Spatial Distribution of Fine Roots in Pinus tabuliformis and Populus tomentosa and Their Competition in Soils Response to Nutrient Availability and Proximity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Test Materials
2.3. Sample Collection and Measurement Indicators
2.3.1. Root and Soil Sampling
2.3.2. Fine Root Morphological Parameters
2.3.3. Soil Nutrient Characteristics
2.3.4. Intensity of Belowground Inter-Species Competition
2.4. Statistical Analysis
3. Results
3.1. Fine Root Characteristics in the Mixed Planting Seedlings of Pinus tabuliformis and Populus tomentosa
3.1.1. Fine Root Biomass
3.1.2. Fine Root Length
3.1.3. Fine Root Surface Area
3.1.4. Fine Root Volume
3.1.5. Specific Root Length
3.2. Correlations Between Fine Root Systems of the Two Types of Seedlings and Soil Nutrients
3.3. Competitiveness Indexes About the Mixed Planting Seedlings and the Influencing Factors
4. Discussion
4.1. Fine Roots Were Distributed Separately When the Seedlings of the Two Species Were Mixed Planted
4.2. Higher Fertilizer Concentrations Did Not Predict Better Root Growths
4.3. Planting Distance Was Correlated with Most Seedling Growth Indicators Positively
4.4. Underground Competition Between Pinus tabuliformis and Populus tomentosa Was Strong
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahmonov, O.; Abramowicz, A.; Pukowiec-Kurda, K.; Fagiewicz, K. The link between a high-mountain community and ecosystem services of juniper forests in Fann Mountains (Tajikistan). Ecosyst. Serv. 2021, 48, 101255. [Google Scholar] [CrossRef]
- Seliger, A.; Ammer, C.; Seidel, D.; Zerbe, S. Drivers of tree regeneration in coniferous monocultures during conversion to mixed forests in Central Europe—Implications for forest restoration management. For. Ecosyst. 2024, 11, 100244. [Google Scholar] [CrossRef]
- Hérault, B.; N’Guessan, A.K.; Ouattara, N.; Ahoba, A.; Bénédet, F.; Coulibaly, B.; Doua-Bi, Y.; Koffi, T.; Koffi-Konan, J.; Konaté, I.; et al. The long-term performance of 35 tree species of sudanian West Africa in pure and mixed plantings. For. Ecol. Manag. 2020, 468, 118171. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Bi, H.X.; Wang, N.; Liu, Z.H.; Hou, G.R.; Huang, J.H.; Song, Y.L. Does increasing forest age lead to greater trade-offs in ecosystem services? A study of a Robinia pseudoacacia artificial forest on the Loess Plateau, China. Sci. Total Environ. 2024, 926, 171737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Finley, K. Early treatment effects on plantation growth and biodiversity in mature ponderosa pine forest. Can. J. For. Res. 2023, 54, 632–645. [Google Scholar] [CrossRef]
- Zeng, X.X.; Li, J.J.; Peng, Q.H.; Gong, C.; Ran, H.; Xie, T.T.; Liao, T.; Zhou, T.L.; Huang, D.M.; Song, Q.N.; et al. Differences in Response of Tree Species at Different Succession Stages to Neighborhood Competition. Forests 2024, 15, 435. [Google Scholar] [CrossRef]
- Peng, S.; Chen, H.Y. Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems. Glob. Eco. Biogeogr. 2021, 30, 289–304. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, D.B.; Johnson, D.; Klimešová, J.; et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef]
- Zhang, D.S.; Lyu, Y.; Li, H.B.; Tang, X.Y.; Hu, R.; Rengel, Z.; Zhang, F.S.; Whalley, W.R.; Davies, W.J.; Cahill, J.F., Jr.; et al. Neighbouring plants modify maize root foraging for phosphorus: Coupling nutrients and neighbours for improved nutrient-use efficiency. New Phytol. 2020, 226, 244–253. [Google Scholar] [CrossRef]
- Hou, X.F.; Wu, X.J.; Ma, C.H.; Tian, D.; Yan, Z.B.; Li, P. Effect of the elevated ozone on greening tree species of urban: Alterations in C-N-P stoichiometry and nutrient stock allocation to leaves and fine roots. Urban For. Urban Green. 2022, 76, 127735. [Google Scholar] [CrossRef]
- Kwatcho Kengdo, S.; Peršoh, D.; Schindlbacher, A.; Heinzle, J.; Tian, Y.; Wanek, W.; Borken, W. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. Glob. Chang. Biol. 2022, 28, 3441–3458. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, A.; Mommer, L.; Andraczek, K.; Iversen, C.M.; Bergmann, J.; Bruelheide, H.; Fan, Y.; Freschet, G.T.; Guerrero-Ramírez, N.R.; Kattge, J.; et al. An integrated framework of plant form and function: The belowground perspective. New Phytol. 2021, 232, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, G.E.; Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 2020, 368, eaba0196. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Zhang, C.L.; Zhang, B.B.; Wu, D.; Zhu, D.D.; Zhang, W.; Ye, Q.; Yan, J.H.; Fu, J.M.; Fang, C.L.; et al. Nitrogen deposition and increased precipitation interact to affect fine root production and biomass in a temperate forest: Implications for carbon cycling. Sci. Total Environ. 2021, 765, 144497. [Google Scholar] [CrossRef]
- Montagnoli, A.; Lasserre, B.; Terzaghi, M.; Byambadorj, S.O.; Nyam-Osor, B.; Scippa, G.S.; Chiatante, D. Fertilization reduces root architecture plasticity in Ulmus pumila used for afforesting Mongolian semi-arid steppe. Front. Plant Sci. 2022, 13, 878299. [Google Scholar] [CrossRef]
- Liu, G.C.; Xing, Y.J.; Wang, Q.G.; Wang, L.; Feng, Y.; Yin, Z.W.; Wang, X.C.; Liu, T. Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest. Eur. J. For. Res. 2021, 140, 763–776. [Google Scholar] [CrossRef]
- Zheng, L.L.; Zhao, Q.; Sun, Q.Y.; Liu, L.; Zeng, D.H. Nitrogen addition elevated autumn phosphorus retranslocation of living needles but not resorption in a nutrient-poor Pinus sylvestris var. Mongolica plantation. For. Ecol. Manag. 2020, 468, 118174. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y.; Li, H.; Zeng, J.; Dell, B.; Li, Z.Y. Growth and nitrogen retranslocation of nutrient-loaded clonal Betula alnoides transplanted with or without fertilization. Forests 2021, 12, 1603. [Google Scholar] [CrossRef]
- Danyagri, G.; Baral, S.K.; Waterhouse, M.J.; Newsome, T.A. Climate-mediated lodgepole pine tree growth response to thinning and fertilization in interior British Columbia. For. Ecol. Manag. 2023, 544, 121161. [Google Scholar] [CrossRef]
- Liu, C.; Guêné-Nanchen, M.; Rochefort, L. Improving restoration outcomes of boreal Sphagnum-dominated peatlands after peat-extraction: The key role of phosphorus fertilization. Biol. Conserv. 2024, 298, 110770. [Google Scholar] [CrossRef]
- Liu, P.C.; Wang, W.D.; Bai, Z.Q.; Guo, Z.J.; Ren, W.; Huang, J.H.; Xu, Y.; Yao, J.; Ding, Y.; Zang, R.G. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manag. 2020, 467, 118167. [Google Scholar] [CrossRef]
- Oliveira, I.R.; Bouillet, J.P.; Guillemot, J.; Brandani, C.B.; Bordron, B.; Frayret, C.B.; Laclau, J.P.; Ferraz, A.V.; Gonçalves, J.L.M.; le Maire, G. Changes in light use efficiency explains why diversity effect on biomass production is lower at high planting density in mixed-species plantations of Eucalyptus grandis and Acacia mangium. For. Ecol. Manag. 2024, 554, 121663. [Google Scholar] [CrossRef]
- You, Y.M.; Wang, L.R.; Liu, X.T.; Wang, X.L.; Jiang, L.P.; Ding, C.J.; Wang, W.N.; Zhang, D.W.; Zhao, X.Y. Interspecific plant interaction structures the microbiomes of poplar-soil interface to alter nutrient cycling and utilization. Microbiol. Spectr. 2024, 12, e0336823. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.A.; Hecht, V.L.; Hikosaka, K.; Nord, E.A.; Pons, T.L.; Poorter, H. Dividing the pie: A quantitative review on plant density responses. Plant Cell Environ. 2021, 44, 1072–1094. [Google Scholar] [CrossRef] [PubMed]
- Bo, H.J.; Wen, C.Y.; Song, L.J.; Yue, Y.T.; Nie, L.S. Fine-root responses of Populus tomentosa forests to stand density. Forests 2018, 9, 562. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, Q.L.; Yuan, J.F.; Zhang, J.X. Application of fertilization in changing light adaptability and improving growth of Aralia elata (Miq.) Seem. seedlings under various light conditions in temperate forests. J. Plant Physiol. 2022, 277, 153804. [Google Scholar] [CrossRef]
- Wang, G.; Liu, F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. For. Ecol. Manag. 2011, 262, 413–423. [Google Scholar] [CrossRef]
- Zeng, X.H.; Zhang, W.J.; Cao, J.S.; Liu, X.P.; Shen, H.T.; Zhao, X. Changes in soil organic carbon, nitrogen, phosphorus, and bulk density after afforestation of the “Beijing–Tianjin Sandstorm Source Control” program in China. Catena 2014, 118, 186–194. [Google Scholar] [CrossRef]
- Cornejo, N.S.; Hertel, D.; Becker, J.N.; Hemp, A.; Leuschner, C. Biomass, morphology, and dynamics of the fine root system across a 3,000 m elevation gradient on Mt. Kilimanjaro. Front. Plant Sci. 2020, 11, 13. [Google Scholar]
- Wei, X.; Yao, J.F.; Guo, Y.; Sui, X.; Lv, X.; Liu, X.M.; Dong, Y.; Liang, W.J. Study on associations between root and aboveground growth of mixed-planting seedlings of Populus tomentosa and Pinus tabuliformis under soil nutrient heterogeneity. Forests 2024, 15, 1151. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Y.Q.; Liu, C.C. Study on soil nutrient spatial patterns and their driving factors in Jinzhong. Acta Ecol. Sin. 2018, 38, 8621–8629. [Google Scholar]
- Feng, D.D.; Xue, Q.Q.; Qi, J.Y.; Wang, L.J.; Li, H.; Men, L.; Zhang, Z.W. Community structure and occurrence regularity of pyralidae in artificial sea buckthorn plantation. Shanxi Agric. Sci. 2020, 48, 793–798. [Google Scholar]
- Liu, C.J.; Gong, X.W.; Dang, K.; Li, J.; Yang, P.; Gao, X.L.; Dou, X.P.; Feng, B. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ. Res. 2020, 184, 109261. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.H.; Sui, X.; Tang, J.; Liu, R.; Ling, X.L.; Liang, W.J.; Wei, X. Responses of belowground fine root biomass and morphology in Robinia pseudoacacia L. plantations to aboveground environmental factors. Glob. Ecol. Conserv. 2024, 50, e02863. [Google Scholar] [CrossRef]
- Xu, M.P.; Jian, J.N.; Wang, J.Y.; Zhang, Z.J.; Yang, G.H.; Han, X.H.; Ren, C.J. Response of root nutrient resorption strategies to rhizosphere soil microbial nutrient utilization along Robinia pseudoacacia plantation chronosequence. For. Ecol. Manag. 2021, 489, 119053. [Google Scholar] [CrossRef]
- Wang, Z.B.; Yang, H.J.; Wang, D.H.; Zhao, Z. Response of height growth of regenerating trees in a Pinus tabulaeformis Carr. plantation to different thinning intensities. For. Ecol. Manag. 2019, 444, 280–289. [Google Scholar] [CrossRef]
- Ni, L.; Guo, D.G.; Zhang, Q.G.; Li, Y.; Hu, X.Q.; Li, Y.; Feng, S.X. Niche characteristics and dynamics of dominant species in arbor layer of 4hm2 Pinus tabuliformis-Quercus wutaishansea mixed forest in Lingkong Mountain. Fronti. Ecol. Evol. 2024, 12, 1334665. [Google Scholar] [CrossRef]
- Levins, R.A. Evolution in Changing Environments: Some Theoretical Explorations. (MPB-2); Princeton University Press: Princeton, NJ, USA, 1982; Volume 2. [Google Scholar]
- Ranjan, A.; Sinha, R.; Singla-Pareek, S.L.; Pareek, A.; Singh, A.K. Shaping the root system architecture in plants for adaptation to drought stress. Physiol. Plant. 2022, 174, e13651. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, D.; Saksena, H.B.; Sharma, M.; Tiwari, A.; Awasthi, P.; Botta, H.K.; Shukla, B.N.; Laxmi, A. Understanding the intricate web of phytohormone signalling in modulating root system architecture. Int. J. Mol. Sci. 2021, 22, 5508. [Google Scholar] [CrossRef]
- Jia, Z.T.; Giehl, R.F.; von Wirén, N. Nutrient–hormone relations: Driving root plasticity in plants. Mol. Plant 2022, 15, 86–103. [Google Scholar] [CrossRef]
- Zheng, G.C.; Su, X.P.; Chen, X.L.; Hu, M.Y.; Ju, W.; Zou, B.Z.; Wang, S.R.; Wang, Z.Y.; Hui, D.F.; Guo, J.F.; et al. Variations in fine root biomass, morphology, and vertical distribution in both trees and understory vegetation among Chinese fir plantations. For. Ecol. Manag. 2024, 557, 121748. [Google Scholar] [CrossRef]
- Wambsganss, J.; Freschet, G.T.; Beyer, F.; Goldmann, K.; Prada-Salcedo, L.D.; Scherer-Lorenzen, M.; Bauhus, J. Tree species mixing causes a shift in fine root soil exploitation strategies across European forests. Funct. Ecol. 2021, 35, 1886–1902. [Google Scholar] [CrossRef]
- Ding, J.X.; Kong, D.L.; Zhang, Z.L.; Cai, Q.; Xiao, J.; Liu, Q.; Yin, H.J. Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. J. Ecol. 2020, 108, 2544–2556. [Google Scholar] [CrossRef]
- Yeste, A.; Blanco, J.A.; Imbert, J.B.; Zozaya-Vela, H.; Elizalde-Arbilla, M. Pinus sylvestris L. and Fagus sylvatica L. effects on soil and root properties and their interactions in a mixed forest on the Southwestern Pyrenees. For. Ecol. Manag. 2021, 481, 118726. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Yao, X.D.; Chen, W.L.; Robinson, D.; Wang, X.H.; Chen, T.T.; Jiang, Q.; Jia, L.Q.; Fan, A.; Wu, D.M.; et al. Plastic responses of below ground foraging traits to soil phosphorus rich patches across 17 coexisting AM tree species in a subtropical forest. J. Ecol. 2023, 111, 830–844. [Google Scholar] [CrossRef]
- Yan, X.L.; Dai, T.F.; Gao, Y.; Di, N.; Jia, L.M. Responses of fine root traits and soil nitrogen to fertilization methods and nitrogen application amounts in a poplar plantation. Forests 2023, 14, 282. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Wang, J.Y.; Liu, Y.H.; Gao, Y.; Zhang, X.Q.; Chen, G.Z.; Huang, F.Y.; Ahmad, S.; Zhang, P.; et al. Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system. Agr. Water Manag. 2022, 271, 107784. [Google Scholar] [CrossRef]
- Germon, A.; Laclau, J.P.; Robin, A.; Jourdan, C. Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper? For. Ecol. Manag. 2020, 466, 118135. [Google Scholar] [CrossRef]
- White, P.J.; George, T.S.; Gregory, P.J.; Bengough, A.G.; Hallett, P.D.; McKenzie, B.M. Matching roots to their environment. Ann. Bot. 2013, 112, 207–222. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.J.; Wang, J.; Tong, C.C.; Wu, Y. Temporal-spatial variations of root and soil nutrient under continuous intercropping of alfalfa and oat. Chin. J. Appl. Ecol. 2023, 34, 2683–2692. [Google Scholar]
- He, Y.L.; Xi, B.Y.; Li, G.D.; Wang, Y.; Jia, L.M.; Zhao, D.H. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agr. Water Manag. 2021, 243, 106460. [Google Scholar] [CrossRef]
- Zeng, W.X.; Xiang, W.H.; Zhou, B.; Ouyang, S.; Zeng, Y.L.; Chen, L.; Freschet, G.T.; Valverde-Barrantes, O.J.; Milcu, A. Positive tree diversity effect on fine root biomass: Via density dependence rather than spatial root partitioning. Oikos 2021, 130, 1–14. [Google Scholar] [CrossRef]
- Ullah, F.; Gilani, H.; Sanaei, A.; Hussian, K.; Ali, A. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manag. 2021, 486, 118984. [Google Scholar] [CrossRef]
- Liu, T.T.; Wang, X.Y.; Shen, L.; Wei, W.W.; Zhang, S.; Wang, M.F.; Zhu, Y.; Tuertia, T.; Zhang, W. Apricot can improve root system characteristics and yield by intercropping with alfalfa in semi-arid areas. Plant Soil 2023, 1–18. [Google Scholar] [CrossRef]
- Chen, H.H.; Ding, G.J.; Wen, H.H.; Lu, Y. Effects of planting density on growth and economic benefit of masson pine plantation. Chin. For. Res. 2011, 24, 470–475. [Google Scholar]
- Zhan, L.F.; Yu, S.Q.; Wang, W.F.; Wang, Q.; Wang, J.B. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations. J. Beijing For. Univ. (Chin. Ed.) 2019, 41, 11–19. [Google Scholar]
- Di, N.; Xi, B.Y.; Pinto, J.R.; Wang, Y.; Li, G.D.; Jia, L.M. Root biomass distribution of triploid Populus tomentosa under wide-and narrow-row spacing planting schemes and its responses to soil nutrients. Chin. J. Plant Ecol. 2013, 37, 961–971. [Google Scholar] [CrossRef]
- Erktan, A.; Roumet, C.; Bouchet, D.; Stokes, A.; Pailler, F.; Munoz, F. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J. Ecol. 2018, 106, 2031–2042. [Google Scholar] [CrossRef]
- Salahuddin; Rewald, B.; Razaq, M.; Lixue, Y.; Li, J.; Khan, F.; Jie, Z. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition. Sci. Rep. 2018, 8, 9815. [Google Scholar]
- Sun, Y.B.; Bi, H.X.; Duan, H.Q.; Peng, R.D.; Wang, J.J. Fine-root morphological variation and below-ground competition of an apple-peanut intercropping system. Chin. Sci. Soil Water Conserv. 2019, 17, 48–56. [Google Scholar]
- Wang, Z.B.; Jiang, L.N.; Gao, J.F.; Qing, S.Q.; Pan, C.; Wu, Y.; Yang, H.J.; Wang, D.H. The influence of microhabitat factors on the regeneration and species composition of understory woody plants in Pinus tabuliformis plantations on the Loess Plateau. For. Ecol. Manag. 2022, 509, 120080. [Google Scholar] [CrossRef]
- Mahaut, L.; Fort, F.; Violle, C.; Freschet, G.T. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 2020, 34, 287–298. [Google Scholar] [CrossRef]
- Hommel, R.; Siegwolf, R.; Zavadlav, S.; Arend, M.; Schaub, M.; Galiano, L.; Haeni, M.; Kayler, Z.E.; Gessler, A. Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol. 2016, 18, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Xu, C.; Liu, M.S.; Huang, Z.Y.; Zhang, M.J.; Tang, J.; Anten, N.P. Neighborhood-dependent root distributions and the consequences on root separation in arid ecosystems. J. Ecol. 2020, 108, 1635–1648. [Google Scholar] [CrossRef]
- Luo, H.X.; Xu, H.; Chu, C.J.; He, F.L.; Fang, S.Q. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 2020, 11, 160. [Google Scholar] [CrossRef]
- Wu, C.; Bi, Y.L.; Zhu, W.B.; Yang, W.; Xue, C.; Li, H.; Liu, T. Arbuscular mycorrhizal inoculation alleviates water competition between adjacent plants in the mixed planting system. Rhizosphere 2023, 27, 100751. [Google Scholar] [CrossRef]
- Payn, T.; Carnus, J.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.R.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
Soil Nutrient | Measured Value |
---|---|
Organic matter (g·kg−1) | 3.10 |
Available nitrogen (mg·kg−1) | 60.61 |
Total nitrogen (g·kg−1) | 0.41 |
Available phosphorus (mg·kg−1) | 7.76 |
Total phosphorus (g·kg−1) | 0.49 |
Seedlings’ Type | PIT (%) | POT25 (%) | POT50 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Component | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Total explained percentage | 49.90 | 32.44 | 10.89 | 41.95 | 32.49 | 12.57 | 45.76 | 30.44 | 11.55 |
FRB | 4.212 | 18.218 | 9.540 | 4.647 | 15.805 | 3.314 | 0.135 | 21.602 | 6.225 |
FRL | 9.111 | 13.557 | 1.065 | 1.638 | 23.514 | 1.899 | 5.567 | 18.260 | 5.186 |
FRSA | 6.680 | 17.574 | 0.002 | 2.373 | 23.340 | 1.684 | 5.0588 | 19.866 | 4.265 |
FRV | 5.066 | 18.558 | 4.819 | 2.679 | 22.607 | 1.771 | 4.763 | 21.124 | 1.995 |
SRL | 5.544 | 1.933 | 51.024 | 1.997 | 1.070 | 45.274 | 1.776 | 8.987 | 25.673 |
OM | 12.096 | 8.434 | 1.967 | 16.916 | 3.951 | 0.017 | 17.130 | 1.264 | 1.291 |
AN | 15.946 | 1.825 | 4.798 | 19.322 | 1.638 | 0.815 | 17.236 | 3.024 | 0.196 |
TN | 11.360 | 8.187 | 1.995 | 17.048 | 4.259 | 0.532 | 17.466 | 1.379 | 0.180 |
AP | 14.381 | 5.682 | 0.273 | 18.780 | 3.166 | 0.069 | 17.907 | 2.135 | 0.632 |
TP | 6.932 | 1.518 | 0.053 | 14.586 | 0.157 | 3.063 | 12.541 | 2.147 | 0.499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Wei, S.; Dong, Y.; Jia, L.; Hao, D.; Liang, W. Spatial Distribution of Fine Roots in Pinus tabuliformis and Populus tomentosa and Their Competition in Soils Response to Nutrient Availability and Proximity. Forests 2024, 15, 1895. https://doi.org/10.3390/f15111895
Wei X, Wei S, Dong Y, Jia L, Hao D, Liang W. Spatial Distribution of Fine Roots in Pinus tabuliformis and Populus tomentosa and Their Competition in Soils Response to Nutrient Availability and Proximity. Forests. 2024; 15(11):1895. https://doi.org/10.3390/f15111895
Chicago/Turabian StyleWei, Xi, Shuping Wei, Yuan Dong, Lei Jia, Danning Hao, and Wenjun Liang. 2024. "Spatial Distribution of Fine Roots in Pinus tabuliformis and Populus tomentosa and Their Competition in Soils Response to Nutrient Availability and Proximity" Forests 15, no. 11: 1895. https://doi.org/10.3390/f15111895
APA StyleWei, X., Wei, S., Dong, Y., Jia, L., Hao, D., & Liang, W. (2024). Spatial Distribution of Fine Roots in Pinus tabuliformis and Populus tomentosa and Their Competition in Soils Response to Nutrient Availability and Proximity. Forests, 15(11), 1895. https://doi.org/10.3390/f15111895