6 |
f1 | 61.4 | c08 | 77.5 |
f29 | 54.3 | c09 | 76.6 |
f5 | 50.8 | c12 | 76.5 |
f13 | 48.7 | c14 | 72.3 |
f7 | 48.4 | c15 | 72.3 |
f20 | 37.5 | c13 | 71.1 |
f26 | 26.2 | c06 | 60.5 |
f9 | 22.1 | c01 | 58.3 |
f4 | 17.9 | ||
f30 | 16.9 | ||
f14 | 14.5 | ||
f2 | 14.1 | ||
f22 | 12.9 | ||
f18 | 12.4 | ||
f15 | 11.2 | ||
f32 | 10.7 |
(a) | ||||
---|---|---|---|---|
Fires | Period | Forest revegetation rate (over a five-year period) for each type of change | ||
S0 to S1-S2-S3 | S1 to S2-S3 | S2 to S3 | ||
f10 | 14–19 | 0.37 | 0.47 | 0.17 |
f33 | 14–19 | 0.43 | 0.60 | 0.21 |
f28 | 24–29 | 0.76 | 0.41 | 0.04 |
f29 | 14–19 | 0.40 | 0.67 | 0.11 |
f7 | 14–19 | 0.34 | 0.74 | 0.03 |
f13 | 14–19 | 0.41 | 0.57 | 0.12 |
Mean | 0.45 | 0.58 | 0.11 | |
SD | 0.15 | 0.12 | 0.07 | |
(b) | ||||
Fires | Period | Revegetation rate (over a five-year period) for each type of change | ||
S0 to S1-S2-S3 | S1 to S2-S3 | S2 to S3 | ||
f10 | 14–19 | 0.37 | 0.47 | 0.17 |
f33 | 14–19 | 0.46 | 0.66 | 0.21 |
f28 | 24––29 | 0.74 | 0.46 | 0.04 |
f29 | 14–19 | 0.40 | 0.73 | 0.10 |
f7 | 14–19 | 0.33 | 0.72 | 0.01 |
f13 | 14–19 | 0.43 | 0.68 | 0.11 |
Mean | 0.46 | 0.64 | 0.11 | |
SD | 0.14 | 0.10 | 0.08 | |
(c) | ||||
Harvest | Period | Revegetation rate (over a five-year period) for each type of change | ||
S0 to S1-S2-S3 | S1 to S2-S3 | S2 to S3 | ||
c4 | 20–25 | 0.53 | 0.80 | 0.03 |
c6 | 19–24 | 0.53 | 0.62 | 0.04 |
c8 | 12–17 | 0.91 | 0.76 | 0.15 |
c9 | 15–20 | 0.92 | 0.65 | 0.09 |
c10 | 14–19 | 0.80 | 0.53 | 0.08 |
c11 | 10–15 | 0.74 | 0.61 | 0.07 |
c12 | 11–16 | 0.94 | 0.60 | 0.18 |
c13 | 13–18 | 0.66 | 0.52 | 0.17 |
c14 | 12–17 | 0.85 | 0.81 | 0.21 |
Mean | 0.76 | 0.66 | 0.11 | |
SD | 0.16 | 0.11 | 0.07 |
4.2.3. Post-Disturbance Composition
5. Discussion
5.1. Post-Disturbance Recovery
5.2. Post-Disturbance Composition
6. Conclusion
Acknowledgements
Conflicts of Interest
Appendixes
Original code* | New code | Designation |
---|---|---|
DH | BH | Bare humid |
ME 90 | ||
DS | BD | Bare dry |
EA | H2O | Water |
E 90 | BS | Black spruce |
BB 90 | ID | Shade-intolerant deciduous |
FI 90 | ||
TR 90 | ||
BBR 90 | DeC | Shade-intolerant deciduous with coniferous |
FIPG 90 | ||
FIR 90 | ||
TRR 90 | ||
BR | Dist | Disturbance |
CH | ||
BR 10 | ||
CT10 | ||
EPG 90 | JP | Jack pine |
PG 90 | ||
PGE 90 | ||
FI 30 | RegD | Deciduous regeneration |
FIPG 30 | ||
FIR 30 | ||
FIR30 | ||
E 30 | RegC | Coniferous regeneration |
EPG 30 | ||
PG 30 | ||
PGE 30 | ||
S 30 | ||
S 90 | BF | Balsam fir |
Surficial deposit codes | Designation |
---|---|
R; RLA; R7; R7T; RAA; RS, M1A; 1AR | Rocky outcrop |
1AM; | Till |
1AA; 1AAM | Cochrane till |
2A; 2AE; 2AK; 2BE; 3AN, 4GS, 5S, 6S, 9S | Sand type |
5A; 4A | Mesic clay |
4GA4 | Sub-hydric clay |
7E; 7T | Poorly drained and organic soil |
EOSD Class | Successional stages | Designation | Code | Fire events | Harvested agglomerations |
---|---|---|---|---|---|
1 | Others | Shadow | Shd | 1,5 | 0.3 |
2 | Clouds | Cld | 2.4 | 1.3 | |
9 | Unproductive and non-forested land types | Water | H2O | 1.9 | 2.3 |
5 | Exposed land | ExL | 0.7 | 1.1 | |
19 | Lichens | Lic | 4.0 | 0.3 | |
20 | Moss and rock | MoRoc | 1.6 | 0.4 | |
24 | Wetland with herbs | HbWl | 0.8 | 0.4 | |
18 | Herb (perennial crops, pasture, fallow) grassland | Herb | - | 0.9 | |
31 | Coniferous woodland with lichen | CwLi | 0.3 | 0.1 | |
32 | Coniferous woodland with moss | Cwmo | 2.3 | 1.5 | |
45 | Coniferous woodland with shrubs | CwSh | 0.4 | 2.8 | |
7 | Stand initiation Stage 0 | Burn | B | 36.8 | 0.2 |
8 | Harvested | H | - | 3.8 | |
15 | Post-fire regeneration | PBr | 20.9 | 1.1 | |
16 | Post-harvest regeneration | PHr | 5.8 | 4.0 | |
14 | Low shrubs | LSh | 4.0 | 1.0 | |
10 | Early regeneration Stage 1 | Tall shrubs | TSh | 1.0 | 1.0 |
11 | Coniferous regeneration | CfRg | 0.5 | 3.3 | |
12 | Deciduous regeneration | DcRg | 0.2 | 4.5 | |
48 | Dense young deciduous | DyDc | - | 1.6 | |
40 | Open mixed coniferous tendency | OmCf | 0.7 | 3.4 | |
41 | Open mixed deciduous and coniferous tendency | OmDcCf | 0.2 | 0.7 | |
26 | Young coniferous | YCf | - | 0.4 | |
23 | Wetland with shrubs | WlSh | 1.9 | 2.5 | |
13 | Stem exclusion Stage 2 | Mixed regeneration | MRg | 5.5 | 23.0 |
33 | Dense deciduous | DeDc | - | 3.0 | |
34 | Open deciduous | ODc | 0.6 | 3.4 | |
36 | Dense mixed deciduous tendency | DmDc | - | 4.4 | |
38 | Dense mixed deciduous with coniferous tendency | DmDcCf | 0.1 | 0.5 | |
39 | Open mixed deciduous tendency | OmDc | 1.4 | 4.1 | |
22 | Coniferous stands Stage 3 | Wetland with tall shrubs and trees | WlTr | 4.5 | 3.7 |
25 | Dense coniferous mature | DCfmat | 0.8 | 1.6 | |
27 | Medium coniferous cover with moss | MCfmo | 2.2 | 1.7 | |
28 | Medium coniferous cover with lichen | MCfli | 0.3 | 0.2 | |
29 | Open coniferous with lichen | OCfli | 0.5 | 0.3 | |
30 | Open coniferous with moss | OCfmo | 3.7 | 4.5 | |
37 | Dense mixed coniferous tendency | DmCf | 0.6 | 10.7 |
Unproductive and non-forested land types | Recently disturbed | Coniferous | Deciduous |
---|---|---|---|
Water | Burn | Tall shrubs | Mixed regeneration |
Exposed land | Harvest | Coniferous regeneration | Dense deciduous |
Lichens | Post-fire regeneration | Open mixed coniferous tendency | Open deciduous |
Moss and rock | Post-harvest regeneration | Young coniferous | Dense mixed deciduous tendency |
Wetland with herbs | Low shrubs | Wetland with shrubs | Dense mixed deciduous with coniferous tendency |
Herb (perennial crops, pasture, fallow, grassland) | Wetland with tall shrubs and trees | Open mixed deciduous tendency | |
Coniferous woodland with lichen | Dense coniferous mature | Deciduous regeneration | |
Coniferous woodland with moss | Medium coniferous cover with moss | Dense young deciduous | |
Coniferous woodland with shrubs | Medium coniferous cover with lichen | Open mixed deciduous and coniferous tendency | |
Open coniferous with lichen | |||
Open coniferous with moss | |||
Dense mixed coniferous tendency |
References
- Bergeron, Y.; Engelmark, O.; Harvey, B.; Morin, H.; Sirois, L. Key issues in disturbance dynamics in boreal forests. J. Veg. Sci. 1998, 9, 463–610. [Google Scholar] [CrossRef]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge University Press: New York, USA, 1992. [Google Scholar]
- Payette, S. Fire as a controlling process in the North American boreal forest. In Systems Analysis of the Global Boreal Forest; Shugart, H.H., Leemans, R., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 144–169. [Google Scholar]
- Heinselman, M.L. Fire in the virgin forest of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 1973, 3, 329–382. [Google Scholar] [CrossRef]
- Bergeron, Y. The influence of island and mainland lakeshore landscapes on boreal forest-fire regimes. Ecology 1991, 72, 1980–1992. [Google Scholar] [CrossRef]
- Imbeau, L.; Monkkonen, M.; Desrochers, A. Long-term effects of forestry on birds of the eastern Canadian boreal forests: A comparison with Fennoscandia. Conserv. Biol. 2001, 15, 1151–1162. [Google Scholar] [CrossRef]
- Schroeder, D.; Perera, A.H. A comparison of large-scale spatial vegetation patterns following clearcuts and fires in Ontario’s boreal forests. For. Ecol. Manag. 2002, 159, 217–230. [Google Scholar] [CrossRef]
- Perron, N.; Bélanger, L.; Vaillancourt, M.A. Spatial structure of forest stands and remnants under fire and timber harvesting regimes. In Ecosystem Management in the Boreal Forest; Gauthier, S., Vaillancourt, M.A., Eds.; Les Presses de l’Université du Québec: Québec, Canada, 2009; pp. 129–154. [Google Scholar]
- Stinson, G.; Kurz, W.A.; Smyth, C.E.; Neilson, E.T.; Dymond, C.C.; Metsaranta, J.M.; Boisvenue, C.; Rampley, G.J.; Li, Q.; White, T.M.; et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Chang. Biol. 2011, 17, 2227–2244. [Google Scholar] [CrossRef]
- Bergeron, Y.; Harvey, B.; Leduc, A.; Gauthier, S. Stratégies d’aménagement forestier qui s’inspirent de la dynamique des perturbations naturelles: considérations à l’échelle du peuplement et de la forêt. For. Chron. 1999, 75, 55–61. [Google Scholar] [CrossRef]
- McRae, D.J.; Duchesne, L.C.; Freedman, B.; Lynham, T.J.; Woodley, S. Comparisons between wildfire and forest harvesting and their implications in forest management. Environ. Rev. 2001, 9, 223–260. [Google Scholar] [CrossRef]
- Sirois, L. Impact of fire on Picea mariana and Pinus banksiana seedlings in subarctic lichen woodlands. J. Veg. Sci. 1993, 6, 795–802. [Google Scholar] [CrossRef]
- St-Pierre, H.; Gagnon, R.; Bellefleur, P. Régénération après feu de l'épinette noire (Picea mariana) et du pin gris (Pinus banksiana) dans la forêt boréale, Québec. Can. J. For. Res. 1992, 22, 474–481. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. Modelling recruitment of Populus tremuloides, Pinus banksiana, and Picea mariana following fire in the mixedwood boreal forest. Can. J. For. Res. 1999, 29, 462–473. [Google Scholar] [CrossRef]
- Greene, D.F.; Noel, J.; Bergeron, Y.; Rousseau, M.; Gauthier, S. Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Can. J. For. Res. 2004, 34, 1845–1857. [Google Scholar] [CrossRef]
- Ilisson, T.; Chen, H.Y.H. The direct regeneration hypothesis in northern forests. J. Veg. Sci. 2009, 20, 735–744. [Google Scholar] [CrossRef]
- Harvey, B.D.; Bergeron, Y. Site patterns of natural regeneration following clear-cutting in Northwestern Quebec. Can. J. For. Res. 1989, 19, 1458–1469. [Google Scholar] [CrossRef]
- Jasinski, J.P.P.; Payette, S. The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecol. Monogr. 2005, 75, 561–583. [Google Scholar] [CrossRef]
- Lecomte, N.; Simard, M.; Asselin, H.; Nappi, A.; Noël, J.; Bergeron, Y. Similarities and Differences between Harvesting and Wildfire Induced Disturbances in Fire Mediated Canadian Landscapes; Technical Report Bulletin No. 924; National Council for Air and Stream Improvement: Québec, QC, Canada, 2006; p. 61. [Google Scholar]
- Mansuy, N.; Gauthier, S.; Robitaille, A.; Bergeron, Y. Regional patterns of postfire canopy recovery in the northern boreal forest of Quebec: Interactions between surficial deposit, climate, and fire cycle. Can. J. For. Res. 2012, 42, 1328–1343. [Google Scholar] [CrossRef]
- Van Bogaert, R.; Gauthier, S.; Drobyshev, I.; Jayen, K.; Greene, D.F.; Bergeron, Y. Prolonged absence of disturbance associated with increased environmental stress may lead to reduced seedbank size in Picea mariana in boreal eastern North America. Ecosystems 2015. [Google Scholar] [CrossRef]
- Van Bogaert, R.; Gauthier, S.; Raulier, F.; Saucier, J.-P.; Boucher, D.; Robitaille, A.; Bergeron, Y. Exploring forest productivity at an early age after fire: A case study at the northern limit of commercial forests in Quebec. Can. J. For. Res. 2015, 45, 579–593. [Google Scholar] [CrossRef]
- Harvey, B.D.; Brais, S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can. J. For. Res. 2002, 32, 653–666. [Google Scholar] [CrossRef]
- Jobidon, R.; Groot, A.; Nguyen, T.; Jetté, J.P.; Gauthier, G.; Pothier, D.; Ruel, J.C.; De Grandpré, L.; Bégin, L.; Beaupré, P. Coupe avec Protection des Petites tiges Marchandes (CPPTM); Avis scientifique; Comité consultatif scientifique du Manuel d’aménagement forestier: Québec, QC, Canada, 2002; p. 146. [Google Scholar]
- Lecomte, N. La Dynamique des espèces et des Peuplements après feu dans la Pessière de la Partie nord de la Ceinture D'argile; Université du Québec à Montréal: Montreal, QC, Canada, 2005; p. 172. [Google Scholar]
- Cyr, D.; Gauthier, S.; Bergeron, Y. Scale-dependent determinants of heterogeneity in fire frequency in a coniferous boreal forest of eastern Canada. Landscape Ecol. 2007, 22, 1325–1339. [Google Scholar] [CrossRef]
- Mansuy, N.; Gauthier, S.; Robitaille, A.; Bergeron, Y. The effects of surficial deposit-drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. Int. J. Wildland Fire 2010, 19, 1083–1098. [Google Scholar] [CrossRef]
- Greene, D.F.; Kneeshaw, D.D.; Messier, C.; Lieffers, V.; Cormier, D.; Doucet, R.; Coates, K.D.; Groot, A.; Grover, G.; Calogeropoulos, C. Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). For. Chron. 2002, 78, 281–295. [Google Scholar] [CrossRef]
- Lafleur, B.; Paré, D.; Fenton, N.J.; Bergeron, Y. Do harvest methods and soil type impact on the regeneration and growth of black spruce stands of northwestern Quebec? Can. J. For. Res. 2010, 40, 1843–1851. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Masek, J.G.; Dwyer, J.; Roy, D.P. Continuity of Landsat observations: Short term considerations. Remote Sens. Environ. 2011, 115, 747–751. [Google Scholar] [CrossRef]
- Valeria, O.; Laamrani, A.; Beaudoin, A. Monitoring the state of a large boreal forest region in eastern Canada through the use of multitemporal classified satellite imagery. Can. J. Remote Sens. 2012, 38, 91–108. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Kennedy, R. Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS J. Photogramm. Remote Sens. 2014, 92, 137–146. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhigiang, Y.; Krankina, O.N. Comparison of tasseled cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Bolton, D.K.; Coops, N.C.; Wulder, M.A. Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data. Remote Sens. Environ. 2015, 163, 48–60. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef]
- Boyd, D.; Danson, F. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geog. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.M.; Falkowski, J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Saucier, J.P.; Bergeron, J.F.; Grondin, P.; Robitaille, A. Les régions écologiques du Québec méridional (3e version): Un des éléments du système hiérarchique de classification écologique du territoire mis au point par le ministère des Ressources naturelles du Québec. L’Aubelle 1998, 124, S1–S12. [Google Scholar]
- Robitaille, A.; Saucier, J.P. Paysages régionaux du Québec méridional. Direction de la gestion des stocks forestiers et Direction des relations publiques, Ministère des Ressources naturelles du Québec; Les Publications du Québec: Québec, Canada, 1998. [Google Scholar]
- Payette, S.; Rochefort, L. Écologie des Tourbières du Québec-Labrador; Les Presses de l’Université Laval: Québec, Canada, 2001. [Google Scholar]
- Pelletier, G.; Dumont, Y.; Bédard, M. SIFORT: Système d’Information FORestière par Tesselle, Manuel de l’usager; Ministère des Ressources naturelles et de la Faune du Québec: Québec, QC, Canada, 2007. [Google Scholar]
- Wulder, M.A.; White, J.C.; Cranny, M.; Hall, R.J.; Luther, J.E.; Beaudoin, A.; Goodenough, D.G.; Dechka, J.A. Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project. Can. J. Remote Sens. 2008, 34, 549–584. [Google Scholar] [CrossRef]
- Valeria, O.; Laamrani, A.; Beaudoin, A.; Côté, S.; Simard, G. Rapport de l’état de la forêt en Abitibi-Témiscamingue et au Nord-du-Québec à l’aide d’outils de Télédétection. Rapport de recherche. Université du Québec en Abitibi-Témiscamingue et Ressources naturelles Canada; Rouyn-Noranda: Québec, QC, Canada, 2008; p. 91. Available online: http://abitibiwatch.uqat.ca/information_links/Abitibiwatch-oct-2008.pdf (accessed on 13 September 2013).
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM Software, Gleneden Beach: Oregon, USA, 2002; p. 300. [Google Scholar]
- Sader, S.A.; Bertrand, M.; Wilson, E.H. Satellite change detection of forest harvest patterns on an industrial forest landscape. For. Sci. 2003, 49, 341–353. [Google Scholar]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Ireland, G.; Petropoulos, G.P. Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera ecozones of Western Canada. Appl. Geogr. 2015, 56, 232–248. [Google Scholar] [CrossRef]
- Fuller, R.M.; Smith, G.M.; Devereux, B.J. The characterisation and measurement of land cover change through remote sensing: Problems in operational applications? Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 243–253. [Google Scholar] [CrossRef]
- Wulder, M.A.; LeDrew, E.F.; Franklin, S.E.; Lavigne, M.B. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sens. Environ. 1998, 64, 64–76. [Google Scholar] [CrossRef]
- Wolter, P.T.; Mladenoff, P.T.; Host, G.E.; Crow, T.R. Improved forest classification in the northern lake states using multi-temporal Landsat imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- Gerylo, G.; Hall, R.; Franklin, S.; Smith, L. Empirical relations between Landsat TM spectral response and forest stands near Fort Simpson, Northwest Territories, Canada. Can. J. Remote Sens. 2002, 68–79. [Google Scholar] [CrossRef]
- Moskal, L.M.; Franklin, S.E. Multilayer forest stand discrimination with spatial co-occurrence texture analysis of high spatial detail airborne imagery. Geocarto Int. 2002, 17, 55–68. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogrammetry Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Qin, Y.; Niu, Z.; Chen, F.; Li, B.; Ban, Y. Object-based land cover change detection for cross-sensor images. Int. J. Remote Sens. 2013, 34, 6723–6737. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Age-class distribution and the forest fire cycle. Can. J. For. Res. 1978, 8, 220–227. [Google Scholar] [CrossRef]
- Heinselman, M.L. Fire and succession in the conifer forests of northern North America. In Forest Succession: Concepts and Application; West, D.C., Shugart, H.H., Eds.; Springer-Verlag: New York, NY, USA, 1981; pp. 374–405. [Google Scholar]
- Pickett, S.T.A.; White, P.S. Natural disturbance and patch dynamics: An introduction. In The Ecology of Natural Disturbance and Patch Dynamics; Pickett, S.T.A., White, P.S., Eds.; Academic Press: Orlando, FL, USA, 1985; pp. 3–13. [Google Scholar]
- Madoui, A.; Leduc, A.; Gauthier, S.; Bergeron, Y. Spatial pattern analyses of post-fire residual stands in the black spruce boreal forest of western Quebec. Int. J. Wildland Fire 2010, 19, 1110–1126. [Google Scholar] [CrossRef]
- Gauthier, S.; De Grandpré, L.; Bergeron, Y. Differences in forest composition in two boreal forest ecoregions of Quebec. J. Veg. Sci. 2000, 11, 781–790. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Popadiouk, R.V. Dynamics of North American mixedwood forests. Environ. Rev. 2002, 10, 137–166. [Google Scholar] [CrossRef]
- Harper, K.A.; Bergeron, Y.; Gauthier, S.; Drapeau, P. Post-fire development of canopy structure and composition in black spruce forests of Abitibi, Québec: A landscape scale study. Silva. Fenn. 2002, 36, 249–263. [Google Scholar] [CrossRef]
- Harvey, B.D. Possibilités d'application de la classification écologique pour l'aménagement forestier dans le canton d’Hébécourt, Abitibi. Master’s Thesis, Université du Québec à Montréal, Montreal, Québec, QC, Canada, 1987; p. 68. [Google Scholar]
- Nguyen-Xuan, T.; Bergeron, Y.; Simard, D.; Fyles, J.W.; Paré, D. The importance of forest floor disturbance in the early regeneration patterns of the boreal forest of western and central Quebec: A wildfire versus logging comparison. Can. J. For. Res. 2000, 30, 1353–1364. [Google Scholar] [CrossRef]
- Carleton, T.J.; Maycock, P.F. Dynamics of the boreal forest south of James Bay. Can. J. Bot. 1978, 56, 1157–1173. [Google Scholar] [CrossRef]
- Ahlgren, C.E. Effects of fires on temperate forests: North Central United States. In Fire and Ecosystems; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1972; pp. 195–223. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madoui, A.; Gauthier, S.; Leduc, A.; Bergeron, Y.; Valeria, O. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery. Forests 2015, 6, 4105-4134. https://doi.org/10.3390/f6114105
Madoui A, Gauthier S, Leduc A, Bergeron Y, Valeria O. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery. Forests. 2015; 6(11):4105-4134. https://doi.org/10.3390/f6114105
Chicago/Turabian StyleMadoui, Amar, Sylvie Gauthier, Alain Leduc, Yves Bergeron, and Osvaldo Valeria. 2015. "Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery" Forests 6, no. 11: 4105-4134. https://doi.org/10.3390/f6114105
APA StyleMadoui, A., Gauthier, S., Leduc, A., Bergeron, Y., & Valeria, O. (2015). Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery. Forests, 6(11), 4105-4134. https://doi.org/10.3390/f6114105