Optimizing Carbon Sequestration Potential for Chinese Fir Plantations Using Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Density Effect Model
2.3. Thinning Regime for Carbon Sequestration Goal
2.3.1. Dynamic Programming Mathematical Model
2.3.2. Genetic Algorithm for Near-Optimal Thinning Regime
Algorithm 1: GA for near-optimal thinning regime (GA-OTR) |
Input: SI, N, M Output: Near-optimal thinning regime, maximum carbon sequestration |
1. GA parameter setting 2. Initialization of population (according to chromosome code) 3. Iteration through the individuals in the population Chromosome decoding Calculate individual fitness (based on input parameters) Selection operation Crossover operation Mutation operation Calculation of the effect of one iteration and saving the near-optimal result 4. Output of the near-optimal thinning regime and maximum carbon sequestration after all the iterations |
2.4. Forest Management Planning for Carbon Sequestration Goal
2.4.1. Forest Management Planning Model
2.4.2. Genetic Algorithm to Solve Operation Management Planning
3. Results
3.1. Density Effect Model Results
3.2. Near-Optimal Thinning Regime for Carbon Sequestration Goal
4. Discussion
4.1. CFMP in Carbon Sequestration Management of Plantation
4.2. Effect of Thinning on Carbon Sequestration of Chinese Fir
4.3. Research Forecast
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Stand No. | Area (ha) | SI (m) | A (Year) | N (Trees ha−1) |
---|---|---|---|---|
1 | 5.9 | 16 | 5 | 3000 |
2 | 6.1 | 18 | 8 | 2700 |
3 | 2.8 | 20 | 9 | 3000 |
4 | 30.2 | 14 | 7 | 2500 |
5 | 25.1 | 16 | 6 | 2700 |
6 | 5.3 | 18 | 7 | 2550 |
7 | 15.9 | 16 | 5 | 3750 |
8 | 16.5 | 20 | 5 | 2250 |
9 | 18.6 | 16 | 6 | 3330 |
10 | 4.8 | 18 | 9 | 2500 |
11 | 6.5 | 22 | 6 | 1667 |
12 | 9.7 | 16 | 9 | 3333 |
13 | 7.3 | 20 | 6 | 2850 |
14 | 11.3 | 14 | 7 | 2700 |
15 | 12.4 | 16 | 8 | 2550 |
16 | 15 | 12 | 8 | 2700 |
17 | 13.4 | 18 | 9 | 2850 |
18 | 8.5 | 20 | 7 | 2850 |
19 | 16.2 | 20 | 9 | 2700 |
20 | 8.7 | 16 | 8 | 2700 |
Stand No. | Option | Thinning Regime | Thinning Time and Carbon Density | C Goal Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | ||||
1 | No thinning | / | 120.236 | |||||||||||||||
1 | Thinning once | (15.0, 40.0) | 22.366 | 129.916 | ||||||||||||||
1 | Two thinning | (10.0, 10.0, 20.0, 25.0) | 5.378 | 24.657 | 139.573 | |||||||||||||
2 | No thinning | / | 165.241 | |||||||||||||||
2 | Thinning once | (15.0, 40.0) | 31.238 | 175.561 | ||||||||||||||
2 | Two thinning | (10.0, 10.0, 9.0, 25.0) | 3.443 | 30.314 | 187.473 | |||||||||||||
3 | No thinning | / | 226.818 | |||||||||||||||
3 | Thinning once | (15.0, 40.0) | 42.512 | 243.169 | ||||||||||||||
3 | Two thinning | (10.0, 10.0, 15.0, 25.0) | 7.734 | 44.031 | 260.200 | |||||||||||||
4 | No thinning | / | 80.169 | |||||||||||||||
4 | Thinning once | (15.0, 40.0) | 15.174 | 85.064 | ||||||||||||||
4 | Two thinning | (10.0, 10.0, 8.0, 25.0) | 1.489 | 14.586 | 90.835 | |||||||||||||
5 | No thinning | / | 118.714 | |||||||||||||||
5 | Thinning once | (15.0, 40.0) | 22.373 | 126.539 | ||||||||||||||
5 | Thinning twice | (10.0, 10.0, 12.0, 25.0) | 3.277 | 22.344 | 135.183 | |||||||||||||
6 | No thinning | / | 162.604 | |||||||||||||||
6 | Thinning once | (15.0, 40.0) | 30.901 | 171.799 | ||||||||||||||
6 | Thinning twice | (10.0, 10.0, 5.0, 25.0) | 1.903 | 28.904 | 183.551 | |||||||||||||
7 | No thinning | / | 113.833 | |||||||||||||||
7 | Thinning once | (15.0, 40.0) | 20.165 | 129.008 | ||||||||||||||
7 | Thinning twice | (10.0, 10.0, 25.0, 25.0) | 5.707 | 27.173 | 143.760 | |||||||||||||
8 | No thinning | / | 207.108 | |||||||||||||||
8 | Thinning once | (15.0, 40.0) | 39.79 | 216.250 | ||||||||||||||
8 | Thinning twice | (10.0, 10.0, 2.0, 25.0) | 0.992 | 36.119 | 232.155 | |||||||||||||
9 | No thinning | / | 119.216 | |||||||||||||||
9 | Thinning once | (15.0, 40.0) | 21.781 | 131.162 | ||||||||||||||
9 | Thinning twice | (10.0, 10.0, 25.0, 25.0) | 6.408 | 26.604 | 142.718 | |||||||||||||
10 | No thinning | / | 161.555 | |||||||||||||||
10 | Thinning once | (15.0, 40.0) | 30.752 | 170.388 | ||||||||||||||
10 | Thinning twice | (10.0, 10.0, 3.0, 25.0) | 1.139 | 28.318 | 182.144 | |||||||||||||
11 | No thinning | / | 225.977 | |||||||||||||||
11 | Thinning once | (15.0, 40.0) | 44.045 | 232.198 | ||||||||||||||
11 | Thinning twice | (10.0, 10.0, 10.0, 25.0) | 5.577 | 40.632 | 333.476 | |||||||||||||
12 | No thinning | / | 119.193 | |||||||||||||||
12 | Thinning once | (15.0, 40.0) | 21.773 | 131.161 | ||||||||||||||
12 | Thinning twice | (10.0, 10.0, 25.0, 25.0) | 6.404 | 26.61 | 142.825 | |||||||||||||
13 | No thinning | / | 224.849 | |||||||||||||||
13 | Thinning once | (15.0, 40.0) | 42.389 | 239.591 | ||||||||||||||
13 | Thinning twice | (10.0, 10.0, 11.0, 25.0) | 5.693 | 41.982 | 255.939 | |||||||||||||
14 | No thinning | / | 81.471 | |||||||||||||||
14 | Thinning once | (15.0, 40.0) | 26.572 | 87.189 | ||||||||||||||
14 | Thinning twice | (10.0, 10.0, 14.0, 25.0) | 2.602 | 15.651 | 93.243 | |||||||||||||
15 | No thinning | / | 117.078 | |||||||||||||||
15 | Thinning once | (15.0, 40.0) | 22.19 | 124.050 | ||||||||||||||
15 | Thinning twice | (10.0, 10.0, 7.0, 25.0) | 1.908 | 21.13 | 132.474 | |||||||||||||
16 | No thinning | / | 52.634 | |||||||||||||||
16 | Thinning once | (15.0, 40.0) | 9.834 | 56.614 | ||||||||||||||
16 | Thinning twice | (10.0, 10.0, 17.0, 25.0) | 2.02 | 10.439 | 60.674 | |||||||||||||
17 | No thinning | / | 167.108 | |||||||||||||||
17 | Thinning once | (15.0, 40.0) | 31.411 | 178.618 | ||||||||||||||
17 | Thinning twice | (10.0, 10.0, 13.0, 25.0) | 4.969 | 31.799 | 190.947 | |||||||||||||
18 | No thinning | / | 224.849 | |||||||||||||||
18 | Thinning once | (15.0, 40.0) | 42.389 | 239.591 | ||||||||||||||
18 | Thinning twice | (10.0, 10.0, 12.0, 25.0) | 6.21 | 42.307 | 255.939 | |||||||||||||
19 | No thinning | / | 221.893 | |||||||||||||||
19 | Thinning once | (15.0, 40.0) | 42.055 | 235.111 | ||||||||||||||
19 | Thinning twice | (10.0, 10.0, 7.0, 25.0) | 3.616 | 40.048 | 251.078 | |||||||||||||
20 | No thinning | / | 118.714 | |||||||||||||||
20 | Thinning once | (15.0, 40.0) | 22.373 | 126.539 | ||||||||||||||
20 | Thinning twice | (10.0, 10.0, 12.0, 25.0) | 3.277 | 22.344 | 135.183 |
References
- Zhang, H.; Lei, X.; Zhang, C.; Zhao, X.; Hu, X. Research on theory and technology of forest quality evaluation and precision improvement. J. Beijing For. Univ. 2019, 41, 1–18. [Google Scholar] [CrossRef]
- Chen, Y. Research on Matching Tree Species with Site and Growth Yield Benefit Assessment of Plantation-in the Case of Cunninghamia lanceolata and Pinus massoniana in Guizhou Provinc. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, C.; Chang, C. Efficiently mapping an appropriate thinning schedule for optimum carbon sequestration: An application of multi-segment goal programming. For. Ecol. Manag. 2011, 262, 1168–1173. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, C.; Wu, B. Crown Profile Modeling and Prediction Based on Ensemble Learning. Forests 2022, 13, 410. [Google Scholar] [CrossRef]
- Romanov, A.A.; Tamarovskaya, A.N.; Gloor, E.; Brienen, R.; Gusev, B.A.; Leonenko, E.V.; Vasiliev, A.S.; Krikunov, E.E. Reassessment of Carbon Emissions from Fires and a New Estimate of Net Carbon Uptake in Russian Forests in 2001–2021. Sci. Total Environ. 2022, 846, 157322. [Google Scholar] [CrossRef]
- Kang, H.; Seely, B.; Wang, G. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province. Sci. Total Environ. 2016, 557–558, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Kucuker, D.M. Analyzing the effects of various forest management strategies and carbon prices on carbon dynamics in western Turkey. J. Environ. Manag. 2019, 249, 109356.1–109356.10. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Biber, P. Ecosystem service trade-offs for adaptive forest management. Ecosyst. Serv. 2019, 39, 100993. [Google Scholar] [CrossRef]
- Valsta, L.T. A scenario approach to stochastic anticipatory optimization in stand management. For. Sci. 1992, 38, 430–447. [Google Scholar] [CrossRef]
- Cao, T. Silvicultural Decisions Based on Simulation-Optimization Systems; Dissertationes Forestales 103; Finnish Society of Forest Science: Helsinki, Finland, 2010; pp. 9–47. ISBN 978-951-651-295-5. [Google Scholar]
- Chen, B.; Hui, G.; Klaus, G. The Application and Comparison of Linear Programming, Simulated Annealing and Genetic Algorithm in the Sustainable Management of Cunninghamia lanceolata Plantations. Sci. Silvae Sin. 2004, 40, 80–87. [Google Scholar] [CrossRef]
- Knoke, T.; Paul, C.; Friedrich, S.; Borchert, H.; Haertl, F.; Chang, S.J. The optimal rotation for a fully regulated forest is the same as, or shorter than, the rotation for a single even-aged forest stand: Comments on Helmedag’s (2018) paper. Eur. J. For. Res. 2018, 139, 133–143. [Google Scholar] [CrossRef]
- Eyvindson, K.; Kangas, A. Guidelines for risk management in forest planning—What is risk and when is risk management useful? Can. J. For. Res. 2018, 48, 309–316. [Google Scholar] [CrossRef]
- Li, Z.C.; Xiao, J.; Lu, G.; Sun, W.N.; Ma, C.G.; Jin, Y.D. Productivity and profitability of Larix principis-rupprechtii and Pinus tabuliformis plantation forests in Northeast China. For. Policy Econ. 2020, 121, 102314. [Google Scholar] [CrossRef]
- Liu, F.; Hu, M.X.; Huang, W.B.; Chen, C.X.; Li, J.H. Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways. Forests 2023, 14, 153. [Google Scholar] [CrossRef]
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Merry, K.; Cieszewski, C. Optimisation in Forest Management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Hui, G.Y.; Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forest of Northern China. For. Ecol. Manag. 2014, 316, 125–138. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.G.; Zhu, Y.; Smith, A.R.; Ning, Y.; Deng, D.M. Aboveground carbon sequestration of Cunninghamia lanceolata forests: Magnitude and drivers. For. Ecosyst. 2024, 11, 100165. [Google Scholar] [CrossRef]
- Ramírez-Martínez, A.; González-Guillen, M.D.; de los Santos-Posadas, H.M.D.; Angeles-Pérez, G.; Santiago-García, W. Forest management with carbon scenarios in the central region of Mexico. iForest-BioGeosci. For. 2021, 14, 413–420. [Google Scholar] [CrossRef]
- Liu, M.; Hao, R.H.; Han, L.; Zhou, G.X.; Li, L.Z. An integrated economic-ecological index based on satellite-derived carbon sequestration and carbon price: A case study during 2015–2020 in Shaanxi, China. Ecol. Indic. 2023, 153, 110458. [Google Scholar] [CrossRef]
- Stainback, G.A.; Alavalapati, J.R.R. Economic analysis of slash pine forest carbon sequestration in the southern US. J. For. Econ. 2002, 8, 105–117. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Z.; Shen, Y.; Zhan, J.; Li, B.; Chen, M. Effect of off-farm employment on the harvesting decision-making of households with different scales in China’s collective forest area. J. Nat. Resour. 2019, 34, 236–249. [Google Scholar] [CrossRef]
- Zhu, W.; Gu, L. Decision Making of Forest Management under Carbon Sink-a Case Study of Chinese Fir Forest in Jiangxi. For. Resour. Manag. 2017, 3, 41–45+55. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, W.; Sun, Y.; Wang, F.; Miu, Y. Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning. Forests 2023, 14, 483. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Chen, J. Forest Carbon Sink in China: Linked Drivers and Long Short-Term Memory Network-Based Prediction. J. Clean. Prod. 2022, 359, 132085. [Google Scholar] [CrossRef]
- Thornley, J.H.M.; Cannell, M.G.R. Managing forests for wood yield and carbon storage: A theoretical study. Tree Physiol. 2000, 20, 477–484. [Google Scholar] [CrossRef]
- Briceño-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Kellomäki, S. Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ. Sci. Policy 2006, 9, 237–252. [Google Scholar] [CrossRef]
- Guo, W. The Effects of Thinning Intensity on Carbon Sequestration of Pinus tabulaeformis Plantations in Northern Mountain Areas of Beijing. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2017. (In Chinese). [Google Scholar] [CrossRef]
- Han, F.; Tian, X.; Dang, K.; Cao, T. Impact of Thinning on Carbon Storage for Pinus tabulae formis Stands in Shanxi Qiaoshan. J. Northwest For. Univ. 2015, 30, 184–191. [Google Scholar] [CrossRef]
- Pan, P.; Sun, Y.J.; Ouyang, X.Z.; Rao, J.F.; Ning, J.K. Factors Affecting Spatial Variation in Vegetation Carbon Density in Pinus massoniana Lamb. Forest in Subtropical China. Forests 2019, 10, 880. [Google Scholar] [CrossRef]
- Tahvonen, O.; Suominen, A.; Parkatti, V.P.; Malo, P. Optimizing high-dimensional forestry for wood production and carbon sinks. Can. J. For. Res. 2024, 54, 877–894. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, S.; Yao, S.; Lin, Y. A Meta-analysis of the Response of Forest Carbon Sinks to Forest Management Intensity. For. Econ. 2021, 43, 12–25. [Google Scholar] [CrossRef]
- Hoen, H.F.; Solberg, B. Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For. Sci. 1994, 3, 429–451. [Google Scholar] [CrossRef]
- Dong, L.B.; Sun, Y.X.; Liu, Z.G. Integrating carbon and timber objective into forest spatial planning management. J. Beijing For. Univ. 2017, 39, 52–61. (In Chinese) [Google Scholar]
- Hu, Z.; Liu, R.; Liu, P. Design and application of assistant program for county-level forest management planning. J. Beijing For. Univ. 2020, 42, 24–31. (In Chinese) [Google Scholar]
- Long, F.; Shen, Y.; Wu, W.; Zhu, Z.; Zhang, Z. Simulation research on the decision-making mechanism of regional forest carbon sequestration operation based on multi-agent system. J. Syst. Sci. Math. Sci. 2014, 34, 64. [Google Scholar]
- Xie, X.; Wang, Q.; Dai, L.; Su, D.; Wang, X.; Qi, G.; Ye, Y. Application of China’s National Forest Continuous Inventory Database. Environ. Manag. 2011, 48, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. A Study on the Target Planning Model of Forest Management Based on Space Constraints. Master’s Thesis, Beijing Forestry University, Beijing, China, 2018. [Google Scholar] [CrossRef]
- Ahtisoski, A.; Salminen, H.; Hökkä, H.; Kojola, S.; Penttilä, T. Optimising stand management on peatlands: The case of northern Finland. Can. J. For. Res. 2012, 42, 247–259. [Google Scholar] [CrossRef]
- Ahtisoski, A.; Salminen, H.; Ojansuu, R.; Hynynen, J.; Kärkkäinenen, K.; Haapanen, M. Optimizing stand management involving the effect of genetic gain: Preliminary results for Scots pine in Finland. Can. J. For. Res. 2013, 43, 299–305. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z.; Qin, H. A comparison of a neighborhood search technique for forest spatial harvest scheduling problems: A case study of the simulated annealing algorithm. For. Ecol. Manag. 2015, 356, 124–135. [Google Scholar] [CrossRef]
- Liu, W.Y.; Lin, C.C.; Su, K.H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 2017, 78, 51–66. [Google Scholar] [CrossRef]
- Li, J.; Wang, M. Reforestation planning based on improvement of particle swarm. J. Xiamen Univ. (Nat. Sci.) 2009, 48, 823–826. (In Chinese) [Google Scholar]
- Li, H.; Lei, Y.C. Estimation of Forest Vegetation Biomass and Carbon Storage in China; China Forestry Press: Beijing, China, 2010; ISBN 978-7-5038-5809-3. [Google Scholar]
- Wu, C.; Hong, W. An optimized method of afforestation planning and design under restricted conditions using the simulated annealing algorithm. J. Nat. Resour. 2000, 1, 86–90. [Google Scholar]
- Deng, W.; Xiang, W.; Shuai, Q.; Hu, Y.; Chen, L.; Zeng, Y.; Deng, X.; Zhao, Z.; Forrester, D. Spatially explicit optimization of the forest management tradeoff between timber production and carbon sequestration. Ecol. Indic. 2022, 142, 109193. [Google Scholar] [CrossRef]
- Fu, G. Analysis on the Effect of Tending and Thinning of Cunninghamia lanceolata (Lamb.) Hook. Forest on the Biomass of Different Age of Cunninghamia lanceolata (Lamb.) Hook. Forest. For. Investig. Des. 2022, 51, 8–10. (In Chinese) [Google Scholar]
- Wang, Z.; Li, Y.; Meng, Y.; Wang, C. Effects of Nurturing Intercalation on Carbon density Allocation and Competition between Spruceand Fir in natural Secondary Forests in the Xiaoxingan Mountains. J. Northwest For. Univ. 2022, 37, 10–16+52. [Google Scholar] [CrossRef]
- Xu, J.; Mao, Y.; Cheng, X.; Yu, M. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations. Chin. J. Appl. Ecol. 2014, 25, 1898–1904. [Google Scholar] [CrossRef]
Variable | Min | Max | Mean | Std Dev | CV |
---|---|---|---|---|---|
A (years) | 5 | 30 | 13.8 | 7.7 | 0.56 |
D (cm) | 6.5 | 21.7 | 10.9 | 3.2 | 0.29 |
H (m) | 4.3 | 16.3 | 8.4 | 2.6 | 0.31 |
HT (m) | 5.5 | 18.2 | 10.5 | 2.7 | 0.26 |
N (trees ha−1) | 1245 | 4950 | 2124.0 | 949.8 | 0.45 |
M1 (m3 ha−1) | 16.089 | 330.675 | 84.776 | 63.597 | 0.75 |
C (t ha−1) | 5.689 | 126.900 | 24.799 | 20.558 | 0.83 |
Parameter | Estimated Value | S.E. | Fitting Indicators | Test Indicators |
---|---|---|---|---|
a1 | 0.00004 | 0.00002 | = 0.8701 RMSE = 7.548 | = 0.8291 RMSE = 8.447 |
b1 | 2.6096 | 0.1942 | ||
a2 | 1.38 × 10−8 | 1.17 × 10−8 | ||
b2 | 2.3542 | 0.3228 |
Pc | Pm | Objective Function Value | CPU Time (Seconds) |
---|---|---|---|
0.3 | 0.05 | 37,541.21 | 378.0291 |
0.5 | 0.05 | 37,749.59 | 375.9889 |
0.9 | 0.05 | 37,399.01 | 343.8089 |
0.5 | 0.01 | 38,266.94 | 273.5580 |
0.5 | 0.1 | 37,439.11 | 274.9308 |
Stand No. | Option | Thinning Time and Carbon Sequestration | Final Carbon Sequestration | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | |||
1 | Thinning once | 131.96 | 766.50 | ||||||||||||||
2 | Thinning twice | 21.00 | 184.92 | 1143.59 | |||||||||||||
3 | Thinning once | 119.03 | 680.87 | ||||||||||||||
4 | Thinning twice | 44.97 | 440.50 | 2743.22 | |||||||||||||
5 | Thinning twice | 82.25 | 560.83 | 3393.09 | |||||||||||||
6 | Thinning twice | 10.09 | 153.19 | 972.82 | |||||||||||||
7 | Thinning twice | 90.74 | 432.05 | 2285.78 | |||||||||||||
8 | Thinning twice | 16.37 | 595.96 | 3830.56 | |||||||||||||
9 | Thinning twice | 119.19 | 494.83 | 2654.55 | |||||||||||||
10 | Thinning once | 147.61 | 817.86 | ||||||||||||||
11 | Thinning twice | 36.25 | 264.11 | 2167.59 | |||||||||||||
12 | Thinning twice | 62.12 | 258.12 | 1385.40 | |||||||||||||
13 | Thinning once | 309.44 | 1749.01 | ||||||||||||||
14 | Thinning once | 300.26 | 985.24 | ||||||||||||||
15 | Thinning twice | 23.66 | 262.01 | 1642.68 | |||||||||||||
16 | Thinning once | 147.51 | 849.21 | ||||||||||||||
17 | Thinning twice | 66.58 | 426.11 | 2558.69 | |||||||||||||
18 | Thinning twice | 52.79 | 359.61 | 2175.48 | |||||||||||||
19 | Thinning twice | 58.58 | 648.78 | 4067.46 | |||||||||||||
20 | Thinning twice | 28.51 | 194.39 | 1176.09 | |||||||||||||
Total: 20 stands | 187.28 | 73.17 | 107.84 | 237.69 | 107.11 | 266.64 | 147.51 | 300.26 | 309.44 | 131.96 | 1333.00 | 641.32 | 953.30 | 1319.78 | 1028.01 | 38,045.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Z.; Tian, Y.; Dong, C.; Chen, Y. Optimizing Carbon Sequestration Potential for Chinese Fir Plantations Using Genetic Algorithm. Forests 2024, 15, 1524. https://doi.org/10.3390/f15091524
Min Z, Tian Y, Dong C, Chen Y. Optimizing Carbon Sequestration Potential for Chinese Fir Plantations Using Genetic Algorithm. Forests. 2024; 15(9):1524. https://doi.org/10.3390/f15091524
Chicago/Turabian StyleMin, Zhiqiang, Yingze Tian, Chen Dong, and Yuling Chen. 2024. "Optimizing Carbon Sequestration Potential for Chinese Fir Plantations Using Genetic Algorithm" Forests 15, no. 9: 1524. https://doi.org/10.3390/f15091524
APA StyleMin, Z., Tian, Y., Dong, C., & Chen, Y. (2024). Optimizing Carbon Sequestration Potential for Chinese Fir Plantations Using Genetic Algorithm. Forests, 15(9), 1524. https://doi.org/10.3390/f15091524