Foraging Guilds of Birds in Continuous and Fragmented Forests of Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Composition and Diversity of Foraging Birds
3.2. Bird Foraging Guilds
3.3. Important Variables for Dividing Bird Foraging Guilds
3.4. Differences in the Utilization of Foraging Space by Birds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Root, R.B. The niche exploitation patern of the blue-gray gnatcatcher. Ecol. Monogr. 1967, 37, 317–350. [Google Scholar] [CrossRef]
- Yilangai, M.R.; Abalaka, J.; Nsor, A.C.; Babale, A.; Karau, S.D.; Ivande, S. Effect of disturbance on bird foraging guilds in a West African dry forest. Afr. J. Ecol. 2023, 61, 461–468. [Google Scholar] [CrossRef]
- Kavana, J.D.; Mbije, N.; Sirilo, M.T.; Bupamba, H.C. The spatio-temporal influences of habitat heterogeneity on the community structure of avian foraging guilds in human-dominated landscapes of the East African miombo woodlands. Afr. J. Ecol. 2023, 62, e13237. [Google Scholar] [CrossRef]
- Chen, R.Y.; Li, H.Q.; Zhu, X.D.; Zhou, L.Z.; Wang, Y.Z. Analysis on the foraging guild structure and diversity of waterbirds in Caizi Lake under water level changes during overwintering. BMC Biol. 2024, 41, 77–83. [Google Scholar]
- Ding, Z.F.; Liang, J.C.; Hu, Y.M.; Zhou, Z.X.; Sun, H.B.; Liu, L.N.; Liu, H.J.; Hu, H.J.; Si, X.F. Different responses of avian foraging guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. Ecol. Evol. 2019, 9, 4116–4128. [Google Scholar] [CrossRef]
- Burgess, E.E.; Maron, M. Does the response of bird assemblages to fire mosaic properties vary among spatial scales and foraging guilds? Landsc. Ecol. 2016, 31, 687–699. [Google Scholar] [CrossRef]
- Pigot, A.L.; Sheard, C.; Miller, E.T.; Bregman, T.P.; Freeman, B.G.; Roll, U.; Tobias, J.A. Macroevolutionary convergence connects morphological form to ecological function in birds. Nature 2020, 585, 234–237. [Google Scholar] [CrossRef]
- Newbold, T.; Scharlemann, J.P.W.; Butchart, S.H.M.; Şekercioğlu, Ç.H.; Alkemade, R.; Booth, H.; Purves, D.W. Ecological traits affect the response of tropical forest bird species to land-use intensity. Biol. Conserv. 2013, 166, 203–211. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Sekercioglu, C.H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 2012, 153, 153–161. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.E.; Gu, Z.Y.; Tang, N.; Li, N. Effects of landscape features on the structure and function of bird seed dispersal networks in fragmented forests. Forest Ecol. Manag. 2023, 545, 121251. [Google Scholar] [CrossRef]
- Zeng, C. The Structural Composition, Spatial and Temporal Disparities of Wintering Avian Mixed-species Flocks in Meihuashan National Natural Reserve, Fujian Province. Master’s Thesis, Xiamen University, Xiamen, China, 30 June 2021. [Google Scholar]
- Li, N.; Wang, Z.; Lu, C.H.; Xiong, T.S.; Fu, W.Y.; Wu, J.P. Seed foraging and dispersal of Chinese yew (Taxus chinensis var. mairei) by frugivorous birds within fragmented habitats. Acta Ecol. Sin. 2014, 34, 1681–1689. [Google Scholar]
- Zheng, G.M. A Checklist on the Classification and Distribution of the Birds of China, 4th ed.; Science Press: Beijing, China, 2023; pp. 1–512. [Google Scholar]
- Ma, K.P.; Liu, M.Y. Methods for Measuring Biodiversity in Biological Communities Iα Methods for Measuring Alpha Diver-sity (Part 2). Biodivers. Sci. 1994, 4, 231–239. [Google Scholar] [CrossRef]
- Rosenblad, A. Correction: Book Review of Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models by Faraway. Psychometrika 2024, 89, 1116. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Holmes, R.T.; Bonney, R.E.; Pacala, S.W. Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology 1979, 60, 512–520. [Google Scholar] [CrossRef]
- Kornan, M.; Adamik, P. Foraging guild structure within a primaeval mixed forest bird assemblge: A comparison of two con-cepts. Community Ecol. 2007, 8, 133–149. [Google Scholar] [CrossRef]
- Fang, J.Y.; Wang, X.P.; Shen, Z.H.; Tang, Z.Y.; He, J.S. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar]
- Liu, B.; Zhou, L.Z.; Wang, W.G.; Shen, S.B.; Han, D.M. Seasonal Dynamics of the Avian Guild Structure of Mountain Second-ary Forest in Dabieshan Mountain. Zool. Res. 2009, 30, 277–287. [Google Scholar] [CrossRef]
- Adams, B.T.; Matthews, S.N. Diverse temperate forest bird assemblages demonstrate closer correspondence to plant species composition than vegetation structure. Ecography 2019, 42, 1752–1764. [Google Scholar] [CrossRef]
- Bregman, T.P.; Lees, A.C.; Seddon, N.; MacGregor, H.E.; Darski, B.; Aleixo, A.; Bonsall, M.B.; Tobias, J.A. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 2016, 97, 1782–1792. [Google Scholar] [CrossRef] [PubMed]
- Karp, D.S.; Frishkoff, L.O.; Echeverri, A.; Zook, J.; Juárez, P.; Chan, K.M.A. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 2018, 24, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Wells Harry, B.M.; Crego, R.D.; Opedal, Ø.H.; Khasoha, L.M.; Alston, J.M.; Reed, C.G.; Weiner, S.; Kurukura, S.; Hassan, A.A.; Namoni, M.; et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 2018, 90, 2510–2522. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, G.; Zhao, D.D.; Wu, Y.H.; Meng, Y.J. Guild structure of forest breeding bird community in Nonggang Nature Reserve of Guangxi. Zool. Res. 2013, 34, 601–609. [Google Scholar]
- Pérez-Crespo, M.J.; Fonseca, J.; Pineda-López, R.; Palacios, E.; Lara, C. Foraging guild structure and niche characteristics of waterbirds in an epicontinental lake in Mexico. Zool. Stud. 2013, 52, 54. [Google Scholar] [CrossRef]
- Chatterjee, A.; Adhikari, S.; Pal, S.; Mukhopadhyay, S.K. Foraging guild structure and niche characteristics of waterbirds win-tering in selected sub-Himalayan wetlands of India. Ecol. Indic. 2020, 108, 105693. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, B.D.; Yuan, Y.F. foraging Spatial Niche and Diet of Zosterops japonicus in Spring. Chin. J. Wildl. 2017, 38, 76–80. [Google Scholar]
- Wang, W.Y.; Guo, Y.S.; Hu, J.C.; Sun, L.H.; Zhu, L. Preliminary Study on foraging and Spatial Niche of Pycnonotus sinensis in Spring. Sichuan J. Zool. 2005, 4, 28–30. [Google Scholar]
- Huan, L.; Zhang, M.X.; Yang, X.J.; Cui, L.W.; Jin, R.C. The breeding biology of Red-Whiskered Bulbul (Pycnonotus jocosus) in Xishuangbanna, southwest China. Zool. Res. 2015, 36, 233–240. [Google Scholar]
- Zheng, Y.X. Research on Bird foraging Guilds in Tiantong National Forest Park, Zhejiang Province. Master’s Thesis, East China Normal University, Shanghai, China, 30 June 2018. [Google Scholar]
Site | Number of Species | Shannon Diversity Index (H’) | Pielou Uniformity Index (E’) | Simpson Dominance Index (C’) | Sorensen Similarity Index |
---|---|---|---|---|---|
Fragmented habitat | 46 | 3.023 | 0.79 | 0.09 | 0.69 |
Continuous habitat | 45 | 3.308 | 0.874 | 0.048 |
Variables of Foraging Guild | Fragmented Habitat | Continuous Habitat | |||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | ||||||
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
Foraging location | Stay away from the trunk | 0.293 | −0.217 | −0.217 | −0.289 | −0.211 | 0.230 | −0.184 | 0.273 |
Close to the trunk | 0.195 | −0.195 | −0.056 | −0.255 | −0.108 | 0.249 | −0.095 | 0.298 | |
Shrub | −0.001 | 0.519 | −0.219 | 0.431 | −0.175 | −0.425 | −0.207 | −0.500 | |
Ground | −0.487 | −0.107 | 0.491 | 0.113 | 0.494 | −0.054 | 0.486 | −0.071 | |
Foraging substrate | Upper canopy | 0.145 | −0.139 | −0.040 | −0.123 | −0.110 | 0.142 | −0.040 | 0.098 |
Middle canopy | 0.136 | −0.069 | −0.123 | −0.176 | −0.105 | 0.079 | −0.119 | 0.148 | |
Lower canopy | 0.190 | −0.117 | −0.121 | −0.110 | −0.081 | 0.050 | −0.110 | 0.165 | |
Sprig | 0.013 | 0.481 | −0.218 | 0.432 | −0.171 | −0.436 | −0.205 | −0.496 | |
Thick stem | −0.013 | 0.035 | −0.001 | −0.001 | −0.004 | 0.010 | −0.001 | −0.004 | |
Trunk | 0.017 | −0.086 | 0.012 | −0.134 | −0.022 | 0.206 | −0.009 | 0.162 | |
Ground | −0.488 | −0.106 | 0.491 | 0.113 | 0.493 | −0.052 | 0.486 | −0.071 | |
Air | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Foraging height | 0–1 m | −0.030 | 0.295 | −0.044 | 0.111 | −0.046 | −0.279 | −0.040 | −0.276 |
1–5 m | 0.136 | 0.305 | −0.255 | 0.378 | −0.305 | 0.044 | −0.331 | −0.041 | |
5–10 m | 0.167 | −0.160 | −0.077 | −0.099 | −0.115 | 0.239 | −0.099 | 0.329 | |
10–15 m | 0.138 | −0.220 | −0.071 | −0.351 | −0.026 | 0.047 | −0.015 | 0.058 | |
>15 m | 0.076 | −0.114 | −0.045 | −0.152 | 0.000 | 0.000 | 0.000 | 0.001 | |
Foraging methods | Glean | 0.065 | 0.196 | −0.092 | 0.175 | −0.076 | −0.400 | −0.082 | −0.171 |
Probe | −0.098 | −0.162 | 0.102 | −0.150 | 0.099 | 0.367 | 0.097 | 0.145 | |
Hover | 0.027 | −0.025 | −0.008 | −0.019 | −0.022 | 0.031 | −0.015 | 0.026 | |
Sally | 0.005 | −0.008 | −0.002 | −0.006 | −0.001 | 0.002 | 0.000 | 0.000 | |
Eigenvalue | 2.066 | 1.811 | 2.632 | 1.336 | 2.346 | 1.654 | 2.143 | 1.849 | |
Accumulated variance% | 44.200 | 70.380 | 39.770 | 70.130 | 56.440 | 75.860 | 44.430 | 69.640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, J.; Gao, S.; Tong, S.; Wang, Z.; Li, N. Foraging Guilds of Birds in Continuous and Fragmented Forests of Southeast China. Forests 2025, 16, 861. https://doi.org/10.3390/f16050861
Wang Y, Liu J, Gao S, Tong S, Wang Z, Li N. Foraging Guilds of Birds in Continuous and Fragmented Forests of Southeast China. Forests. 2025; 16(5):861. https://doi.org/10.3390/f16050861
Chicago/Turabian StyleWang, Yuan, Jiawen Liu, Shuai Gao, Sichun Tong, Zheng Wang, and Ning Li. 2025. "Foraging Guilds of Birds in Continuous and Fragmented Forests of Southeast China" Forests 16, no. 5: 861. https://doi.org/10.3390/f16050861
APA StyleWang, Y., Liu, J., Gao, S., Tong, S., Wang, Z., & Li, N. (2025). Foraging Guilds of Birds in Continuous and Fragmented Forests of Southeast China. Forests, 16(5), 861. https://doi.org/10.3390/f16050861