Response of Individual-Tree Aboveground Biomass to Spatial Effects in Pinus kesiya var. langbianensis Forests by Stand Origin and Tree Size
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Study Area
2.1.2. Field Survey Data
2.2. Methods
2.2.1. Biomass Calculation
2.2.2. Spatial Weight Matrix
2.2.3. Ordinary Least Squares Model (OLS)
2.2.4. Spatial Lag Model (SLM)
2.2.5. Spatial Error Model (SEM)
2.2.6. Spatial Durbin Model (SDM)
2.2.7. Geographically Weighted Regression Model (GWR)
2.3. Model Fitting and Assessment
2.3.1. Model Fitting
2.3.2. Assessment of OLS Models
2.3.3. Assessment of Spatial Regression Models
3. Results
3.1. Model Fitting
3.1.1. OLS Models
3.1.2. Spatial Regression Models
3.2. Differences in the Response of Aboveground Tree Components to Spatial Location
3.3. Effects of Diameter at Breast Height on the Response of Tree Components to Spatial Location
4. Discussion
4.1. Choice of Methodology and Application of Data
4.1.1. Spatial Regression Model
4.1.2. Selection of Spatial Weight Matrix
4.1.3. Availability of Data
4.2. Response of Tree Biomass to Different Spatial Locations
4.2.1. Impact of Origins
4.2.2. Differences in the Effects of DBH Size
4.2.3. Reactions of Different Tree Components
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Roland, B.; Adhikari, K.; Zhuang, Q.; Jin, X.; Han, C.; Qian, F. Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China. For. Ecosyst. 2023, 10, 100101. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G. Long-Term Climate Change: Projections, Commitments and Irreversibility; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wang, G.; Liu, F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. For. Ecol. Manag. 2011, 262, 413–423. [Google Scholar] [CrossRef]
- Zeller, L.; Liang, J.; Pretzsch, H. Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. For. Ecosyst. 2018, 5, 4. [Google Scholar] [CrossRef]
- Li, Y.; Ye, S.; Hui, G.; Hu, Y.; Zhao, Z. Spatial structure of timber harvested according to structure-based forest management. For. Ecol. Manag. 2014, 322, 106–116. [Google Scholar] [CrossRef]
- Law, R.; Illian, J.; Burslem, D.F.; Gratzer, G.; Gunatilleke, C.; Gunatilleke, I. Ecological information from spatial patterns of plants: Insights from point process theory. J. Ecol. 2009, 97, 616–628. [Google Scholar] [CrossRef]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Wertz, B.; Bembenek, M.; Karaszewski, Z.; Ochał, W.; Skorupski, M.; Strzeliński, P.; Węgiel, A.; Mederski, P.S. Impact of stand density and tree social status on aboveground biomass allocation of Scots pine Pinus sylvestris L. Forests 2020, 11, 765. [Google Scholar] [CrossRef]
- Frey, G.E.; Charnley, S.; Makala, J. Economic viability of community-based forest management for certified timber production in southeastern Tanzania. World. Dev. 2021, 144, 105491. [Google Scholar] [CrossRef]
- de Oliveira Loconte, C. The Volumetric Sustainability of Timber-Based Tropical Forest Management. In Forest Science: Sustainable Processes and Wood Products; Springer: Berlin/Heidelberg, Germany, 2023; pp. 51–87. [Google Scholar]
- Baskent, E.Z.; Keleş, S. Developing alternative forest management planning strategies incorporating timber, water and carbon values: An examination of their interactions. Environ. Model. Assess. 2009, 14, 467–480. [Google Scholar] [CrossRef]
- Condé, T.M.; Tonini, H.; Higuchi, N.; Higuchi, F.G.; Lima, A.J.N.; Barbosa, R.I.; dos Santos Pereira, T.; Haas, M.A. Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon. Land. Use Policy 2022, 119, 106145. [Google Scholar] [CrossRef]
- Pfanz, H.; Aschan, G.; Langenfeld-Heyser, R.; Wittmann, C.; Loose, M. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften 2002, 89, 147–162. [Google Scholar] [CrossRef]
- Henry, R.J.; Furtado, A.; Rangan, P. Pathways of photosynthesis in non-leaf tissues. Biology 2020, 9, 438. [Google Scholar] [CrossRef]
- Tikhonov, K.; Khristin, M.; Klimov, V.; Sundireva, M.; Kreslavski, V.; Sidorov, R.; Tsidendambayev, V.; Savchenko, T. Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russ. J. Plant Physiol. 2017, 64, 73–82. [Google Scholar] [CrossRef]
- Dănescu, A.; Albrecht, A.T.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Stachowicz, J.J.; Best, R.J.; Bracken, M.E.; Graham, M.H. Complementarity in marine biodiversity manipulations: Reconciling divergent evidence from field and mesocosm experiments. Proc. Natl. Acad. Sci. USA 2008, 105, 18842–18847. [Google Scholar] [CrossRef]
- Zheng, L.T.; Chen, H.Y.; Yan, E.R. Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. J. Ecol. 2019, 107, 1852–1861. [Google Scholar] [CrossRef]
- Zhang, L.; Bi, H.; Cheng, P.; Davis, C.J. Modeling spatial variation in tree diameter–height relationships. For. Ecol. Manag. 2004, 189, 317–329. [Google Scholar] [CrossRef]
- Binkley, D. A hypothesis about the interaction of tree dominance and stand production through stand development. For. Ecol. Manag. 2004, 190, 265–271. [Google Scholar] [CrossRef]
- Looney, C.E.; D’Amato, A.W.; Palik, B.J.; Fraver, S.; Kastendick, D.N. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence. For. Ecol. Manag. 2018, 424, 85–94. [Google Scholar] [CrossRef]
- Weiner, J.; Stoll, P.; Muller-Landau, H.; Jasentuliyana, A. The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am. Nat. 2001, 158, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, G.; Liu, C.; Fan, Q.; Li, W.; Wu, Y.; Xu, H.; Ou, G. Spatial Effects Analysis on Individual-Tree Aboveground Biomass in a Tropical Pinus kesiya var. langbianensis Natural Forest in Yunnan, Southwestern China. Forests 2023, 14, 1177. [Google Scholar] [CrossRef]
- Rüttenauer, T. Spatial regression models: A systematic comparison of different model specifications using Monte Carlo experiments. Sociol. Methods Res. 2022, 51, 728–759. [Google Scholar] [CrossRef]
- Anselin, L. Under the hood issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- de Souza, S.V.; Junqueira, R.G. A procedure to assess linearity by ordinary least squares method. Anal. Chim. Acta 2005, 552, 25–35. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Oliver, S. SAS for Mixed Models; SAS Publishing: Debasthan, Assam, 2006. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 4. [Google Scholar]
- Lam, C.; Souza, P.C. Estimation and selection of spatial weight matrix in a spatial lag model. J. Bus. Econ. Stat. 2020, 38, 693–710. [Google Scholar] [CrossRef]
- Overmars, K.d.; De Koning, G.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Modell. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Charlton, M.; Fotheringham, S.; Brunsdon, C. Geographically Weighted Regression; White paper; National Centre for Geocomputation, National University of Ireland Maynooth: Kildare, Ireland, 2009; Volume 2. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Zhang, L.; Ma, Z.; Guo, L. An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models. For. Sci. 2009, 55, 533–548. [Google Scholar]
- Anselin, L. Spatial regression analysis in R: A workbook. Urbana 2005, 51, 61801. [Google Scholar]
- Jamhuri, J.; Azhar, B.; Puan, C.; Norizah, K. GWR-PM-Spatial variation relationship analysis with Geographically Weighted Regression (GWR)-An application at Peninsular Malaysia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 7 April 2016; p. 012032. [Google Scholar]
- Anderson, M.J.; Whitcomb, P.J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments; Productivity Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE. Trans. Automat. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Biernaskie, J.M. Evidence for competition and cooperation among climbing plants. Proc. R. Soc. B Biol. Sci. 2011, 278, 1989–1996. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; Van Con, T.; Chavanne, A.; Seifert, T. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban. For. Urban. Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- Vieira, J.; Rossi, S.; Campelo, F.; Nabais, C. Are neighboring trees in tune? Wood formation in Pinus pinaster. Eur. J. For. Res. 2014, 133, 41–50. [Google Scholar] [CrossRef]
- Potter, K.M.; Woodall, C.W. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests. For. Ecol. Manag. 2014, 321, 117–129. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis; Kennesaw State University: Kennesaw, GA, USA, 2009. [Google Scholar]
- Olavi, J. Regulation of annual shoot growth cycle in northern tree species. In Physiology of Northern Plants Under Changing Environment; Research Signpost: Kerala, India, 2007; pp. 177–210. [Google Scholar]
- Liu, Z.; Jiang, F.; Zhu, Y.; Li, F.; Jin, G. Spatial heterogeneity of leaf area index in a temperate old-growth forest: Spatial autocorrelation dominates over biotic and abiotic factors. Sci. Total Environ. 2018, 634, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, H.; Tian, X.; Zhang, W.; Lu, C. Multistage sampling and optimization for forest volume inventory based on spatial autocorrelation analysis. Forests 2023, 14, 250. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS. J. Photogramm. Remote. Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Dung, B.X.; Kim, T.D.T. Runoff and soil erosion response to clear cutting period of acacia plantation in a headwater mountain of Vietnam. Appl. Res. Sci. Technol. 2021, 1, 12–25. [Google Scholar] [CrossRef]
- Vestin, P.; Mölder, M.; Kljun, N.; Cai, Z.; Hasan, A.; Holst, J.; Klemedtsson, L.; Lindroth, A. Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests 2020, 11, 961. [Google Scholar] [CrossRef]
- Shell, A.B.; Ojha, S.K.; Sharma, A. Region-wide characterization of structural diversity of the US Outer Coastal Plain Mixed Forests Province. For. Ecol. Manag. 2021, 488, 118979. [Google Scholar] [CrossRef]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- He, R.; Hu, M.; Shi, H.; Zhou, Q.; Shu, X.; Zhang, K.; Zhang, Q.; Dang, H. Patterns of species diversity and its determinants in a temperate deciduous broad-leaved forest. For. Ecosyst. 2022, 9, 100062. [Google Scholar] [CrossRef]
- Carnus, J.-M.; Parrotta, J.; Brockerhoff, E.; Arbez, M.; Jactel, H.; Kremer, A.; Lamb, D.; O’Hara, K.; Walters, B. Planted forests and biodiversity. J. For. 2006, 104, 65–77. [Google Scholar]
- Rees, M.; Osborne, C.P.; Woodward, F.I.; Hulme, S.P.; Turnbull, L.A.; Taylor, S.H. Partitioning the components of relative growth rate: How important is plant size variation? Am. Nat. 2010, 176, E152–E161. [Google Scholar] [CrossRef]
- Hale, S.E.; Gardiner, B.A.; Wellpott, A.; Nicoll, B.C.; Achim, A. Wind loading of trees: Influence of tree size and competition. Eur. J. For. Res. 2012, 131, 203–217. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, W.; Ouyang, S.; Xiao, W.; Li, S.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Zeng, L. Tree growth rate and soil nutrient status determine the shift in nutrient-use strategy of Chinese fir plantations along a chronosequence. For. Ecol. Manag. 2020, 460, 117896. [Google Scholar] [CrossRef]
- Clark, J.S. Individuals and the variation needed for high species diversity in forest trees. Science 2010, 327, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Potvin, C.; Dutilleul, P. Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 2009, 90, 321–327. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can. J. For. Res. 2010, 40, 370–384. [Google Scholar] [CrossRef]
- Balandier, P.; Collet, C.; Miller, J.; Reynolds, P.; Zedaker, S. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 2006, 79, 3–27. [Google Scholar] [CrossRef]
- Kitajima, K.; Poorter, L. Functional basis for resource niche partitioning by tropical trees. Trop. For. Community Ecol. 2008, 1936, 160–181. [Google Scholar]
- Luo, Z.; Sun, O.J.; Xu, H. A comparison of species composition and stand structure between planted and natural mangrove forests in Shenzhen Bay, South China. J. Plant Ecol. 2010, 3, 165–174. [Google Scholar] [CrossRef]
- Lacointe, A. Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Ann. For. Sci. 2000, 57, 521–533. [Google Scholar] [CrossRef]
- Pretzsch, H.; Matthew, C.; Dieler, J. Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In Growth and Defence in Plants: Resource Allocation at Multiple Scales; Springer: Berlin/Heidelberg, Germany, 2012; pp. 287–310. [Google Scholar]
- Longuetaud, F.; Seifert, T.; Leban, J.-M.; Pretzsch, H. Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. For. Ecol. Manag. 2008, 255, 2007–2019. [Google Scholar] [CrossRef]
- Carvalho, B.; Ribeiro, S.P. Architecture of Mabea fistulifera Mart.(Euphorbiaceae), a neotropical semideciduous tree: Development and variations in crown allometry between environments. Flora 2018, 239, 104–110. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth, and Yield; Springer: Berlin/Heidelberg, Germany, 2009; Volume 684. [Google Scholar]
- Feng, H.; Xue, L. Competition-density effect of tree organs in Acacia auriculiformis stands. J. For. Res. 2019, 30, 891–898. [Google Scholar] [CrossRef]
- Brunner, I.; Godbold, D.L. Tree roots in a changing world. J. For. Res. 2007, 12, 78–82. [Google Scholar] [CrossRef]
Origin Forms | Tree Components | Models | |
---|---|---|---|
Pinus kesiya var. langbianensis | Other Trees | ||
Plantation | Wood | ||
Bark | |||
Branches | |||
Foliage | |||
Aboveground | |||
Natural stand | Wood | ||
Bark | |||
Branches | |||
Foliage | |||
Aboveground |
Tree Components | Models | Plantation | Natural Stand | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radj2 | AIC | RMSE | LRT-Value | p-Value | Radj2 | AIC | RMSE | LRT-Value | p-Value | ||
Wood | OLS | 0.80 | 2084.65 | 12.78 | - | - | 0.88 | 1533.24 | 78.73 | - | - |
SLM | 0.80 | 2087.00 | 12.79 | 0.31 | 0.58 | 0.88 | 1534.13 | 78.40 | 0.52 | 0.47 | |
SEM | 0.80 | 2087.28 | 12.80 | 0.04 | 0.85 | 0.88 | 1531.78 | 76.87 | 2.87 | 0.09 | |
SDM | 0.80 | 2088.01 | 12.76 | 0.52 | 0.47 | 0.89 | 1529.79 | 75.01 | 5.64 | 0.02 | |
GWR 1 2 | 0.80 | 2084.44 | 12.70 | - | - | 0.89 | 1529.77 | 73.80 | - | - | |
Bark | OLS | 0.47 | 1517.95 | 4.32 | - | - | 0.15 | 800.40 | 4.90 | - | - |
SLM 1 | 0.46 | 1520.51 | 4.32 | 0.13 | 0.72 | 0.14 | 806.36 | 4.90 | 0.30 | 0.58 | |
SEM | 0.46 | 1520.81 | 4.32 | 0.38 | 0.54 | 0.16 | 804.57 | 4.84 | 2.09 | 0.15 | |
SDM 2 | 0.46 | 1524.85 | 4.32 | 0.28 | 0.60 | 0.28 | 787.51 | 4.48 | 9.24 | 0.00 | |
GWR | 0.46 | 1519.35 | 4.35 | - | - | 0.15 | 800.90 | 4.95 | - | - | |
Branches | OLS | 0.30 | 1858.92 | 8.24 | - | - | 0.59 | 1283.05 | 30.87 | - | - |
SLM | 0.37 | 1838.49 | 7.83 | 25.24 | 0.00 | 0.59 | 1285.47 | 30.09 | 0.87 | 0.35 | |
SEM 1 | 0.38 | 1832.72 | 7.73 | 30.53 | 0.00 | 0.59 | 1286.37 | 30.19 | 0.28 | 0.60 | |
SDM | 0.37 | 1834.03 | 7.83 | 0.03 | 0.87 | 0.62 | 1285.69 | 28.97 | 4.30 | 0.04 | |
GWR 2 | 0.36 | 1838.35 | 7.69 | - | - | 0.64 | 1270.26 | 28.98 | - | - | |
Foliage | OLS | 0.15 | 1528.07 | 4.42 | - | - | 0.41 | 722.55 | 3.60 | - | - |
SLM | 0.23 | 1508.69 | 4.21 | 22.55 | 0.00 | 0.44 | 719.09 | 3.51 | 2.01 | 0.16 | |
SEM | 0.23 | 1508.38 | 4.20 | 22.86 | 0.00 | 0.44 | 719.99 | 3.52 | 1.12 | 0.29 | |
SDM | 0.20 | 1517.53 | 4.27 | 14.62 | 0.00 | 0.49 | 718.07 | 3.35 | 6.07 | 0.01 | |
GWR 1 2 | 0.25 | 1506.75 | 4.16 | - | - | 0.51 | 705.28 | 3.37 | - | - | |
Aboveground | OLS | 0.78 | 2306.94 | 19.46 | - | - | 0.88 | 1580.01 | 93.29 | - | - |
SLM | 0.78 | 2305.32 | 19.24 | 2.52 | 0.11 | 0.88 | 1580.74 | 92.82 | 1.41 | 0.24 | |
SEM | 0.80 | 2292.13 | 18.65 | 15.71 | 0.00 | 0.88 | 1581.38 | 92.84 | 0.76 | 0.38 | |
SDM | 0.80 | 2287.31 | 18.36 | 1.07 | 0.30 | 0.89 | 1577.14 | 89.37 | 4.62 | 0.03 | |
GWR 1 2 | 0.81 | 2293.01 | 18.03 | - | - | 0.93 | 1580.58 | 70.50 | - | - |
Tree Components | Models | Plantation | Natural Stand | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radj2 | AIC | RMSE | LRT-Value | p-Value | Radj2 | AIC | RMSE | LRT-Value | p-Value | ||
Wood | OLS | 0.87 | 524.93 | 3.54 | - | - | 0.91 | 2583.22 | 16.34 | - | - |
SLM | 0.86 | 539.69 | 3.78 | 0.00 | 0.97 | 0.90 | 2582.92 | 16.37 | 0.96 | 0.33 | |
SEM | 0.87 | 535.34 | 3.67 | 4.36 | 0.04 | 0.84 | 2721.02 | 20.53 | 0.12 | 0.73 | |
SDM | 0.87 | 538.70 | 3.64 | 0.28 | 0.60 | 0.84 | 2720.62 | 20.32 | 0.22 | 0.64 | |
GWR 1 2 | 0.89 | 520.24 | 3.04 | - | - | 0.94 | 2434.48 | 12.28 | - | - | |
Bark | OLS | 0.88 | 245.83 | 0.84 | - | - | 0.62 | 2170.79 | 8.36 | - | - |
SLM | 0.87 | 251.01 | 0.85 | 2.35 | 0.13 | 0.63 | 2167.13 | 8.31 | 0.04 | 0.85 | |
SEM | 0.87 | 253.36 | 0.86 | 0.00 | 0.95 | 0.63 | 2165.77 | 8.28 | 1.39 | 0.24 | |
SDM | 0.88 | 248.39 | 0.81 | 2.71 | 0.10 | 0.63 | 2166.42 | 8.24 | 0.06 | 0.80 | |
GWR 1 2 | 0.90 | 239.26 | 0.76 | - | - | 0.88 | 1842.54 | 4.75 | - | - | |
Branches | OLS | 0.48 | 443.13 | 2.31 | - | - | 0.58 | 2153.61 | 8.13 | - | - |
SLM | 0.49 | 443.68 | 2.29 | 1.41 | 0.24 | 0.58 | 2155.64 | 8.12 | 1.34 | 0.25 | |
SEM | 0.49 | 443.31 | 2.27 | 1.78 | 0.18 | 0.58 | 2156.19 | 8.13 | 0.79 | 0.37 | |
SDM 1 | 0.65 | 414.65 | 1.90 | 1.22 | 0.27 | 0.59 | 2150.20 | 8.07 | 0.06 | 0.81 | |
GWR 2 | 0.61 | 428.74 | 2.02 | - | - | 0.82 | 1998.13 | 5.36 | - | - | |
Foliage | OLS | 0.25 | 327.92 | 1.27 | - | - | 0.36 | 1498.20 | 2.78 | - | - |
SLM 2 | 0.26 | 328.10 | 1.26 | 0.03 | 0.86 | 0.39 | 1489.14 | 2.71 | 5.52 | 0.02 | |
SEM | 0.26 | 328.09 | 1.26 | 0.04 | 0.84 | 0.37 | 1494.65 | 2.75 | 0.00 | 0.95 | |
SDM 1 | 0.42 | 312.22 | 1.11 | 2.34 | 0.13 | 0.39 | 1492.79 | 2.70 | 2.69 | 0.10 | |
GWR | 0.36 | 323.81 | 1.20 | - | - | 0.38 | 1490.83 | 2.74 | - | - | |
Aboveground | OLS | 0.89 | 610.69 | 5.03 | - | - | 0.90 | 2803.56 | 23.59 | - | - |
SLM | 0.86 | 616.79 | 5.64 | 0.66 | 0.42 | 0.90 | 2812.60 | 23.92 | 5.31 | 0.02 | |
SEM | 0.87 | 610.53 | 5.41 | 6.91 | 0.01 | 0.89 | 2817.90 | 24.15 | 0.02 | 0.89 | |
SDM | 0.89 | 605.19 | 5.12 | 2.46 | 0.12 | 0.90 | 2815.11 | 23.86 | 0.79 | 0.37 | |
GWR 1 2 | 0.93 | 604.72 | 4.05 | - | - | 0.91 | 2806.21 | 22.10 | - | - |
Origins | Tree Species | Index | Different Tree Components | Total | ||||
---|---|---|---|---|---|---|---|---|
Wood | Bark | Branches | Foliage | Aboveground | ||||
Plantation | Pinus kesiya var. langbianensis; | ΔRadj2 | 0.00 | −0.01 | 0.08 | 0.10 | 0.03 | 0.20 |
ΔRMSE | −0.08 | 0.00 | −0.51 | −0.26 | −1.43 | −2.28 | ||
ΔAIC | −0.21 | 2.56 | −26.2 | −21.32 | −13.93 | −59.10 | ||
Other trees | ΔRadj2 | 0.02 | 0.02 | 0.17 | 0.17 | 0.04 | 0.42 | |
ΔRMSE | −4.93 | −0.42 | −1.89 | −0.23 | −22.79 | −30.26 | ||
ΔAIC | −4.69 | −6.57 | −28.48 | −15.70 | −5.97 | −61.41 | ||
Natural stand | Pinus kesiya var. langbianensis; | ΔRadj2 | 0.01 | 0.13 | 0.05 | 0.10 | 0.05 | 0.34 |
ΔRMSE | −0.50 | −0.08 | −0.41 | −0.16 | −0.98 | −2.13 | ||
ΔAIC | −3.47 | −12.89 | −12.79 | −17.27 | 0.57 | −45.85 | ||
Other trees | ΔRadj2 | 0.03 | 0.26 | 0.24 | 0.03 | 0.01 | 0.57 | |
ΔRMSE | −4.06 | −3.61 | −2.77 | −0.07 | −1.49 | −12.00 | ||
ΔAIC | −148.74 | −328.25 | −155.48 | −9.06 | 2.65 | −638.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wu, Y.; Zhang, X.; Luo, H.; Yu, Z.; Liu, Z.; Li, W.; Fan, Q.; Ou, G. Response of Individual-Tree Aboveground Biomass to Spatial Effects in Pinus kesiya var. langbianensis Forests by Stand Origin and Tree Size. Forests 2024, 15, 349. https://doi.org/10.3390/f15020349
Liu C, Wu Y, Zhang X, Luo H, Yu Z, Liu Z, Li W, Fan Q, Ou G. Response of Individual-Tree Aboveground Biomass to Spatial Effects in Pinus kesiya var. langbianensis Forests by Stand Origin and Tree Size. Forests. 2024; 15(2):349. https://doi.org/10.3390/f15020349
Chicago/Turabian StyleLiu, Chunxiao, Yong Wu, Xiaoli Zhang, Hongbin Luo, Zhibo Yu, Zihao Liu, Wenfang Li, Qinling Fan, and Guanglong Ou. 2024. "Response of Individual-Tree Aboveground Biomass to Spatial Effects in Pinus kesiya var. langbianensis Forests by Stand Origin and Tree Size" Forests 15, no. 2: 349. https://doi.org/10.3390/f15020349
APA StyleLiu, C., Wu, Y., Zhang, X., Luo, H., Yu, Z., Liu, Z., Li, W., Fan, Q., & Ou, G. (2024). Response of Individual-Tree Aboveground Biomass to Spatial Effects in Pinus kesiya var. langbianensis Forests by Stand Origin and Tree Size. Forests, 15(2), 349. https://doi.org/10.3390/f15020349