Sustainable Afforestation Strategies: Hybrid Multi-Criteria Decision-Making Model in Post-Mining Rehabilitation
Abstract
:1. Introduction
- (i)
- Development of an integrated SWARA-AHP hybrid method for tree species selection in post-mining afforestation. This method is referred to as the “WPA framework”;
- (ii)
- Determining the weights and importance rankings of the main and sub-criteria in selecting alternative species for rehabilitation afforestation;
- (iii)
- Conducting a case study in surface mining areas to demonstrate the feasibility of this method;
- (iv)
- Creating a resource to aid decision-makers in similar problems using the proposed method;
- (v)
- Raising awareness about the use of MCDM methods in post-mining afforestation decision problems.
2. Materials and Methods
2.1. Case Study Area
2.2. Criteria for Calculating Weights
2.3. Tree Species to Prioritize
2.4. WPA Framework
2.5. A Hybrid SWARA-AHP Method Integrated into WPA Framework
2.5.1. SWARA Method
2.5.2. AHP Method
3. Results
3.1. Weighting of Criteria
3.2. Prioritization of Species
3.3. SWARA-AHP Results
4. Discussion
4.1. Criteria and Sub-Criteria
4.2. Alternatives
4.3. Comparison to Other MCDM and Group Decision-Making Studies
4.4. Limitations of the Study and Future Improvements
5. Conclusions
- DMs’ opinions and preferences are taken into account in identifying plant species that can be used in rehabilitation afforestation. The attributes of DMs’ preferences are integrated into the MCDM approach;
- The mathematical operations on the WPA framework are designed in a hierarchical order to understand various and contradictory attributes. This facilitates a more comprehensive and accurate decision-making process in criteria prioritization and plant species selection;
- Results for post-mining afforestation are presented to all stakeholders through an understandable algorithm. The data are accessible, and analyses and calculations can be audited.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WPA | Analysis of weighting criteria and prioritization of species |
MCDM | Multiple-criteria decision-making |
AHP | Analytic hierarchy process |
SWARA | Stepwise weight assessment ratio analysis |
CR | Consistency ratio |
DMs | Decision-makers |
Appendix A
Education Level | Specializations | Experience | Department |
---|---|---|---|
PhD | Forestry | 25 years | Planning |
PhD | Forestry | 20 years | Pollution and Resistance |
PhD | Forestry | 21 years | Water |
PhD | Forestry | 18 years | Aesthetics |
PhD | Forestry | 15 years | Carbon |
PhD | Environmental | 28 years | Erosion |
MSc | Environmental | 15 years | Afforestation |
MSc | Soil | 16 years | Solid Waste |
BSc | Civil | 30 years | Planning |
BSc | Civil | 30 years | Planning |
Criteria Group | Label | Criterion | Description |
---|---|---|---|
Ecological | C1 | Resistance | Plants fight both diseases and insect pests in nature. In rehabilitation plantations, species that do not cause direct and indirect losses and are resistant to diseases and insects should be preferred. |
C2 | Compatibility | In rehabilitation, compatibility with the region and other species is important in species selection. Plants with high adaptability make good use of nutrients, water, heat, and light in the environment. They develop protection against drought, parasites, or extreme temperature changes. | |
C3 | Pollution Prevention | Mining waste is one of the most undesirable pollutants for the environment. Each plant has the ability to eliminate different pollutants at different levels. For this reason, afforestation should be undertaken with plants that have a high potential to eliminate pollution. | |
C4 | Erosion Prevention | Rehabilitation sites should be afforested with species that have high wind resistance and water and soil retention capacity, as well as fast and well-growing species. In this way, the risk of soil, water, and wind erosion can be reduced. | |
C5 | Growth Type and Strength | In afforestation, the growth type and strength of the plant are important for its attachment to the soil, its growth, and its continuity in the field. | |
Social | C6 | Aesthetic Appearance | Aesthetic appearance forms the basis of human beings’ view of nature. Prioritizing species with high aesthetic value in rehabilitation has a positive effect on the appearance of the site and human psychology [83]. |
C7 | Access to Plant Species | In rehabilitation works, access to and procurement of plant species to be planted on the site is important. In afforestation, saplings that are easy to procure and adapt to local conditions should be selected from regional nurseries. | |
Economic | C8 | Carbon Stock and Credit | Carbon stock refers to the process that prevents the release of carbon into the atmosphere over a certain period of time [84]. Prioritizing species with a high carbon storage capacity in afforestation is important for reducing the amount of carbon dioxide in the atmosphere and for the enterprise to receive carbon credits. This will also contribute to the prevention of global warming [85]. |
C9 | Reducing Afforestation Cost | In rehabilitation feasibility studies, many cost items, such as surveys, land preparation, fencing, and planting, should be well defined. Methods with low-cost items and species suitable for these methods reduce the cost of afforestation. Likewise, candidate species for afforestation should not only be ecologically and technically healthy but also socially acceptable and economically cost-effective. | |
C10 | Economic Efficiency | Economic efficiency is an important criterion affecting costs and investment decisions. In mining investments, the economic return of the ore to be obtained and the damage to nature should be analyzed well. In fact, the cost of reclamation works to be carried out on lands devastated after mining should be included in investment calculations in the initial feasibility studies. Likewise, the tree species to be used in rehabilitation afforestation is an important variable in calculating economic efficiency. |
Species | Delphi Score Mean | Included in WPA Framework | |
---|---|---|---|
1 | A1—Robinia pseudoacacia L. | 4.35 | Yes |
2 | A2—Alnus glutinosa subsp. glutinosa | 4.20 | Yes |
3 | A3—Populus nigra subsp. nigra | 3.82 | Yes |
4 | A4—Quercus robur subsp. robur | 3.22 | Yes |
5 | A5—Salix alba L. | 3.22 | Yes |
6 | Pinus pinea | 2.65 | No |
7 | Pseudotsuga menziesii | 2.64 | No |
8 | Acer negundo | 2.60 | No |
9 | Acer campestre | 2.56 | No |
10 | Ailanthus altissima | 2.54 | No |
11 | Carpinus betulus | 2.50 | No |
12 | Gleditsia triacanthos | 2.48 | No |
13 | Juglans regia | 2.42 | No |
14 | Pinus nigra | 2.41 | No |
15 | Ulmus minör | 2.40 | No |
Criteria | Individual Evaluations of DMs | Merged Relative Importance Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | DM4 | DM5 | DM6 | DM7 | DM8 | DM9 | DM10 | ||
C1 | 0.40 | 0.15 | 0.20 | 0.50 | 0.60 | 0.35 | 0.20 | 0.25 | 0.50 | 0.60 | 0.337013 |
C2 | 0.50 | 0.20 | 0.30 | 0.20 | 0.40 | 0.45 | 0.25 | 0.30 | 0.20 | 0.40 | 0.302801 |
C3 | 0.60 | 0.25 | 0.50 | 0.35 | 0.25 | 0.55 | 0.30 | 0.35 | 0.35 | 0.25 | 0.356503 |
C4 | 0.65 | 0.40 | 0.40 | 0.40 | 0.75 | 0.70 | 0.55 | 0.55 | 0.40 | 0.75 | 0.536673 |
C5 | 0.35 | 0.50 | 0.65 | 0.25 | 0.65 | 0.40 | 0.40 | 0.65 | 0.25 | 0.65 | 0.446138 |
C6 | 0.80 | 0.65 | 0.60 | 0.55 | 0.55 | 0.80 | 0.45 | 0.60 | 0.55 | 0.55 | 0.601182 |
C7 | 0.95 | 0.45 | 0.55 | 0.65 | 0.50 | 1.00 | 0.65 | 0.55 | 0.65 | 0.50 | 0.623497 |
C8 | 1.00 | 0.70 | 1.00 | 0.90 | 0.80 | 0.95 | 0.70 | 1.00 | 0.95 | 0.95 | 0.887299 |
C9 | 0.70 | 1.00 | 0.80 | 0.80 | 0.85 | 0.75 | 0.95 | 0.90 | 0.70 | 0.90 | 0.829290 |
C10 | 0.90 | 0.90 | 0.90 | 1.00 | 1.00 | 0.85 | 0.90 | 0.95 | 1.00 | 1.00 | 0.938450 |
Criteria | Merged Relative Importance Score (Ordered) | Comparative Importance | Coefficient Value |
Corrected Weight Value |
Final Weight Value | Rank |
---|---|---|---|---|---|---|
C10 | 0.938450 | - | 1.000000 | 1.000000 | 0.1365 | 1 |
C8 | 0.887299 | 0.051151 | 1.051151 | 0.951338 | 0.1298 | 2 |
C9 | 0.829290 | 0.058009 | 1.058009 | 0.899178 | 0.1227 | 3 |
C7 | 0.623497 | 0.205793 | 1.205793 | 0.745714 | 0.1018 | 4 |
C6 | 0.601182 | 0.022315 | 1.022315 | 0.729437 | 0.0995 | 5 |
C4 | 0.536673 | 0.064509 | 1.064509 | 0.685234 | 0.0935 | 6 |
C5 | 0.446138 | 0.090535 | 1.090535 | 0.628346 | 0.0857 | 7 |
C3 | 0.356503 | 0.089635 | 1.089635 | 0.576657 | 0.0787 | 8 |
C1 | 0.337013 | 0.019490 | 1.019490 | 0.565633 | 0.0772 | 9 |
C2 | 0.302801 | 0.034211 | 1.034211 | 0.546922 | 0.0746 | 10 |
Criteria | SWARA Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
0.0772 | 0.0746 | 0.0787 | 0.0935 | 0.0857 | 0.0995 | 0.101898 | 0.1298 | 0.1227 | 0.1365 |
Alternative | Ranking Values Obtained | Normalized Value of Decision Matrix | Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S1 |
A1 | 1.000 | 3.000 | 7.000 | 3.000 | 5.000 | 0.498 | 0.634 | 0.525 | 0.246 | 0.217 | 0.424 |
A2 | 0.333 | 1.000 | 5.000 | 3.000 | 5.000 | 0.166 | 0.211 | 0.375 | 0.246 | 0.217 | 0.243 |
A3 | 0.143 | 0.200 | 1.000 | 5.000 | 7.000 | 0.071 | 0.042 | 0.075 | 0.410 | 0.304 | 0.180 |
A4 | 0.333 | 0.333 | 0.200 | 1.000 | 5.000 | 0.166 | 0.070 | 0.015 | 0.082 | 0.217 | 0.110 |
A5 | 0.200 | 0.200 | 0.143 | 0.200 | 1.000 | 0.100 | 0.042 | 0.011 | 0.016 | 0.043 | 0.042 |
CR < 0.05 | 2.010 | 4.733 | 13.343 | 12.200 | 23.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C2 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S2 |
A1 | 1.000 | 7.000 | 7.000 | 3.000 | 5.000 | 0.550 | 0.789 | 0.600 | 0.290 | 0.294 | 0.505 |
A2 | 0.143 | 1.000 | 3.000 | 3.000 | 5.000 | 0.079 | 0.113 | 0.257 | 0.290 | 0.294 | 0.207 |
A3 | 0.143 | 0.333 | 1.000 | 3.000 | 3.000 | 0.079 | 0.038 | 0.086 | 0.290 | 0.176 | 0.134 |
A4 | 0.333 | 0.333 | 0.333 | 1.000 | 3.000 | 0.183 | 0.038 | 0.029 | 0.097 | 0.176 | 0.105 |
A5 | 0.200 | 0.200 | 0.333 | 0.333 | 1000 | 0.110 | 0.023 | 0.029 | 0.032 | 0.059 | 0.050 |
CR < 0.05 | 1.819 | 8.867 | 11.667 | 10.333 | 17.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C3 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S3 |
A1 | 1.000 | 3.000 | 5.000 | 3.000 | 5.000 | 0.484 | 0.616 | 0.524 | 0.294 | 0.238 | 0.431 |
A2 | 0.333 | 1000 | 3.000 | 3.000 | 5.000 | 0.161 | 0.205 | 0.315 | 0.294 | 0.238 | 0.243 |
A3 | 0.200 | 0.333 | 1.000 | 3.000 | 5.000 | 0.097 | 0.068 | 0.105 | 0.294 | 0.238 | 0.160 |
A4 | 0.333 | 0.333 | 0.333 | 1.000 | 5.000 | 0.161 | 0.068 | 0.035 | 0.098 | 0.238 | 0.120 |
A5 | 0.200 | 0.200 | 0.200 | 0.200 | 1.000 | 0.097 | 0.041 | 0.021 | 0.020 | 0.048 | 0.045 |
CR < 0.05 | 2.067 | 4.867 | 9.533 | 10.200 | 21.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C4 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S4 |
A1 | 1.000 | 5.000 | 7.000 | 5.000 | 5.000 | 0.574 | 0.734 | 0.574 | 0.349 | 0.294 | 0.505 |
A2 | 0.200 | 1.000 | 3.000 | 7.000 | 3.000 | 0.115 | 0.147 | 0.246 | 0.488 | 0.176 | 0.234 |
A3 | 0.143 | 0.333 | 1.000 | 1.000 | 5.000 | 0.082 | 0.049 | 0.082 | 0.070 | 0.294 | 0.115 |
A4 | 0.200 | 0.143 | 1.000 | 1.000 | 3.000 | 0.115 | 0.021 | 0.082 | 0.070 | 0.176 | 0.093 |
A5 | 0.200 | 0.333 | 0.200 | 0.333 | 1.000 | 0.115 | 0.049 | 0.016 | 0.023 | 0.059 | 0.052 |
CR < 0.05 | 1.743 | 6.810 | 12.200 | 14.333 | 17.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C5 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S5 |
A1 | 1.000 | 5.000 | 7.000 | 3.000 | 5.000 | 0.533 | 0.764 | 0.488 | 0.246 | 0.263 | 0.459 |
A2 | 0.200 | 1.000 | 5.000 | 7.000 | 5.000 | 0.107 | 0.153 | 0.349 | 0.574 | 0.263 | 0.289 |
A3 | 0.143 | 0.200 | 1.000 | 1.000 | 3.000 | 0.076 | 0.031 | 0.070 | 0.082 | 0.158 | 0.083 |
A4 | 0.333 | 0.143 | 1.000 | 1.000 | 5.000 | 0.178 | 0.022 | 0.070 | 0.082 | 0.263 | 0.123 |
A5 | 0.200 | 0.200 | 0.333 | 0.200 | 1.000 | 0.107 | 0.031 | 0.023 | 0.016 | 0.053 | 0.046 |
CR < 0.05 | 1.876 | 6.543 | 14.333 | 12.200 | 19.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C6 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S6 |
A1 | 1.000 | 7.000 | 7.000 | 3.000 | 5.000 | 0.550 | 0.812 | 0.568 | 0.243 | 0.263 | 0.487 |
A2 | 0.143 | 1.000 | 3.000 | 7.000 | 7.000 | 0.079 | 0.116 | 0.243 | 0.568 | 0.368 | 0.275 |
A3 | 0.143 | 0.333 | 1.000 | 1.000 | 3.000 | 0.079 | 0.039 | 0.081 | 0.081 | 0.158 | 0.087 |
A4 | 0.333 | 0.143 | 1.000 | 1.000 | 3.000 | 0.183 | 0.017 | 0.081 | 0.081 | 0.158 | 0.104 |
A5 | 0.200 | 0.143 | 0.333 | 0.333 | 1.000 | 0.110 | 0.017 | 0.027 | 0.027 | 0.053 | 0.047 |
CR < 0.05 | 1.819 | 8.619 | 12.333 | 12.333 | 19.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C7 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S7 |
A1 | 1.000 | 7.000 | 5.000 | 5.000 | 3.000 | 0.533 | 0.807 | 0.436 | 0.246 | 0.231 | 0.450 |
A2 | 0.143 | 1.000 | 5.000 | 7.000 | 3.000 | 0.076 | 0.115 | 0.436 | 0.344 | 0.231 | 0.240 |
A3 | 0.200 | 0.200 | 1.000 | 7.000 | 3.000 | 0.107 | 0.023 | 0.087 | 0.344 | 0.231 | 0.158 |
A4 | 0.200 | 0.143 | 0.143 | 1.000 | 3.000 | 0.107 | 0.016 | 0.012 | 0.049 | 0.231 | 0.083 |
A5 | 0.333 | 0.333 | 0.333 | 0.333 | 1.000 | 0.178 | 0.038 | 0.029 | 0.016 | 0.077 | 0.068 |
CR < 0.05 | 1.876 | 8.676 | 11.476 | 20.333 | 13.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C8 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S8 |
A1 | 1.000 | 3.000 | 7.000 | 3.000 | 5.000 | 0.498 | 0.634 | 0.525 | 0.243 | 0.238 | 0.427 |
A2 | 0.333 | 1.000 | 5.000 | 3.000 | 5.000 | 0.166 | 0.211 | 0.375 | 0.243 | 0.238 | 0.247 |
A3 | 0.143 | 0.200 | 1.000 | 5.000 | 7.000 | 0.071 | 0.042 | 0.075 | 0.405 | 0.333 | 0.185 |
A4 | 0.333 | 0.333 | 0.200 | 1.000 | 3.000 | 0.166 | 0.070 | 0.015 | 0.081 | 0.143 | 0.095 |
A5 | 0.200 | 0.200 | 0.143 | 0.333 | 1.000 | 0.100 | 0.042 | 0.011 | 0.027 | 0.048 | 0.045 |
CR < 0.05 | 2.010 | 4.733 | 13.343 | 12.333 | 21.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C9 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S9 |
A1 | 1.000 | 3.000 | 7.000 | 3.000 | 5.000 | 0.498 | 0.642 | 0.525 | 0.243 | 0.217 | 0.425 |
A2 | 0.333 | 1.000 | 5.000 | 3.000 | 7.000 | 0.166 | 0.214 | 0.375 | 0.243 | 0.304 | 0.260 |
A3 | 0.143 | 0.200 | 1.000 | 5.000 | 7.000 | 0.071 | 0.043 | 0.075 | 0.405 | 0.304 | 0.180 |
A4 | 0.333 | 0.333 | 0.200 | 1.000 | 3.000 | 0.166 | 0.071 | 0.015 | 0.081 | 0.130 | 0.093 |
A5 | 0.200 | 0.143 | 0.143 | 0.333 | 1.000 | 0.100 | 0.031 | 0.011 | 0.027 | 0.043 | 0.042 |
CR < 0.05 | 2.010 | 4.676 | 13.343 | 12.333 | 23.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
C10 | A1 | A2 | A3 | A4 | A5 | A1 | A2 | A3 | A4 | A5 | S10 |
A1 | 1.000 | 3.000 | 7.000 | 3.000 | 5.000 | 0.498 | 0.642 | 0.525 | 0.243 | 0.217 | 0.425 |
A2 | 0.333 | 1.000 | 5.000 | 3.000 | 7.000 | 0.166 | 0.214 | 0.375 | 0.243 | 0.304 | 0.260 |
A3 | 0.143 | 0.200 | 1.000 | 5.000 | 7.000 | 0.071 | 0.043 | 0.075 | 0.405 | 0.304 | 0.180 |
A4 | 0.333 | 0.333 | 0.200 | 1000 | 3.000 | 0.166 | 0.071 | 0.015 | 0.081 | 0.130 | 0.093 |
A5 | 0.200 | 0.143 | 0.143 | 0.333 | 1000 | 0.100 | 0.031 | 0.011 | 0.027 | 0.043 | 0.042 |
CR < 0.05 | 2.010 | 4.676 | 13.343 | 12.333 | 23.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Alternative | AHP Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
A1 | 0.424 | 0.505 | 0.431 | 0.505 | 0.459 | 0.487 | 0.450 | 0.427 | 0.425 | 0.425 |
A2 | 0.243 | 0.207 | 0.243 | 0.234 | 0.289 | 0.275 | 0.240 | 0.247 | 0.260 | 0.260 |
A3 | 0.180 | 0.134 | 0.160 | 0.115 | 0.083 | 0.087 | 0.158 | 0.185 | 0.180 | 0.180 |
A4 | 0.110 | 0.105 | 0.120 | 0.093 | 0.123 | 0.104 | 0.083 | 0.095 | 0.093 | 0.093 |
A5 | 0.042 | 0.050 | 0.045 | 0.052 | 0.046 | 0.047 | 0.068 | 0.045 | 0.042 | 0.042 |
References
- FAO. The State of the World’s Forests. Forests, Biodiversity and People; FAO: Rome, Italy, 2020. Available online: https://www.fao.org/state-of-forests/en/epa.gov/superfund/ (accessed on 5 February 2023).
- UNDP. The Sustainable Development Goals Report 2023: Special Edition. 2023. Available online: https://unstats.un.org/sdgs/report/2023/ (accessed on 5 February 2023).
- Environmental Protection Agency (EPA). What Is Superfund? 2022. Available online: https://www.epa.gov/superfund/ (accessed on 5 February 2023).
- Gao, L.; Miao, Z.; Bai, Z.; Zhou, X.; Zhao, J.; Zhu, Y. A case study of ecological restoration at the Xiaoyi Bauxite mine, Shanxi province, China. Ecol. Eng. 1998, 11, 221–229. [Google Scholar] [CrossRef]
- Soltanmohammadi, H.; Osanloo, M.; Bazzazi, A.A. Deriving preference order of post-mining land-uses through MLSA framework: Application of an outranking technique. Environ. Geol. 2009, 58, 877–888. [Google Scholar] [CrossRef]
- Bazzazi, A.A.; Adib, A.; Shapoori, M. Plant species selection by hybrid multiple-attribute decision-making model for promoting green mining in the Sungun copper mine, Iran. Environ. Sci. Pollut. Res. 2022, 29, 89221–89234. [Google Scholar] [CrossRef] [PubMed]
- Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Šebelíková, L.; Řehounková, K.; Prach, K. Spontaneous revegetation vs. forestry reclamation in post-mining sand pits. Environ. Sci. Pollut. Res. 2016, 23, 13598–13605. [Google Scholar] [CrossRef]
- Sezer, A.O.; Gençay, G. Investigation of Mine Permit Period in State Forests (The Example of Eskişehir Regional Directorate of Forestry). J. Bartin Fac. For. 2017, 19, 204–217. [Google Scholar]
- Soltanmohammadi, H.; Osanloo, M.; Aghajani-Bazzazi, A. An analytical approach with a reliable logic and a ranking policy for post-mining land-use determination. Land Use Policy 2010, 27, 364–372. [Google Scholar] [CrossRef]
- Osanloo, M.; Hekmat, A.; Aghajani-Bazazi, A. Reclamation of granite stone quarry—A case study in Jostan Granite Mine, Tehran, Iran. Perth Aust. 2006, 1, 269–279. [Google Scholar]
- Fox, J.F.; Campbell, J.E.; Acton, P.M. Carbon sequestration by reforesting legacy grasslands on coal mining sites. Energies 2020, 13, 6340. [Google Scholar] [CrossRef]
- USDA. The Forestry Reclamation Approach: Guide to Successful Reforestation of Mined Lands. 2017. Available online: https://www.fs.usda.gov/nrs/pubs/gtr/gtr_nrs169.pdf/ (accessed on 5 October 2023).
- Gençay, G.; Durkaya, B. What is meant by land-use change? Effects of mining activities on forest and climate change. Environ. Monit. Assess 2023, 195, 778. [Google Scholar] [CrossRef]
- Lo, W.C.; Lu, C.H.; Chou, Y.C. Application of Multicriteria Decision Making and Multi-Objective Planning Methods for Evaluating Metropolitan Parks in Terms of Budget and Benefits. Mathematics 2020, 8, 1304. [Google Scholar] [CrossRef]
- Wilkinson, C.F.; Anderson, H.M. Land and resource planning in the national forests. Or. Law Rev. 1985, 64, 1–363. [Google Scholar]
- Mendoza, G.A.; Dalton, W.J. Multi-stakeholder assessment of forest sustainability: Multi-criteria analysis and the case of the Ontario forest assessment system. For. Chron. 2005, 81, 222–228. [Google Scholar] [CrossRef]
- Anderson, R.E.; Babin, B.J.; Black, W.C.; Hair, J.F. Multivariate Data Analysis: A Global Perspective. Pearson Education, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010; pp. 186–197. [Google Scholar]
- Güngör, E.; Şen, G. Determination of Honey Production Forest Field Selection with Analytic Hierarchy Process (AHP), IV; International Multidiciplinary Congress of Euroasia (IMCOFE): Roma, Italy, 2017; pp. 210–221. [Google Scholar]
- Monterroso, C.; MaciasfBueno, G.; Caballero, V. Evaluation of the land reclamation project at the as pontes mine (NW Spain) in relation to the suitability of the soil for plant growth. Land Degrad. Dev. 1998, 9, 441–451. [Google Scholar] [CrossRef]
- Maiti, S.K.; Ghose, M.K. Ecological restoration of acidic coalmine overburden dumps—An Indian case study. Land Contam. Reclam. 2005, 13, 361–369. [Google Scholar] [CrossRef]
- Laurence, D. Classification of risk factors associated with mine closure. Miner. Resour. Eng. 2001, 10, 315–331. [Google Scholar] [CrossRef]
- Laurence, D. Optimization of the mine closure process. J. Clear. Prod. 2006, 14, 285–298. [Google Scholar] [CrossRef]
- Hodačová, D.; Prach, K. Spoil heaps from brown coal mining: Technical reclamation vs. spontaneous re-vegetation. Restor. Ecol. 2003, 11, 385–391. [Google Scholar] [CrossRef]
- Akbari, A.; Osanloo, M.; Hamidian, H. Selecting post mining land use through analytical hierarchy processing method: Case study in Sungun copper open pit mine of Iran. In Proceedings of the Fifteen International Symposium on Mine Planning and Equipment Selection (MPES 2006), Torino, Italy, 20–22 September 2006; pp. 245–252. [Google Scholar]
- Pietrzykowski, M. Soil and plant communities development and ecological effectiveness of reclamation on a sand mine cast. J. For. Sci. 2008, 54, 554–565. [Google Scholar] [CrossRef]
- Tokgöz, N. Case study of the Agacli landslide–gully complex during post-coal-mining reclamation and afforestation. Environ. Earth Sci. 2010, 59, 1559–1567. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Alday, J.G.; Marrs, R.H.; Martínez-Ruiz, C. Soil and vegetation development during early succession on restored coal wastes: A six-year permanent plot study. Plant Soil 2012, 353, 305–320. [Google Scholar] [CrossRef]
- Doley, D.; Audet, P.; Mulligan, D.R. Examining the Australian context for post-mined land rehabilitation: Reconciling a paradigm for the development of natural and novel ecosystems among postdisturbance landscapes. Agric. Ecosyst. Environ. 2012, 163, 85–93. [Google Scholar] [CrossRef]
- Vickers, H.; Gillespie, M.; Gravina, A. Assessing the development of rehabilitated grasslands on post-mined landforms in North West Queensland, Australia. Agric. Ecosyst. Environ. 2012, 163, 72–84. [Google Scholar] [CrossRef]
- Tropek, R.; Kadlec, T.; Hejda, M.; Kočárek, P.; Skuhrovec, J.; Malenovský, I.; Vodka, Š.; Spitzer, L.; Baňař, P.; Konvička, M. Technical reclamations are wasting the conservation potential of post-mining sites-a case study of black coal spoil dumps. Ecol. Eng. 2012, 43, 13–18. [Google Scholar] [CrossRef]
- Adibee, N.; Osanloo, M.; Rahmanpour, M. Adverse effects of coal mine waste dumps on the environment and their management. Environ. Earth Sci. 2013, 70, 1581–1592. [Google Scholar] [CrossRef]
- Woziwoda, B.; Kopeć, D. Afforestation or natural succession? Looking for the best way to manage abandoned cut-over peatlands for biodiversity conservation. Ecol. Eng. 2014, 63, 143–152. [Google Scholar] [CrossRef]
- Başçetin, A.A. Decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine. Environ. Geol. 2007, 52, 663–672. [Google Scholar] [CrossRef]
- Soltanmohammadi, H.; Osanloo, M.; Rezaei, B.; Aghajani-Bazzazi, A. Achieving to some outranking relationships between post mining land uses through mined land suitability analysis. Int. J. Environ. Sci. Technol. 2008, 5, 535–546. [Google Scholar] [CrossRef]
- Bangian, A.H.; Osanloo, M. Multi Attribute Decision Model for Plant Species Selection in Mine Reclamation Plans: Case Study Sungun Copper Mine; Post-Mining Conference: Nancy, France, 2008. [Google Scholar]
- MGM. General Statistical Data of Our Provinces Bartin. T.R. General Directorate of Meteorology (MGM). 2024. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A (accessed on 24 January 2024).
- Hasson, F.; Keeney, S.; McKenna, H. Research guidelines for the Delphi survey technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef]
- Gençay, G.; Birben, Ü. Legal Process of the Mining Permits and Rehabilitation in the State Forests in Turkey (Case of Bartın Forest Enterprise). Anatol. J. For. Res. 2018, 4, 12–24. [Google Scholar]
- Görcelioğlu, E. Landscape Restoration Technique; Istanbul University Publication No: 4351: İstanbul, Turkey, 2020; 320p. [Google Scholar]
- Yavuzşefik, Y.; Uzun, O. Landscape Restoration Technique; Abant İzzet Baysal University, Faculty of Forestry: Düzce, Turkey, 2005; 183p. [Google Scholar]
- Macharis, C.; Springael, J.; De Brucker, K.; Verbeke, A. Promethee and AHP: The design of operational synergies in multicriteria analysis. Strengthening Promethee with ideas of AHP. Eur. J. Oper. Res. 2004, 153, 307–317. [Google Scholar] [CrossRef]
- Song, B.; Kang, S.A. Method of assigning weights using a ranking and nonhierarchy comparison. Adv. Decis. Sci. 2016, 2016, 8963214. [Google Scholar] [CrossRef]
- Lawnik, M.; Banasik, A. Delphi Method Supported by Forecasting Software. Information 2020, 11, 65. [Google Scholar] [CrossRef]
- Mancuso, C.A.; Sculco, T.P.; Wickiewicz, T.L.; Jones, E.C.; Robbins, L.; Warren, R.F.; Williams-Russo, P. Patients’ expectations of knee surgery. J. Bone Joint Surg. Am. 2001, 83, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Torbert, J.L.; Burger, J.A.; Probert, T. Evaluation of techniques to improve white pine establishment on an Appalachian mine soil. J. Environ. Qual. 1995, 24, 869–873. [Google Scholar] [CrossRef]
- Zeleznik, J.D.; Skousen, J.G. Land reclamation: Survival of three tree species on old reclaimed surface mines in Ohio. J. Environ. Qual. 1996, 25, 1429–1435. [Google Scholar] [CrossRef]
- Diagne, N.; Arumugam, K.; Ngom, M.; Nambiar-Veetil, M.; Franche, C.; Narayanan, K.K.; Laplaze, L. Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation; Hindawi Publishing Corporation, BioMed Research International: New York, NY, USA, 2013. [Google Scholar]
- Huss-Danell, K.; Ohlsson, H. Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Can. J. Bot. 1992, 70, 1545–1549. [Google Scholar] [CrossRef]
- Vanden Broeck, A.; Cox, K.; Van Braeckel, A.; Neyrinck, S.; De Regge, N.; Van Looy, K. Reintroduced Native Populus nigra in Restored Floodplain Reduces Spread of Exotic Poplar Species. Front. Plant Sci. 2021, 11, 580653. [Google Scholar] [CrossRef]
- Kahraman, K.F. Investigation on Morphological Variability of Some Black Poplar (Populus nigra L.) Clones in Turkey. Master’s Thesis, Bartin University, Institute of Science and Technology, Bartin, Turkey, 2009. [Google Scholar]
- Woś, B.; Józefowska, A.; Wanic, T.; Pietrzykowski, M. Impact of Native Quercus robur and Non-Native Quercus rubra on Soil Properties during Post-Fire Ecosystem Regeneration. Diversity 2023, 15, 559. [Google Scholar] [CrossRef]
- Davis, P.H.; Mill, R.R.; Tan, K. Flora of Turkey and the East Aegean Islands; Edinburg University Press: Edinburg, UK, 1998; Volume 10. [Google Scholar]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands. Environments 2024, 11, 44. [Google Scholar] [CrossRef]
- Fu, C.; Chang, W.; Liu, W.; Yang, S. Data-Driven Selection of Multi-Criteria Decision-Making Methods and its Application to Diagnosis of Thyroid Nodules. Comput. Ind. Eng. 2020, 145, 1–13. [Google Scholar] [CrossRef]
- Prajapati, H.; Kant, R.; Shankar, R. Prioritizing the Solutions of Reverse Logistics Implementation to Mitigate its Barriers: A Hybrid Modified SWARA and WASPAS Approach. J. Clean. Prod. 2019, 240, 1–15. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, K.; Zavadskas, E.K.; Chakraborty, S. A SWARA-CoCoSo-Based Approach for Spray Painting Robot Selection. Informatıca 2022, 33, 35–54. [Google Scholar] [CrossRef]
- Lee, H.C.; Chang, C.T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Yazdani, M.; Zavadskas, E.K. An Extended Stepwise Weight Assessment Ratio Analysis (SWARA) Method for Improving Criteria Prioritization Process. Soft Comput. 2018, 22, 7399–7405. [Google Scholar] [CrossRef]
- Keršuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of Rational Dispute Resolution Method by Applying New step-wise Weight Assessment Ratio Analysis (SWARA). JBEM 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Keršuliene, V.; Turskis, Z. Integrated Fuzzy Multiple Criteria Decision Making Model for Architect Selection. Technol. Econ. Dev. Econ. 2011, 17, 645–666. [Google Scholar] [CrossRef]
- Zarbakhshnia, N.; Soleimani, H.; Ghaderi, H. Sustainable Third-Party Reverse Logistics Provider Evaluation and Selection Using Fuzzy SWARA and Developed Fuzzy COPRAS in the Presence of Risk Criteria. Appl. Soft Comput. 2018, 65, 307–319. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980; Volume 1, 365p. [Google Scholar]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Decision Making in Economic, Political, Social, and Technological Environments with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1994; Volume 1, 217p. [Google Scholar]
- Saaty, T.L.; Ozdemir, M.S. Why the Magic Number Seven Plus or Minus Two. Math. Comput. Model. 2003, 38, 233–244. [Google Scholar] [CrossRef]
- Alavi, I.; Alinejad-Rokny, H. Comparison of Fuzzy AHP and Fuzzy TOPSIS methods for plant species selection (case study: Reclamation Plan of Sungun Copper Mine; Iran). Aust. J. Basic Appl. Sci. 2011, 5, 1104–1113. [Google Scholar]
- Ebrahimabadi, A.; Alavi, I. Plant type selection for reclamation of Sarcheshmeh copper mine using fuzzy-TOPSIS approach. Arch. Min. Sci. 2013, 58, 953–968. [Google Scholar]
- Ebrahimabadi, A. Selecting proper plant species for mine reclamation using fuzzy AHP approach (case study: Chadormaloo iron mine of Iran). Arch. Min. Sci. 2016, 61, 713–728. [Google Scholar] [CrossRef]
- Mousaei Sanjerehei, M.; Jafari, M.; Mataji, A.; Baghestani Meybodi, N. Influence of environmental factors on distribution of plant species in Nodushan rangelands of Yazd province (Iran). DESERT 2013, 18, 19–26. [Google Scholar]
- Ebrahimabadi, A.; Pouresmaieli, M.; Afradi, A.; Pouresmaeili, E.; Nouri, S. Comparing two methods of PROMETHEE and Fuzzy TOPSIS in selecting the best plant species for the reclamation of Sarcheshmeh copper mine. Asian J. Water Environ. Pollut. 2018, 15, 141–152. [Google Scholar] [CrossRef]
- Çakır, E. Determining the Weights of Criteria with SWARA—COPELAND Method: A Case Study on a Manufacturing Company. Adnan Menderes University. J. Inst. Soc. Sci. 2016, 4, 42–56. [Google Scholar]
- Adalı, E.A.; Işık, A. The Decision Making Approach Based on SWARA and WASPAS Methods for The Supplier Selection Problem. Int. Rev. Econ. Manag. 2017, 5, 56–77. [Google Scholar]
- Özbek, A.; Erol, E. Weighting of the Occupational Health and Safety Criteria in the Feed Sector Using AHP and SWARA Methods. Afyon Kocatepe Univ. J. Fac. Econ. Adm. Sci. 2018, 20, 51–66. [Google Scholar]
- Nezhad, M.R.; Zozlfoni, S.H.; Moztarzadeh, F.; Zavadskas, E.K.; Bahrami, M. Planning the Priority of High-Tech Industries based on SWARA-WASPAS Methodology: The Case of the Nanotechnology Industry in Iran. Econ. Res.-Ekon. Istraž. 2015, 28, 1111–1137. [Google Scholar]
- Zolfani, S.H.; Saparauskas, J.A. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System. Eng. Econ. 2013, 24, 408–414. [Google Scholar] [CrossRef]
- Derse, O.; Yontar, E. Determination of the Most Appropriate Renewable Energy Source by SWARA-TOPSIS Method. J. Ind. Eng. 2020, 31, 389–410. [Google Scholar]
- Stanujkic, D.; Djordjevic, B.; Karabasevic, D. Selection of Candidates in the Process of Recruitment and Selection of Personnel Based on the SWARA and ARAS Methods. Quaestus Multidiscip. Res. J. 2015, 7, 53–64. [Google Scholar]
- Van-Wenum, J.; Buys, J.; Wossink, A. Nature Quality Indicators in Agriculture, Environmental Indicators and Agricultural Policy, 2nd ed.; CABI Publ.: Wallingford, UK, 1999; Volume 1, pp. 191–198. [Google Scholar]
- Kurz, W.A.; Beukema, S.J.; Apps, M.J. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can. J. For. Res. 1996, 26, 1973–1979. [Google Scholar] [CrossRef]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
Brief Characteristic | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
Robinia pseudoacacia L. | Alnus glutinosa subsp. glutinosa | Populus nigra subsp. nigra | Quercus robur subsp. robur | Salix alba L. | |
Plant height [m]: | 19.69 | 19.19 | 26.13 | 27.64 | 21.04 |
Life span: | Perennial | Perennial | Perennial | Perennial | Perennial |
Life form: | Phanerophyte, Tree | Phanerophyte, Tree | Phanerophyte, Tree | Phanerophyte, Tree | Phanerophyte, Tree |
Origin: | Neophyte Germany, Hungary, Bulgaria, Turkey | Native Europe, Turkey | Native Southern Europe, Mediterranean, Central Asia, Turkey | Native Europe, Western Caucasus, Turkey | Native United Kingdom, Caucasus, China, Turkey |
Humidity relationship: | Dry | Wet | Wet | Mesic | Wet |
Reaction relationship: | Slightly acidic to near-neutral | Slightly acidic to near-neutral | Alkaline | Slightly acidic to near-neutral | Alkaline |
Nutrient relationship: | Eutrophic | Eutrophic | Eutrophic | Mesotrophic | Eutrophic |
Salinity relationship: | Non-saline | Slightly saline or brackish | Non-saline | Non-saline | Non-saline |
Broad habitat: | Scrub, Forest | Aquatic, Wetland, Scrub, Forest, Sparsely vegetated (incl. rock and scree) | Wetland, Scrub, Forest | Grassland (non-alpine, non-saline), Scrub, Forest | Aquatic, Wetland, Scrub, Forest, Sparsely vegetated (incl. rock and scree) |
Post-mining afforestation relationship: | Successful in preventing erosion and post-mining afforestation [48,49]. The wood is valuable. High aesthetic value. | Successful in post-mining afforestation. Biomass source. It produces nitrogen nodules in its roots. To enrich the soil in terms of plant nutrients [50,51]. | Successful in post-mining afforestation Important in the fight against climate change [52]. Cleans heavy metal pollution in the soil [53]. | Successful in post-fire afforestation and post-mining afforestation [54]. Suitable for continental climate. Flood resistant [55]. | Successful in post-mining afforestation. High phytoremediation efficiency [56]. |
Intensity of Importance | Description |
---|---|
1 | Equal Importance |
3 | Moderate Importance |
5 | Strong Importance |
7 | Very Strong Importance |
9 | Extreme Importance |
2, 4, 6, 8 | Intermediate Values |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
SWARA Results | ||||||||||||
Criteria (c) | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | ||
0.0767 | 0.0748 | 0.0799 | 0.0909 | 0.0866 | 0.1024 | 0.0998 | 0.1288 | 0.1229 | 0.1374 | |||
Alternative | AHP Results | |||||||||||
A1 | 0.424 | 0.505 | 0.431 | 0.505 | 0.459 | 0.487 | 0.450 | 0.427 | 0.425 | 0.425 | ||
A2 | 0.243 | 0.207 | 0.243 | 0.234 | 0.289 | 0.275 | 0.240 | 0.247 | 0.260 | 0.260 | ||
A3 | 0.180 | 0.134 | 0.160 | 0.115 | 0.083 | 0.087 | 0.158 | 0.185 | 0.180 | 0.180 | ||
A4 | 0.110 | 0.105 | 0.120 | 0.093 | 0.123 | 0.104 | 0.083 | 0.095 | 0.093 | 0.093 | ||
A5 | 0.042 | 0.050 | 0.045 | 0.052 | 0.046 | 0.047 | 0.068 | 0.045 | 0.042 | 0.042 | ||
SWARA × AHP Results | ||||||||||||
C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | wi | |
A | ||||||||||||
A1 | 0.058 | 0.065 | 0.053 | 0.052 | 0.046 | 0.044 | 0.039 | 0.034 | 0.033 | 0.032 | 0.456 | |
A2 | 0.033 | 0.027 | 0.030 | 0.024 | 0.029 | 0.025 | 0.021 | 0.020 | 0.020 | 0.019 | 0.248 | |
A3 | 0.025 | 0.017 | 0.020 | 0.012 | 0.008 | 0.008 | 0.014 | 0.015 | 0.014 | 0.013 | 0.146 | |
A4 | 0.015 | 0.013 | 0.015 | 0.009 | 0.012 | 0.009 | 0.007 | 0.008 | 0.007 | 0.007 | 0.103 | |
A5 | 0.006 | 0.006 | 0.006 | 0.005 | 0.005 | 0.004 | 0.006 | 0.004 | 0.003 | 0.003 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güngör, E.; Şen, G. Sustainable Afforestation Strategies: Hybrid Multi-Criteria Decision-Making Model in Post-Mining Rehabilitation. Forests 2024, 15, 783. https://doi.org/10.3390/f15050783
Güngör E, Şen G. Sustainable Afforestation Strategies: Hybrid Multi-Criteria Decision-Making Model in Post-Mining Rehabilitation. Forests. 2024; 15(5):783. https://doi.org/10.3390/f15050783
Chicago/Turabian StyleGüngör, Ersin, and Gökhan Şen. 2024. "Sustainable Afforestation Strategies: Hybrid Multi-Criteria Decision-Making Model in Post-Mining Rehabilitation" Forests 15, no. 5: 783. https://doi.org/10.3390/f15050783