Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Selection and Sample Preparation
2.2. Chemical Analysis of Wood
2.3. Pellets Processing and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis
3.2. Physical Characteristics of Pellets
3.3. Mechanical Durability of Pellets
3.4. Energy Properties of Pellets
3.4.1. Moisture Content
3.4.2. Volatile Matter
3.4.3. Ash Content
3.4.4. Fixed Carbon
3.4.5. High Heating Value
3.4.6. Low Heating Value
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J. Global warming. Rep. Prog. Phys. 2005, 68, 1343. [Google Scholar] [CrossRef]
- Rehman, H.K.; Jawaid, M.; Alothman, O.Y. Agricultural Biomass Based Potential Materials; Springer: Berlin/Heidelberg, Germany, 2015; 508p. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Honorato Salazar, J.A.; Hernández, P.J. Determinación de componentes químicos de la madera de cinco especies de encino del estado de Puebla. Madera Bosques 1998, 4, 79–93. [Google Scholar] [CrossRef]
- De la Paz Pérez Olvera, C.; Dávalos Sotelo, R.; Guerrero Cuacuil, E. Aprovechamiento de la madera de encino en México. Madera Bosques 2000, 6, 3–13. [Google Scholar] [CrossRef]
- Núñez-Retana, V.D.; Rosales-Serna, R.; Prieto-Ruíz, J.A.; Wehenkel, C.; Carrillo-Parra, A. Improving the physical, mechanical and energetic properties of Quercus spp. wood pellets by adding pine swdust. PeerJ 2020, 8, e9766. [Google Scholar] [CrossRef]
- Nixon, K.C. Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–13. [Google Scholar]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of the Genus Quercus L. Cham; Gil-Pelegrin, E., Peguero-Pina, J.J., SanchoKnapik, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 13–38. [Google Scholar]
- Uzun, A.; Uzun, S.P. World oak trees (Quercus): Silent guardians of the forest ecosystems. Agric. For. Aquac. Sci. 2024, 301. [Google Scholar]
- Valencia, S. Diversidad del género Quercus (Fagaceae) en México. Bol. Soc. Bot. México 2004, 75, 33–53. [Google Scholar] [CrossRef]
- Ortega-Gutiérrez, J.O.; Alvarado-Segura, A.A.; Machuca-Velazco, R.; Borja-de-la-Rosa, A. Caracterización anatómica y propiedades físicas de la madera de monte bajo de dos especies de Quercus del volcán Popocatépetl. Madera Bosques 2023, 29, 1–20. [Google Scholar] [CrossRef]
- Jiménez-Mendoza, M.E.; Ruiz-Aquino, F.; Aquino-Vásquez, C.; Santiago-García, W.; Santiago-Juárez, W.; Rutiaga-Quiñones, J.G.; Fuente-Carrasco, M.E. Aprovechamiento de leña en una comunidad de la Sierra Sur de Oaxaca, México. Rev. Mex. Cien. 2023, 14, 22–49. [Google Scholar] [CrossRef]
- Ruiz-Aquino, F.; González-Peña, M.M.; Valdez-Hernández, J.I.; Romero-Manzanares, A. Estructura anatómica de la madera de dos encinos de Oaxaca. Madera Bosques 2016, 22, 177–189. [Google Scholar] [CrossRef]
- Dahmen, N.; Lewandowski, I.; Zibek, S.; Weidtmann, A. Integrated Lignocellulosic Value Chains in a Growing Bioeconomy: Status Quo and Perspectives. GCB Bioenergy 2018, 11, gcbb.12586. [Google Scholar] [CrossRef]
- SEMARNAT. Anuario Estadístico de la Producción Forestal 2017. Anuarios Estadísticos. 2018. Available online: https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales (accessed on 4 April 2024).
- Rutiaga-Quiñones, J.G.; Pintor-Ibarra, L.F.; Orihuela-Equihua, R.; González-Ortega, N.; Ramírez-Ramírez, M.A.; Carrillo-Parra, A.; Carrillo-Ávila, N.; Navarrete-García, M.A.; Ruiz-Aquino, F.; Rangel-Méndez, J.R.; et al. Characterization of Mexican Waste Biomass Relative to Energy Generation. BioResources 2020, 15, 8529–8553. [Google Scholar] [CrossRef]
- Gutiérrez-Acosta, J.M.; Orihuela-Equihua, R.; Pintor-Ibarra, L.F.; González-Ortega, N.; Hernández-Solís, J.J.; Ruiz-Aquino, F.; Navarrete-García, M.A.; Rutiaga-Quiñones, J.G. On the basic chemical composition of selected biomass types from four regions of Mexico, for bioenergetic purposes. BioResources 2021, 16, 5694–5705. [Google Scholar] [CrossRef]
- Haq, I.U.; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Zohu, X.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.A.W.A.K.; et al. Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts 2021, 11, 309. [Google Scholar] [CrossRef]
- Martín, F.M. Pélets y briquetas. Ecología 2005, 1–9. Available online: https://infomadera.net/uploads/articulos/archivo_2293_9990.pdf (accessed on 11 July 2023).
- Kaliyan, N.; Vance, M.R. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Fearon, O.; Kuitunen, S.; Ruuttunen, K.; Alopaeuss, V.; Vuorinen, T. Detailed modeling of kraft pulping chemistry. Ind. Eng. Chem. Res. 2020, 59, 12977–12985. [Google Scholar] [CrossRef]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. The Pellet Handbook. The Production and Thermal Utilisation of Pellets. Earthscan: London, UK, 2010; pp. 1–593. [Google Scholar] [CrossRef]
- García, C.A. Sustentabilidad de los biocombustibles sólidos. In Aplicaciones Energéticas de la Biomasa: Perspectivas para la Caracterización local de Biocombustibles Sólidos, 1st ed.; Universidad Intercultural Indígena de Michoacán: Morelia Michoacán, Mexico, 2023; pp. 253–274. [Google Scholar]
- Morales, M.M.; Parra, A.M. Producción y tecnología rural apropiada para uso final de los biocombustibles sólidos en comunidades rurales. In Aplicaciones Energéticas de la Biomasa: Perspectivas para la Caracterización Local de Biocombustibles Sólidos, 1st ed.; Universidad Intercultural Indígena de Michoacán: Morelia Michoacán, Mexico, 2023; pp. 275–298. [Google Scholar]
- Ruiz-García, V.M.; Huerta-Mendez, M.Y.; Vázquez-Tinoco, J.C.; Alvarado-Flores, J.J.; Berrueta-Soriano, V.M.; López-Albarrán, P.; Masera, O.; Rutiaga-Quiñones, J.G. Pellets from Lignocellulosic Material Obtained from Pruning Guava Trees: Characterization, Energy Performance and Emissions. Sustainability 2022, 14, 1336. [Google Scholar] [CrossRef]
- Soria-González, J.A.; Tauro, R.; Alvarado-Flores, J.J.; Berrueta-Soriano, V.M.; Rutiaga-Quiñones, J.G. Avocado Tree Pruning Pellets (Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation. Energies 2022, 15, 7514. [Google Scholar] [CrossRef]
- Ramírez-Ramírez, M.A.; Carrillo-Parra, A.; Ruiz-Aquino, F.; Hernández-Solís, J.J.; Pintor-Ibarra, L.F.; González-Ortega, N.; Orihuela-Equihua, R.; Carrillo-Ávila, N.; Rutiaga-Quiñones, J.G. Evaluation of selected physical and thermal properties of briquette hardwood biomass biofuel. Bioenergy Res. 2022, 15, 1407–1414. [Google Scholar] [CrossRef]
- Monjaraz, S.C. Plan Municipal de Desarrollo de San Sebastián Coatlán, Miahuatlán, Oaxaca. Trienio 2011–2013; Gobierno del Estado de Oaxaca: Oaxaca, Mexico, 2013; pp. 1–158. [Google Scholar]
- D 1105-96; Standard Test Method for Preparation of Extractive-Free Wood. ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–2.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. JDS 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- D 1102-84; Standard Test Method for Ash in Wood. ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–2.
- Núñez-Retana, V.D.; Whenkel, C.; Vega-Nieva, D.J.; García-Quezada, J.; Carrillo-Parra, A. The bioenergetic potential of four oak species from Northeastern Mexico. Forest 2019, 10, 869. [Google Scholar] [CrossRef]
- EN ISO 18847:2016; Biocombustibles Sólidos. Determinación de la Densidad de Partícula de Pellets y Briquetas. Asociación Española de Normalización: Madrid, España, 2017; pp. 1–20.
- EN ISO 17828:2015; Biocombustibles Sólidos. Determinación de la Densidad a Granel. Estándar Europeo, Asociación Española de Normalización y Certificación (AENOR): Madrid, España, 2016; pp. 1–14.
- EN ISO 17829:2015; Biocombustibles Sólidos. Determinación de la Longitud y el Diámetro de Pellets. Estándar Europeo, Asociación Española de Normalización y Certificación (AENOR): Madrid, España, 2016; pp. 1–10.
- EN ISO 17831-1:2015; Biocombustibles Sólidos. Determinación de la Durabilidad Mecánica de Pellets y Briquetas. Parte 1: Pellets. Estándar Europeo, Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016; pp. 1–13.
- E 871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 1998; pp. 1–2.
- E 872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 1998; pp. 1–3.
- E 870-82; Test Method for Analysis of Wood Fuels. ASTM International: West Conshohocken, PA, USA, 1998; pp. 1–2.
- E 711-87; Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter. ASTM International: West Conshohocken, PA, USA, 2004; pp. 1–8.
- Montgomery, D.C. Design and Analysis of Experiments; Wiley J, Inc.: Hoboken, NJ, USA, 1997; pp. 1–699. [Google Scholar]
- SAS Institute Inc. SAS Version 9.0 (TS M0) Software Update; SAS Institute Inc.: Cary, NC, USA, 2014; Available online: http://ftp.sas.com/techsup/download/hotfix/90_updates.html (accessed on 6 February 2024).
- Herrera-Fernández, A.C.; Carrillo-Parra, A.; Pedraza-Bucio, F.E.; Correa-Méndez, F.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Densidad, composición química y poder calorífico de la madera de tres especies de encino (Quercus candicans, Q. laurina y Q. Rugosa). Cienc. Nicolita 2017, 72, 136–154. [Google Scholar]
- Honorato-Salazar, J.A.; Colotl-Hernández, G.; Apolinar-Hidalgo, F.; Aburto, J. Principales componentes químicos de la madera de Ceiba pentandra, Hevea brasiliensis y Ochroma pyramidale. Madera Bosques 2015, 21, 131–146. [Google Scholar] [CrossRef]
- Ruiz, C.K. Optimización del Proceso Etanosolv para la Obtención de Celulosa Biomásica y Valoración de Diferentes Rutas de Acetilación del Material. Ph.D. Thesis, Centro de Investigación en Materiales Avanzados S.C., Chihuahua, Mexico, 2018; pp. 1–131. [Google Scholar]
- Bautista, H.R.; Honorato, J.A. Composición química de la madera de cuatro especies del género QuercusRev. Mex. Cien. 2005, 30, 25–49. [Google Scholar]
- Ruiz-Aquino, F.; González-Peña, M.M.; Valdez-Hernández, J.I.; Revilla, U.S.; Romero-Manzanares, A. Chemical characterization and fuel properties of wood and bark of two oaks from Oaxaca, Mexico. Ind. Crops Prod. 2015, 65, 90–95. [Google Scholar] [CrossRef]
- Pintor-Ibarra, L.F.; Carrillo-Parra, A.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Physical and chemical properties of timber by-products from Pinus leiophylla, P. montezumae and P. pseudostrobus for a bioenergetics use. Wood Res.-Slovak. 2017, 62, 849–862. [Google Scholar]
- Rutiaga-Quiñones, J.G.; Windeisen, E.; Strobel, C. Composición química del duramen de la madera de Quercus candicans Neé. Madera Bosques 2000, 6, 73–80. [Google Scholar] [CrossRef]
- García, E.L.; Guindeo, C.A.; Peraza, O.C.; De palacios, P.P. Pared Celular. In La Madera y su Anatomía; Ediciones Mundi-Prensa; Fundación Conde del Valle de Salazar: Madrid, Spain, 2003; pp. 1–321. [Google Scholar]
- Mauladdini, R.; Nawawi, D.S.; Syafii, W. Effect of wood extractives on calorific value. J. Ilmu Kehutan. 2022, 16, 64–73. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Fernández, L.M.; Ortiz, T.L.; Corral-Rivas, J.J. Caracterización bioenergética de los residuos de cosecha de las principales especies forestales del Noroeste de España. Inf. Tecnol. 2015, 26, 3–12. [Google Scholar] [CrossRef]
- Solla-Gullón, F.; Rodríguez-Soalleiro, R.; Merino, A. Evaluación del aporte de cenizas de madera como fertilizante de un suelo ácido mediante un ensayo en laboratorio. Investig. Agrar. 2001, 16, 379–394. [Google Scholar]
- Ortíz, L.; Tejada, A.; Vázquez, A.; Piñeiro, V.G. Aprovechamiento de la biomasa forestal producida por la cadena Monte-Industria. Parte III: Producción de elementos densificados. CIS-Madera 2003, 11, 17–32. [Google Scholar]
- Suirezs, T.M.; Berger, G. Descripciones de las Propiedades Físicas y Mecánicas de la Madera, 1st ed.; Posadas, Ed.; UNAM-Editorial Universitaria de la Universidad Nacional de Misiones: Misiones, Argentina, 2010; pp. 1–58. [Google Scholar]
- Nganyo, H.M.; Foroughbakhch, P.R.; Carrillo-Parra, A.; Maiti, R.; Salsas, C.L.R. Timber-Yielding plants of the Tamaulipan thor scrub: Forest, fodder, and bioenergy potential. In Biology, Productivity, and Bioenergy of Timber-Yielding Plants, an Experimental Technology; Ngangyo, H.M., Maiti, R., Foroughbakhch, P.R., Carrillo-Parra, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–148. [Google Scholar] [CrossRef]
- UNE-EN 14961-2; Bicombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 2: Pellets de Madera para uso no Industrial. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2011.
- Stasiak, M.; Molena, M.; Banda, M.; Wiacek, J.; Parafiniuk, P.; Gondek, E. Mechanical and combustion properties of sawdust-straw pellets blended in different proportions. Fuel Process. Technol. 2016, 156, 366–375. [Google Scholar] [CrossRef]
- Qin, X.; Keefe, R.F.; Daugaard, D.E. Small landowner production of pellets from green, beetle-killed, and burned lodgepole pine. Energies 2018, 11, 648. [Google Scholar] [CrossRef]
- Adapa, P.K.; Schoenau, G.J.; Tabil, L.G.; Sokhansanj, S.; Crerar, B. Pelleting of fractionated Alfalfa products. Asabe 2003, 27–30. [Google Scholar] [CrossRef]
- Picchio, R.; Di Marzio, N.; Cozzolino, L.; Venanzi, R.; Stefanoni, W.; Bianchini, L.; Pari, L.; Latterini, F. Pellet production from pruning and alternative forest biomass: A review of the most recent research findings. Materials 2023, 4689, 4689. [Google Scholar] [CrossRef]
- Lehtikangas, P. Storge effect pn pelletised sawdust, logging residues and bark. Biomass Bioenergy 2000, 19, 287–293. [Google Scholar] [CrossRef]
- Meincken, M.; Tyhoda, L. Biomass quiality. In Bioenegy from Wood Sustainable Production in the Tropics. Managing Foresta Ecosystems; Seifert, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–269. [Google Scholar] [CrossRef]
- Liu, Z.; Bingbing, M.; Jiang, Z.; Fei, B.; Cai, Z.; Liu, X. Improved bulk density of bamboo pellets as biomass for energy production. Renew. Energy 2015, 86, 1–7. [Google Scholar] [CrossRef]
Species | Tree Parts | Hemicellulose | Cellulose | Lignin | Extractable Substances |
---|---|---|---|---|---|
Q. laurina | Stump | 12.90 | 55.74 | 18.97 | 10.29 |
Stem | 14.27 | 56.29 | 18.66 | 8.45 | |
Branches | 14.72 | 56.52 | 15.79 | 10.76 | |
Q. rugosa | Stump | 13.67 | 56.39 | 14.98 | 13.00 |
Stem | 13.84 | 52.27 | 21.58 | 10.31 | |
Branches | 13.84 | 55.24 | 17.05 | 11.84 |
Species | Tree Parts | Moisture Content (%) | Bulk Density (Kg m−3) | Particle Density (g cm−3) | n |
---|---|---|---|---|---|
Q. laurina | Stump | 9.88 (0.45) a, b | 616.61 (2.78) a | 1.27 (0.01) a | 3 |
Stem | 9.78 (0.13) a, b | 595.61 (8.37) b | 1.26 (0.01) a | 3 | |
Branches | 9.06 (0.06) b | 558.33 (8.02) c | 1.18 (0.10) a | 3 | |
Q. rugosa | Stump | 10.40 (0.28) a | 593.61 (3.31) b | 1.22 (0.05) a | 3 |
Stem | 10.34 (0.43) a | 566.94 (8.99) c | 1.23 (0.03) a | 3 | |
Branches | 9.93 (0.46) a, b | 584.50 (1.30) b | 1.35 (0.21) a | 3 |
Species | Tree Parts | Durability (%) | n |
---|---|---|---|
Q. laurina | Stump | 87.88 (1.50) d | 3 |
Stem | 90.07 (0.56) c, d | 3 | |
Branches | 91.71 (2.57) b, c | 3 | |
Q. rugosa | Stump | 95.26 (0.21) a, b | 3 |
Stem | 95.96 (0.60) a | 3 | |
Branches | 91.55 (1.10) c, d | 3 |
Tree Parts | Moisture Content (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) | High Heating Value (MJ Kg−1) | Low Heating Value (MJ Kg−1) | n | |
---|---|---|---|---|---|---|---|---|
Q. laurina | Stump | 5.02 (0.02) b | 83.30 (0.63) a | 1.76 (0.08) a | 14.92 (0.58) a | 19.90 (0.13) a | 18.77 (0.12) a | 3 |
Stem | 5.32 (0.08) b | 81.19 (0.08) a | 1.94 (0.05) a | 16.85 (0.12) a | 19.79 (0.33) a | 18.60 (0.30) a | 3 | |
Branches | 6.09 (0.14) a | 82.48 (2.68) a | 1.79 (0.26) a | 15.72 (2.64) a | 20.28 (0.54) a | 18.88 (0.50) a | 3 | |
Q. rugosa | Stump | 5.00 (0.09) b | 82.50 (1.46) a | 1.59 (0.06) a | 15.90 (1.40) a | 20.31 (0.31) a | 19.16 (0.30) a | 3 |
Stem | 5.34 (0.14) b | 83.68 (0.33) a | 1.79 (0.02) a | 14.51 (0.34) a | 20.09 (0.05) a | 18.87 (0.08) a | 3 | |
Branches | 5.22 (0.19) b | 83.21 (1.17) a | 1.62 (0.12) a | 15.15 (1.18) a | 19.98 (0.09) a | 18.79 (0.09) a | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Mendoza, M.E.; Ruiz-Aquino, F.; Rutiaga-Quiñones, J.G.; Feria-Reyes, R.; Santiago-García, W.; Suárez-Mota, M.E.; Puc-Kauil, R.; Gabriel-Parra, R. Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production. Forests 2025, 16, 856. https://doi.org/10.3390/f16050856
Jiménez-Mendoza ME, Ruiz-Aquino F, Rutiaga-Quiñones JG, Feria-Reyes R, Santiago-García W, Suárez-Mota ME, Puc-Kauil R, Gabriel-Parra R. Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production. Forests. 2025; 16(5):856. https://doi.org/10.3390/f16050856
Chicago/Turabian StyleJiménez-Mendoza, María Elena, Faustino Ruiz-Aquino, José Guadalupe Rutiaga-Quiñones, Rossy Feria-Reyes, Wenceslao Santiago-García, Mario Ernesto Suárez-Mota, Ramiro Puc-Kauil, and Rosalío Gabriel-Parra. 2025. "Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production" Forests 16, no. 5: 856. https://doi.org/10.3390/f16050856
APA StyleJiménez-Mendoza, M. E., Ruiz-Aquino, F., Rutiaga-Quiñones, J. G., Feria-Reyes, R., Santiago-García, W., Suárez-Mota, M. E., Puc-Kauil, R., & Gabriel-Parra, R. (2025). Chemical and Energetic Evaluation of Densified Biomass of Quercus laurina and Quercus rugosa for Bioenergy Production. Forests, 16(5), 856. https://doi.org/10.3390/f16050856