Spatiotemporal Dynamics of Trunk-Injected Pesticide Residue for Management of Pine Wilt Disease in Pinus koraiensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pesticides, Chemicals, and Reagents
2.3. Trunk Injection and Sample Collection
2.4. Residue Sample Preparation
2.5. LC-MS/MS Analysis
2.6. Method Validation
2.7. Nematicidal Efficacy and Persistence Test
2.8. Statistical Analysis
3. Results
3.1. Temporal Changes in Pesticide Residue
Code | Pesticide | Variable | df | χ2-Value | p-Value |
---|---|---|---|---|---|
P1 | Abamectin | Time | 3 | 53.362 | <0.0001 |
Part | 1 | 97.989 | <0.0001 | ||
P2 | Abamectin | Time | 3 | 61.533 | <0.0001 |
Part | 1 | 67.07 | <0.0001 | ||
P3 | Emamectin benzoate | Time | 3 | 7.9351 | 0.0474 |
Part | 1 | 3.9318 | 0.0474 | ||
P4 | Emamectin benzoate | Time | 3 | 13.2923 | 0.0040 |
Part | 1 | 7.8125 | 0.0052 | ||
P5 | Emamectin benzoate | Time | 3 | 19.4375 | 0.0002 |
Part | 1 | 6.2096 | 0.0127 | ||
P6 | Emamectin benzoate | Time | 3 | 11.134 | 0.0110 |
Part | 1 | 12.102 | 0.0005 | ||
P7 | Emamectin benzoate | Time | 3 | 8.4006 | 0.0384 |
Part | 1 | 4.1968 | 0.0405 | ||
P8 | Abamectin | Time | 3 | 93.287 | <0.0001 |
Part | 1 | 76.292 | <0.0001 | ||
Acetamiprid | Time | 3 | 37.076 | <0.0001 | |
Part | 1 | 225.846 | <0.0001 | ||
P9 | Abamectin | Time | 3 | 49.428 | <0.0001 |
Part | 1 | 23.648 | <0.0001 | ||
Sulfoxaflor | Time | 3 | 54.03 | <0.0001 | |
Part | 1 | 52.094 | <0.0001 | ||
P10 | Emamectin benzoate | Time | 3 | 78.577 | <0.0001 |
Part | 1 | 37.595 | <0.0001 | ||
Acetamiprid | Time | 3 | 40.715 | <0.0001 | |
Part | 1 | 234.243 | <0.0001 |
3.2. Pesticide Residue in Needles and Branches
3.3. Vertical Distribution of Pesticide Residues at Different Tree Positions (Upper, Middle, and Lower Canopy)
3.4. Nematicidal Efficacy Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, B.G.; Futai, K.; Sutherland, J.R.; Takeuchi, Y. Pine Wilt Disease; Springer Japan: Tokyo, Japan, 2008; p. 459. [Google Scholar]
- Kwon, T.-S.; Lim, J.-H.; Sim, S.-J.; Kwon, Y.-D.; Son, S.-K.; Lee, K.-Y.; Kim, Y.-T.; Park, J.-W.; Shin, C.-H.; Ryu, S.-B.; et al. Distributuion patterns of Monochamus alternatus and M. salturaius (Coleoptera: Cerambycidae) in Korea. J. Korean Soc. For. Sci. 2006, 95, 543–550. [Google Scholar]
- Sousa, E.; Bravo, M.A.; Pires, J.; Naves, P.; Penas, A.C.; Bonifácio, L.; Mota, M.M. Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematode 2001, 3, 89–91. [Google Scholar] [CrossRef]
- Kwon, H.J.; Jung, J.-K.; Jung, C.; Han, H.; Koh, S.-H. Dispersal capacity of Monochamus salturarius on flight mills. Entomol. Exp. Appl. 2018, 166, 420–427. [Google Scholar] [CrossRef]
- Putz, J.; Vorwagner, E.M.; Gernot, H. Flight performance of Monochamus sartor, and Monochamus sutor, potential vectors of the pine wood nematode. Cent. Eur. For. J. 2016, 62, 195–201. [Google Scholar] [CrossRef]
- Etxebeste, I.; Sanchez-Husillos, E.; Álvarez, G.; Mas i Gisber, H.; Pajares, J. Dispersal of Monochamus galloprovincialis (Col.: Cerambycidae) as recorded by mark–release–recapture using pheromone traps. J. Appl. Entomol. 2016, 140, 485–499. [Google Scholar] [CrossRef]
- Yi, C.K.; Byun, B.H.; Park, J.D.; Yang, S.I.; Chang, K.H. First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle and its insect vector in Korea. Res. Rep. For. Res. Inst. 1989, 38, 141–149. [Google Scholar]
- Han, H.; Chung, Y.J.; Shin, S.C. First report of pine wilt disease on Pinus koraiensis in Korea. Plant Dis. 2008, 92, 1251. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, X.; Li, J.; Ren, J.; Ren, L.; Luo, Y. Pine wilt disease in Northeast and Northwest China: A comprehensive risk review. Forests 2023, 14, 174. [Google Scholar] [CrossRef]
- Shang, Q.; Lu, H.; Yang, M.; Wu, Y.; Chen, Q. The advancement and prospects of the tree trunk injection technique in the prevention and control of diseases and pests. Agriculture 2024, 14, 107. [Google Scholar] [CrossRef]
- Sousa, E.; Naves, P.; Vieira, M. Prevention of pine wilt disease induced by Bursaphelenchus xylophilus and Monochamus galloprovincialis by trunk injection of emamectin benzoate. Phytoparasitica 2013, 41, 143–148. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, J.; Sun, Y.; Carballar-Lejarazú, R.; Weng, M.; Shi, W.; Wu, J.; Hu, X.; Wang, R.; Zhang, F.; et al. Spatiotemporal dynamics of fluopyram trunk-injection in Pinus massoniana and its efficacy against pine wilt disease. Pest Manag. Sci. 2023, 79, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Suzuki, T.; Kawazu, K. Distribution and persistence of emamectin benzoate at efficacious concentrations in pine tissues after injection of a liquid formulation. Pest Manag. Sci. 2004, 60, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-C.; Lee, H.-R.; Kim, D.-S.; Kwon, J.-H.; Huh, M.-J.; Park, I.-K. Emamectin benzoate 9.7% SL as a new formulation for a trunk-injections against pine wood nematode, Bursaphelenchus xylophilus. J. For. Res. 2020, 31, 1399–1403. [Google Scholar] [CrossRef]
- James, R.; Tisserat, N.; Todd, T. Prevention of pine wilt of Scots pine (Pinus sylvestris) with systemic abamectin injections. Arboric. Urban For. 2006, 32, 195–201. [Google Scholar] [CrossRef]
- [KFS] Korea Forest Service. Guideline for the Control of Pine Wilt Disease; Korea Forest Service: Daejeon, Republic of Korea, 2023. [Google Scholar]
- Joo, B.-H.; Kim, M.-S.; Jung, Y.H.; Lee, S.M. Control of pine wilt disease and Japanese pine sawyer (Monochamus alternatus Hope) on Korean red pine (Pinus densiflora Siebold & Zucc.) through tree injection of a new mixture insecticide. Korean J. Pestic. Sci. 2023, 27, 179–186. [Google Scholar] [CrossRef]
- [NIAS] National Institute of Agricultural Science. Pesticides Safety Information Service. Available online: http://psis.rda.go.kr (accessed on 27 August 2024).
- Chaney, W.R. Anatomy and physiology related to chemical movement in trees. Arboric. Urban For. 1986, 12, 85–91. [Google Scholar] [CrossRef]
- VanWoerkom, A.H.; Aćimović, S.G.; Sundin, G.W.; Cregg, B.M.; Mota-Sanchez, D.; Vandervoort, C.; Wise, J.C. Trunk injection: An alternative technique for pesticide delivery in apples. Crop Prot. 2014, 65, 173–185. [Google Scholar] [CrossRef]
- Kwon, O.-G.; Jung, Y.H.; Lee, S.M.; Kim, D.S.; Cha, B.; Lee, D. Comparison of proliferation inhibition effect of pine wood nematode, Bursaphelenchus xylophilus, and residual amount according to the different injection hole diameter performing trunk injection of emamectin benzoate in pine tree (Pinus densiflora). Korean J. Pestic. Sci. 2021, 25, 157–165. [Google Scholar] [CrossRef]
- Lee, S.M.; Jung, Y.; Seo, S.-T.; Kim, D.S.; Lee, D.W. Comparison of nematicidal effect and residual amount by injection time and number of holes using emamectin benzoate via tree injection against pine wood nematode, Bursaphelenchus xylophilus. Korean J. Pestic. Sci. 2021, 25, 371–378. [Google Scholar] [CrossRef]
- Kang, H.-w.; Lee, H.-w.; Choi, J.-h.; Lee, J.-w.; Kwon, O.-G.; Kim, D.S.; Lee, K.-S.; Lee, C.-j.; Kang, J.T.; Lee, D. Comparison of the residual amount of emamectin benzoate and the effect on pine wood nematode, Bursaphelenchus xylophilus according to the location of trunk injection in pine trees. Korean J. Pestic. Sci. 2022, 26, 273–280. [Google Scholar] [CrossRef]
- Lee, S.-m.; Jeong, Y.-h.; Kim, D.S.; Lee, D.-W. Efficacy and persistence of trunk injection nematicides against pine wood nematode, Bursaphelenchus xylophilus in pine tree, Pinus densiflora. Korean J. Pestic. Sci. 2023, 27, 221–231. [Google Scholar] [CrossRef]
- [MFDS] Ministry of Food and Drug Safety. Food Code; MFDS: Cheongju, Republic of Korea, 2021. [Google Scholar]
- [NIFDSE] National Institute of Food and Drug Safety Evaluation. Guidelines on Standard Procedures for Established Test Methods for Food and Related Products; National Institute of Food and Drug Safety Evaluation: Cheongju, Republic of Korea, 2016. [Google Scholar]
- [MFDS] Ministry of Food and Drug Safety. Food Standards and Specifications: MFDS Notification No. 2019-7, 16, 31, 57, 65, 89. Partial Amendment; MFDS: Cheongju, Republic of Korea, 2019. [Google Scholar]
- Liang, Z.; Zhou, X.H.; Li, Y.; Zhou, M.; Yang, X.; Zhang, S.; Wickham, J.D.; Zhang, Q.-H.; Zhang, L. Distribution, residue dynamics, and insecticidal efficacy of trunk-injected emamectin benzoate in pecan tress. Forests 2024, 15, 535. [Google Scholar] [CrossRef]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Sánchez-Zamora, M.A.; Fernández-Escobar, R. Injector-size and the time of application affects uptake of tree trunk-injected solutions. Sci. Hortic. 2000, 84, 163–177. [Google Scholar] [CrossRef]
- Sánchez-Zamora, M.A.; Fernández-Escobar, R. Uptake and distribution of trunk injection in conifers. Arboric. Urban For. 2004, 30, 73–79. [Google Scholar] [CrossRef]
- McElrone, A.J.; Choat, B.; Gambetta, G.A.; Brodersen, C.R. Water uptake and transport through plants, and cause of flow disruption. Nat. Educ. Knowl. 2013, 4, 6. [Google Scholar]
- Takai, K.; Suzuki, T.; Kawazu, K. Development and preventative effect aginst pine wilt disease of a novel liquid formulation of emamectin benzoate. Pest Manag. Sci. 2003, 59, 365–370. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, D.; Kim, S.; Kim, S.-V.; Choi, B.Y.; Shim, D.; Park, Y.-I.; Kang, K.-S. Comparing field resistance with pine wilt disese among six pine species at seedling stages. J. Korean Soc. For. Sci. 2023, 112, 258–266. [Google Scholar] [CrossRef]
Pesticides | Company | Code | Diameter at Breast Height (DBH) of P. koraiensis (Mean ± SD) | |
---|---|---|---|---|
Residue Analysis | Efficacy Test | |||
Abamectin DC (1.8%) | A | P1 | 43.20 ± 2.13 | 37.37 ± 6.05 |
B | P2 | 39.80 ± 2.95 | 34.97 ± 4.32 | |
Emamectin benzoate EC (2.15%) | C | P3 | 38.00 ± 1.41 | 34.40 ± 4.00 |
D | P4 | 59.20 ± 4.95 | 35.31 ± 5.82 | |
E | P5 | 40.40 ± 2.98 | 34.51 ± 5.48 | |
A | P6 | 35.60 ± 3.17 | 32.89 ± 6.24 | |
F | P7 | 47.40 ± 1.96 | 34.94 ± 4.70 | |
Abamectin (1.6%)–acetamiprid (7%) ME (8.6%) | G | P8 | 38.20 ± 1.43 | 34.71 ± 4.65 |
Abamectin (1.8%)–sulfoxaflor (4.2%) DC (6%) | H | P9 | 44.0 ± 1.68 | 36.03 ± 6.06 |
Acetamiprid (8%)–emamectin benzoate (2%) DC (10%) | H | P10 | 42.40 ± 1.81 | 34.31 ± 4.91 |
Control | - | Ctrl A | 43.2 ± 2.13 | - |
- | Ctrl B | - | 19.73 ± 3.08 |
Pesticide | Branch | Needle | ||||||
---|---|---|---|---|---|---|---|---|
Recovery (%), (RSD, %) | Correlation Coefficient | Recovery (%), (RSD, %) | Correlation Coefficient | |||||
10 μg/kg | 30 μg/kg | 50 μg/kg | 10 μg/kg | 30 μg/kg | 50 μg/kg | |||
Abamectin | 91 (3.2) | 89 (3.7) | 89 (2.8) | 0.9999 | 91 (3.4) | 85 (5.5) | 89 (2.5) | 0.9995 |
Acetamiprid | 88 (2.0) | 86 (0.4) | 84 (0.6) | 0.9999 | 103 (1.1) | 85 (1.2) | 85 (2.8) | 0.9997 |
Emamectin benzoate | 108 (2.1) | 95 (0.4) | 91 (0.1) | 0.9996 | 108 (3.3) | 110 (3.1) | 98 (3.5) | 0.9995 |
Sulfoxaflor | 89 (5.2) | 84 (3.0) | 83 (3.5) | 0.9994 | 94 (6.9) | 94 (6.0) | 94 (5.7) | 0.9996 |
Code | Pesticide | df | F Value | p Value |
---|---|---|---|---|
P1 | Abamectin | 2, 117 | 0.687 | 0.505 |
P2 | Abamectin | 2, 117 | 0.795 | 0.454 |
P3 | Emamectin benzoate | 2, 117 | 0.481 | 0.619 |
P4 | Emamectin benzoate | 2, 117 | 2.285 | 0.106 |
P5 | Emamectin benzoate | 2, 117 | 4.454 | 0.014 * |
P6 | Emamectin benzoate | 2, 117 | 3.092 | 0.049 * |
P7 | Emamectin benzoate | 2, 117 | 5.251 | 0.007 * |
P8 | Abamectin | 2, 117 | 0.109 | 0.897 |
Acetamiprid | 2, 117 | 0.494 | 0.611 | |
P9 | Abamectin | 2, 117 | 7.852 | 0.001 * |
Sulfoxaflor | 2, 117 | 3.31 | 0.040 * | |
P10 | Emamectin benzoate | 2, 117 | 1.951 | 0.147 |
Acetamiprid | 2, 117 | 1.786 | 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-J.; Kim, J.; Yoo, N.S.; Jung, J.-K. Spatiotemporal Dynamics of Trunk-Injected Pesticide Residue for Management of Pine Wilt Disease in Pinus koraiensis. Forests 2024, 15, 1996. https://doi.org/10.3390/f15111996
Kim M-J, Kim J, Yoo NS, Jung J-K. Spatiotemporal Dynamics of Trunk-Injected Pesticide Residue for Management of Pine Wilt Disease in Pinus koraiensis. Forests. 2024; 15(11):1996. https://doi.org/10.3390/f15111996
Chicago/Turabian StyleKim, Min-Jung, Junheon Kim, Nam Sik Yoo, and Jong-Kook Jung. 2024. "Spatiotemporal Dynamics of Trunk-Injected Pesticide Residue for Management of Pine Wilt Disease in Pinus koraiensis" Forests 15, no. 11: 1996. https://doi.org/10.3390/f15111996
APA StyleKim, M.-J., Kim, J., Yoo, N. S., & Jung, J.-K. (2024). Spatiotemporal Dynamics of Trunk-Injected Pesticide Residue for Management of Pine Wilt Disease in Pinus koraiensis. Forests, 15(11), 1996. https://doi.org/10.3390/f15111996