Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of the Project Area
2.2. Laser Scanning
2.3. Thematic Layers Derived from the DEM
- Frequency: The area proportion of the largest category;
- Stability: The difference in area proportions between the largest and the second largest categories;
- Shannon Entropy, calculated as [51]:
3. Results and Discussion
DEM
- Derived layers
- b.
- Tree height comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czimber, K.; Heil, B.; Illés, G.; Gribovszki, Z.; Veperdi, G.; Mészáros, D.; Szász, B.; Heilig, D.; Kovács, G. Korszerű távérzékelési, geoinformatikai, terepi referencia adatgyűjtési módszerekkel támogatott termőhely és szénkészlet térképezés (SoilSense). In Proceedings of the Forestry Scientific Conference, Sopron, Hungary, 5–6 February 2024; Abstract Volume, p. 9. [Google Scholar]
- Guth, P.L. Geomorphometry from SRTM. Photogramm. Eng. Remote Sens. 2006, 72, 269–277. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of Vertical Accuracy of Open Source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205–217. [Google Scholar] [CrossRef]
- Gallant, J.C. Primary Topographic Attributes. In Terrain Analysis-Principles and Application; Wilson, J.P., Gallant, J.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 51–86. [Google Scholar]
- Jain, S.K.; Singh, V.P. Water Resources Systems Planning and Management; Elsevier: Amsterdam, The Netherlands, 2023; p. 858. ISBN 978-0-323-98412-6. [Google Scholar]
- Chappell, N.A.; Vongtanaboon, S.; Jiang, Y.; Tangtham, N. Return-Flow Prediction and Buffer Designation in Two Rainforest Headwaters. For. Ecol. Manag. 2006, 224, 131–146. [Google Scholar] [CrossRef]
- Weibel, R.; Heller, M. A Framework for Digital Terrain Modeling. In Proceedings of the Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland, 23–27 July 1990; pp. 219–229. [Google Scholar]
- Masataka, T. Accuracy of Digital Elevation Model According to Spatial Resolution. Int. Arch. Photogramm. Remote Sens. 1998, 32, 613–617. [Google Scholar]
- Abedini, M.J.; Dickinson, W.T.; Rudra, R.P. On Depressional Storages: The Effect of DEM Spatial Resolution. J. Hydrol. 2006, 318, 138–150. [Google Scholar] [CrossRef]
- Wolock, D.M.; Price, C.V. Effects of Digital Elevation Model Map Scale and Data Resolution on a Topography-Based Watershed Model. Water Resour. Res. 1994, 30, 3041–3052. [Google Scholar] [CrossRef]
- Zhang, W.; Montgomery, D.R. Digital Elevation Model Grid Size, Landscape Representation, and Hydrologic Simulations. Water Resour. Res. 1994, 30, 1019–1028. [Google Scholar] [CrossRef]
- Chisholm, H. Encyclopedia Britannica: Ode-Payment of Members; Cambridge: Cambridge, UK, 1911; Volume 20, p. 327. [Google Scholar]
- Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the Poster presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 200. [Google Scholar]
- Jenness, J. Topographic Position Index (TPI). An ArcView 3. x Tool for Analyzing the Shape of the Landscape. 2006. Available online: https://www.jennessent.com/arcview/TPI_jen_poster.htm (accessed on 4 July 2024).
- Kraus, K.; Pfeifer, N. A new method for surface reconstruction from laser scanner data. Int. Arch. Photogramm. Remote Sens. 1997, 32, 80–86. [Google Scholar]
- Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models, ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2000, 33, 110–117. [Google Scholar]
- Dong, Y.; Cui, X.; Zhang, L.; Ai, H. An Improved Progressive TIN Densification Filtering Method Considering the Density and Standard Variance of Point Clouds. ISPRS Int. J. Geo-Inf. 2018, 7, 409. [Google Scholar] [CrossRef]
- Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 958–964. [Google Scholar]
- Pingel, T.; Clarke, K.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.; Whitman, D.; Shyu, M.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Evans, J.S.; Hudak, A.T. A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [Google Scholar] [CrossRef]
- Meng, X.; Currit, N.; Zhao, K. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sens. 2010, 2, 833–860. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering Airborne LiDAR Data through Complementary Cloth Simulation and Progressive TIN Densification Filters. Remote Sens. 2019, 11, 1037. [Google Scholar] [CrossRef]
- Li, F.; Zhu, H.; Luo, Z.; Shen, H.; Li, L. An Adaptive Surface Interpolation Filter Using Cloth Simulation and Relief Amplitude for Airborne Laser Scanning Data. Remote Sens. 2021, 13, 2938. [Google Scholar] [CrossRef]
- Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Persson, A.; Holmgren, J.; Söderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Popescu, S.C.; Wynne, R.H. Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar]
- Morsdorf, F.; Meier, E.; Kötz, B.; Itten, K.I.; Dobbertin, M.; Allgöwer, B. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 2004, 92, 353–362. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland using Small Footprint LIDAR data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of individual tree crowns in airborne lidar data. Photogramm. Eng. Remote Sensing 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Yu, X.; Kaartinen, H.; Kukko, A.; Holopainen, M. Forest Inventory Using Small-Footprint Airborne Lidar. In Topographic Laser Ranging and Scanning: Principles and Processing; Shan, J., Toth, C.K., Eds.; Taylor & Francis Group: New York, NY, USA, 2009; pp. 335–370. [Google Scholar]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Ferraz, A.; Bretar, F.; Jacquemoud, S.; Gonçalves, G.; Pereira, L.; Tomé, M.; Soares, P. 3-D mapping of a multi-layered Mediterranean forest using ALS data. Remote Sens. Environ. 2012, 121, 210–223. [Google Scholar] [CrossRef]
- Li, W.K.; Guo, Q.H.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sens. 2012, 4, 950–974. [Google Scholar] [CrossRef]
- Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches. Remote Sens. 2013, 5, 4163–4186. [Google Scholar] [CrossRef]
- Strîmbu, V.F.; Strîmbu, B.M. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2015, 104, 30–43. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Cook, B.D.; Hurtt, G.C.; Dubayah, R.O. An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 2014, 154, 378–386. [Google Scholar] [CrossRef]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef]
- Lindberg, E.; Holmgren, J. Individual tree crown methods for 3D data from remote sensing. Curr. For. Rep. 2017, 3, 19–31. [Google Scholar] [CrossRef]
- Hu, S.; Li, Z.; Zhang, Z.; He, D.; Wimmer, M. Efficient tree modeling from airborne LiDAR point clouds. Comput. Graph. 2017, 67, 1–13. [Google Scholar]
- Ayrey, E.; Fraver, S.; Kershaw, J.A., Jr.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds. Can. J. Remote Sens. 2017, 43, 16–27. [Google Scholar] [CrossRef]
- Wan Mohd Jaafar, W.S.; Woodhouse, I.H.; Silva, C.A.; Omar, H.; Abdul Maulud, K.N.; Hudak, A.T.; Klauberg, C.; Cardil, A.; Mohan, M. Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests 2018, 9, 759. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Cai, H.; Li, S. Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data. Appl. Sci. 2023, 13, 276. [Google Scholar] [CrossRef]
- Czimber, K. Forest inventory with aerial laser scanning and near photogrammetry—First test results (in Hungarian: Erdőleltározás légi lézeres letapogatással és közel fotogrammetriával–Első tesztek eredményei). In Proceedings of the Theory meets practice in GIS Conference, Debrecen, Hungary, 23–24 March 2019; pp. 77–81. [Google Scholar]
- McNab, W.H. Terrain Shape Index: Quantifying Effect of Minor Landforms on Tree Height. For. Sci. 1989, 35, 91–104. [Google Scholar] [CrossRef]
- Tateno, R.; Takeda, H. Forest Structure and Tree Species Distribution in Relation to Topography-Mediated Heterogeneity of Soil Nitrogen and Light at the Forest Floor. Ecol. Res. 2003, 18, 559–571. [Google Scholar] [CrossRef]
- Rahman, F.M.; Onoda, Y.; Kitajima, K. Forest Canopy Height Variation in Relation to Topography and Forest Types in Central Japan with LiDAR. For. Ecol. Manag. 2022, 503, 119792. [Google Scholar] [CrossRef]
- Bałazy, R.; Kamińska, A.; Ciesielski, M.; Socha, J.; Pierzchalski, M. Modeling the Effect of Environmental and Topographic Variables Affecting the Height Increment of Norway Spruce Stands in Mountainous Conditions with the Use of LiDAR Data. Remote Sens. 2019, 11, 2407. [Google Scholar] [CrossRef]
- Dövényi, Z.; Becse, A. Magyarország Kistájainak Katasztere. Második, Átdolgozott És Bővített Kiadás; MTA Földrajztudományi Kutint: Budapest, Hungary, 2010; pp. 347–350. [Google Scholar]
- Karaca, Y.; Moonis, M. Chapter 14–Shannon Entropy-Based Complexity Quantification of Nonlinear Stochastic Process: Diagnostic and Predictive Spatiotemporal Uncertainty of Multiple Sclerosis Subgroups. In Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems; Karaca, Y., Baleanu, D., Zhang, Y.-D., Gervasi, O., Moonis, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 231–245. ISBN 978-0-323-90032-4. [Google Scholar]
ID | Landform Names | Small Radius TPI | Large Radius TPI | Slope |
---|---|---|---|---|
1 | Canyons, Deeply Incised Streams | TPI ≤ −1 | TPI ≤ −1 | |
2 | Midslope Drainages, Shallow Valleys | TPI ≤ −1 | −1 < TPI < 1 | |
3 | Upland Drainages, Headwaters | TPI ≤ −1 | TPI ≥ 1 | |
4 | U-shaped Valleys | −1 < TPI < 1 | TPI ≤ −1 | |
5 | Plains | −1 < TPI < 1 | −1 < TPI < 1 | ≤2° |
6 | Open Slopes | −1 < TPI < 1 | −1 < TPI < 1 | >2° |
7 | Upper Slopes, Mesas | −1 < TPI < 1 | TPI ≥ 1 | |
8 | Local Ridges/Hills in Valleys | TPI ≥ 1 | TPI ≤ −1 | |
9 | Midslope Ridges, Small Hills in Plains | TPI ≥ 1 | −1 < TPI < 1 | |
10 | Mountain Tops, High Ridges | TPI ≥ 1 | TPI ≥ 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szász, B.; Heil, B.; Kovács, G.; Heilig, D.; Veperdi, G.; Mészáros, D.; Illés, G.; Czimber, K. Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data. Forests 2024, 15, 1546. https://doi.org/10.3390/f15091546
Szász B, Heil B, Kovács G, Heilig D, Veperdi G, Mészáros D, Illés G, Czimber K. Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data. Forests. 2024; 15(9):1546. https://doi.org/10.3390/f15091546
Chicago/Turabian StyleSzász, Botond, Bálint Heil, Gábor Kovács, Dávid Heilig, Gábor Veperdi, Diána Mészáros, Gábor Illés, and Kornél Czimber. 2024. "Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data" Forests 15, no. 9: 1546. https://doi.org/10.3390/f15091546
APA StyleSzász, B., Heil, B., Kovács, G., Heilig, D., Veperdi, G., Mészáros, D., Illés, G., & Czimber, K. (2024). Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data. Forests, 15(9), 1546. https://doi.org/10.3390/f15091546