Characteristics of Forest Windthrow Produced in Eastern Carpathians in February 2020
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
3.1. Statistical Data Interpretation
3.2. Climatic Conditions
- (1)
- 2nd and 3rd of |February, wind direction west, at a maximum speed of 28 m·s−1;
- (2)
- 5th and 6th of February, wind direction north–northeast, at a maximum speed of 32 m·s−1;
- (3)
- 11th and 12th of February, wind direction west–northwest, at a maximum speed of 31 m·s−1;
- (4)
- 23rd and 24th of February, wind direction west–northwest, at a maximum speed of 32 m·s−1.
3.3. Site Conditions
3.4. Tree Stand Structural Characteristics
3.5. Anthropogenic Factors
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leahu, I. Amenajarea Pădurilor; Editura Didactică si Pedagogică: București, Romania, 2001. [Google Scholar]
- Ulanova, N.G. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Brüchert, F.; Gardiner, B. The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 2006, 93, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Thürig, E.; Hagedorn, F.; Lindroth, A. Influence of storm damage on the forest carbon balance. In Living with Storm Damage to Forests; European Forest Institute: Joensuu, Finland, 2013; pp. 47–55. [Google Scholar]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Ciubotaru, A. Exploatarea Pădurilor; Editura Lux Libris: Brașov, Romania, 1998; p. 351. [Google Scholar]
- Câmpu, V.R.; Robb, W. Chainsaw Safety & Tree Felling Guide; ABA International; Litera Brno Press: Brno, Czech Republic, 2022; p. 177. [Google Scholar]
- Schuck, A.; Schelhaas, M.-J. Storm damage in Europe—An overview. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2023; pp. 15–23. [Google Scholar]
- Honkaniemi, J.; Rammer, W.; Seidl, R. Norway spruce at the trailing edge: The effect of landscape configuration and composition on climate resilience. Landsc. Ecol. 2020, 35, 591–606. [Google Scholar] [CrossRef]
- Mölter, T.; Schindler, D.; Albrecht, A.T.; Kohnle, U. Review on the Projections of Future Storminess over the North Atlantic European Region. Atmosphere 2016, 7, 60. [Google Scholar] [CrossRef]
- Dorland, C.; Tol, R.S.J.; Palutikof, J.P. Vulnerability of the Netherlands and Northwest Europe to storm damage under climate change: A model approach based on storm damage in the Netherlands. Clim. Change 1999, 43, 513–535. [Google Scholar] [CrossRef]
- Martínez-Alvarado, O.; Gray, S.L.; Catto, J.L.; Clark, P.A. Corrigendum: Sting jets in intense winter North-Atlantic windstorms. Environ. Res. Lett. 2012, 9, 039501. [Google Scholar] [CrossRef]
- Gardiner, B.; Blennow, K.; Carnus, J.; Fleischer, P.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts; Final Report to European Commission—DG Environment (07.0307/2009/SI2.540092/ETU/B.1); European Forest Institute: Joensuu, Finland, 2010; p. 138. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Breidenbach, J.; Neeff, T.; Kublin, E. Seventy-seven years of natural disturbances in a mountain forest area—The influence of storm, snow, and insect damage analysed with a longterm time series. Can. J. For. Res. 2008, 38, 2249–2261. [Google Scholar] [CrossRef]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomastik, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef]
- Milescu, I. O etapă superioară în gospodărirea pădurilor de molid. Silvic. Exploatarea Pădurilor 1980, 95, 120–123. [Google Scholar]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manag. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Bengtsson, A.; Nilsson, C. Extreme value modelling of storm damage in Swedish forests. Nat. Hazards Earth Syst. Sci. 2007, 7, 515–521. [Google Scholar] [CrossRef]
- Albrecht, A.; Hanewinkel, M.; Bauhus, J.; Kohnle, U. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur. J. For. Res. 2012, 131, 229–247. [Google Scholar] [CrossRef]
- Barbu, C.O. Evaluarea impactului doborâturilor de vânt din martie 2002 asupra funcțiilor ecoprotective ale pădurii. Analele Univ. Stefan Cel Mare Suceava 2004, 1, 127–136. [Google Scholar]
- Bogdan, O.; Coşconea, M. Wind blown-down trees in Romania-case studies for the curvature area of the Eastern Carpathians. Riscuri Catastr. 2011, 9, 79–90. [Google Scholar]
- Muşat, E.C.; Ciubotaru, A.; Száva, J. A short review regarding the losses recorded in windfall. Ann. Fac. Eng. Hunedoara-Int. J. Eng. 2016, 14, 166–172. [Google Scholar]
- Savulescu, I.; Mihai, B. Geographic information system (GIS) application for windthrow mapping and management in Iezer Mountains, Southern Carpathians. J. For. Res. 2012, 23, 175–184. [Google Scholar] [CrossRef]
- RNP. Operativă privind Ritmul Lucrărilor de Evaluare/Recoltare a Masei Lemnoase Afectată de Doborâturile și Rupturile de Vânt Produse în Luna Februarie 2020; Departamentul Fond Forestier, Serviciul Fond Forestier și Certificarea Pădurilor, Regia Națională a Pădurilor—ROMSILVA: București, Romania, 2020.
- Schindler, D.; Bauhus, J.; Mayer, H. Wind effects on trees. Eur. J. For. Res. 2012, 131, 159–163. [Google Scholar] [CrossRef]
- Bogdan, O.; Coşconea, M. Riscul doborâturilor de arbori în România (cauzele). Riscuri Catastr. 2010, 8, 89–102. [Google Scholar]
- Cassia, R.; Nocioni, M.; Correa-Aragunde, N.; Lamattina, L. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Front. Plant Sci. 2018, 9, 273. [Google Scholar] [CrossRef]
- Climate Action. Consequences of the Climate Change. European Commission, Energy, Climate Change, Environment. Available online: https://climate.ec.europa.eu/climate-change/consequences-climate-change_en#threats-to-business (accessed on 28 November 2023).
- Birot, Y.; Gardiner, B. Challenges for forestry in relation to storms. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 123–129. [Google Scholar]
- Vlad, R. Parametrii biometrici şi de stabilitate în arborete de molid instalate în zone cu puternice doborâturi de vânt. In Proceedings of the Simpozionul “Molidul în contextul silviculturii durabile”, Câmpulung Moldovenesc, Romania, 21 February 1996; pp. 67–71. [Google Scholar]
- Munteanu, G. Doborâturile si rupturile de vânt din pădurile județului Covasna. Rev. Silvic. 1996, 2, 5–6. [Google Scholar]
- Stănescu, V. Observații si propuneri privind doborâturile de vânt din pădurile județului Covasna. Rev. Silvic. 1996, 2, 3–5. [Google Scholar]
- Tamaș, Ș.; Popescu, S. Aplicații ale Sistemelor de Informații Geografice în estimarea influenței condițiilor staționale și de vegetație asupra doborâturilor de vânt. Lucr. Simp. Sist. Informaționale Geogr. 1996, 3–4, 117–124. [Google Scholar]
- Coșconea, M.; Marinică, M. Factorii care au generat doborâturile de arbori din 5–6 noiembrie 1995 în județele Mureş, Harghita, Bistrița-Năsăud şi Covasna. Analele Univ. Spiru Haret 2006, 8, 57–62. [Google Scholar]
- Găbrian, S.; Budeanu, M. Aprecieri privind influenţa factorilor staţionali şi a caracteristicilor arboretelor din Ocolul Silvic Comandău asupra doborâturilor de vânt. Rev. Silvic. Cineg. 2013, 33, 106–111. [Google Scholar]
- Vlad, R. Cercetări Asupra Impactului Produs de Vânt și Zăpadă, Asupra Pădurilor de Rășinoase din Zonele Expuse; Raport Anual Stațiunea Experimentală de Cultură a Molidului: București, Romania, 1997; pp. 43–49. [Google Scholar]
- Comandău. Cronica Ocolului Silvic Comandău, vol. I, Dosar Permanent Nr. II/38; Ocolul Silvic Comandău: Covasna, Romania, 2020. [Google Scholar]
- Popa, I. Doborâturi produse de vânt-factor de risc în ecosistemele forestiere montane. Analele ICAS 2005, 48, 3–28. [Google Scholar]
- Hanewinkel, M.; Peyron, J.L. The economic impact of storms. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 55–63. [Google Scholar]
- INCDS-BV. Amenajamentul Silvic al U.P. III Bâsca Mare; Ocolul Silvic Comandău: Covasna, Romania, 2020. [Google Scholar]
- INCDS-BV. Amenajamentul Silvic al U.P. VIII Dealul Negru; Ocolul Silvic Comandău: Covasna, Romania, 2020. [Google Scholar]
- Dumintrescu, P. În problema doborâturilor de vânt produse în perioada 1960–1970. Silvic. Exploatarea Pădurilor 1976, 91, 233–235. [Google Scholar]
- Marcu, G. Cauzele doborâturilor produse de vant in anii 1964–1966 în pădurile țării noastre. Rev. Pădurilor 1969, 84, 23–28. [Google Scholar]
- Usbeck, T.; Wohlgemuth, T.; Dobbertin, M.; Pfister, C.; Bürgi, A.; Rebetez, M. Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric. For. Meteorol. 2010, 150, 47–55. [Google Scholar] [CrossRef]
- Nilsson, C.; Stjernquist, I.; Bärring, L.; Schlyter, P.; Jönsson, A.M.; Samuelsson, H. Recorded storm damage in Swedish forests 1901–2000. For. Ecol. Manag. 2004, 199, 165–173. [Google Scholar] [CrossRef]
- Schmoeckel, J.; Kottmeier, C. Storm damage in the Black Forest caused by the winter storm “Lothar”—Part 1: Airborne damage assessment. Nat. Hazards Earth Syst. Sci. 2008, 8, 795–803. [Google Scholar] [CrossRef]
- Avram, G. Cercetări Privind Cauzele și Efectele Doborâturilor si Rupturilor de Vant Produse în Pădurile de pe Clina Sudică a Munților Rodnei. Ph.D. Thesis, Transilvania University of Brașov, Brașov, Romania, 2002. [Google Scholar]
- Nițescu, C.; Bartiș, M. Cu privire la doborâturile de vânt produse în județul Bistrița-Năsăud în perioada1969–1979, starea arboretelor afectate și măsuri de refacere. Silvic. Exploatarea Pădurilor 1980, 5, 263–268. [Google Scholar]
- Peterson, C.J. Catastrophic wind damage to North American forests and the potential impact of climate change. Sci. Total Environ. 2000, 262, 287–311. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.; Brang, P.; Dobbertin, M.; Hallenbarter, D.; Renaud, J.P.; Walthert, L.; Zimmermann, S. Forest storm damage is more frequent on acidic soils. Ann. For. Sci. 2005, 62, 303–311. [Google Scholar] [CrossRef]
- Lohmander, P.; Helles, F. Windthrow probability as a function of stand characteristics and shelter. Scand. J. For. Res. 1987, 2, 227–238. [Google Scholar] [CrossRef]
- Albrecht, A.; Kohnle, U.; Hanewinkel, M.; Bauhus, J. Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Ann. For. Sci. 2013, 70, 195–207. [Google Scholar] [CrossRef]
- Pavelescu, I. Aspecte particulare ale doboraturilor de vânt în legatura cu activitatile de exploatare-valorificare. Rev. Pădurilor 1971, 86, 196–199. [Google Scholar]
- Grudnicki, F. Stabilitatea molizilor la acțiunea vântului. Analele Univ. Ștefan Cel Mare Suceava 2004, 1, 23–36. [Google Scholar]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Mason, B.; Valinger, E. Managing forests to reduce storm damage. In Living with Storm Damage to Forests; Gardiner, B., Schuck, A., Schelhaas, M.J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 87–95. [Google Scholar]
- Hanewinkel, M.; Kuhn, T.; Bugmann, H.; Lanz, A.; Brang, P. Vulnerability of uneven-aged forests to storm damage. Forestry 2014, 87, 525–534. [Google Scholar] [CrossRef]
- Popa, I. Modele de simulare a dinamicii temporale a doborâturilor produse de vânt în ecosistemele forestiere. Rev. Pădurilor 1999, 1, 42–49. [Google Scholar]
- Schelhaas, M.J. The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: A model-based approach. Forestry 2008, 81, 399–414. [Google Scholar] [CrossRef]
- Moreau, G.; Chagnon, C.; Achim, A.; Caspersen, J.; D’Orangeville, L.; Sánchez-Pinillos, M.; Thiffault, N. Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change. Forestry 2022, 95, 595–615. [Google Scholar] [CrossRef]
- Ichim, R. Stabilititatea pădurilor de molid din Bucovina. Bucov. For. 1993, 1–2, 33–40. [Google Scholar]
- Dobbertin, M. Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For. Snow Landsc. Res. 2002, 77, 187–205. [Google Scholar]
- Ruel, J.-C. Understanding windthrow: Silvicultural implications. For. Chron. 1995, 71, 434–445. [Google Scholar] [CrossRef]
- Schmidt, M.; Hanewinkel, M.; Kändler, G.; Kublin, E.; Kohnle, U. An inventory-based approach for modeling singletree storm damage—Experiences with the winter storm of 1999 in southwestern Germany. Can. J. For. Res. 2010, 40, 1636–1652. [Google Scholar] [CrossRef]
- Coutts, M.P.; Nielsen, C.C.N.; Nicoll, B.C. The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 1999, 217, 1–15. [Google Scholar] [CrossRef]
- Danjon, F.; Fourcaud, T.; Bert, D. Root architecture and wind-firmness of mature Pinus pinaster. New Phytol. 2005, 168, 387–400. [Google Scholar] [CrossRef]
Year 1995 (November) | Year 2020 (February) | |||||
---|---|---|---|---|---|---|
Large-Scale or Scattered Windthrow | Area Affected | Volume Affected | Intensity | Area Affected | Volume Affected | Intensity |
ha (%) | m3 (%) | (m3·ha−1) | ha (%) | m3 (%) | m3·ha−1 | |
Management unit Bâsca Mare | ||||||
Large-scale windthrow | 929.30 (98%) | 383,139 (99.85%) | 412.29 | 2.06 (1.34%) | 569 (15.87 %) | 276.21 |
Scattered windthrow | 20.80 (2%) | 567 (0.15%) | 27.26 | 151.85 (98.66%) | 3017 (84.13%) | 19.87 |
Total 1 | 950.10 (90.62%) | 383,706 (88.11%) | 403.86 | 153.91 (11.48%) | 3586 (4.68%) | 23.30 |
Management unit Dealul Negru | ||||||
Large-scale windthrow | 98.40 (100%) | 51,801 (100%) | 526.43 | 145.52 (12.26%) | 51,704 (70.86%) | 355.31 |
Scattered windthrow | - | - | - | 1041.35 (87.74%) | 21,263 (29.14%) | 20.42 |
Total 2 | 98.40 (9.38%) | 51,801 (11.89%) | 526.43 | 1186.87 (88.52%) | 72,967 (95.32%) | 61.48 |
Total 1 + 2 | 1048.5 (100%) | 435,507 (100%) | 415.36 | 1340.78 (100%) | 76,553 (100%) | 57.10 |
Day | Average Temperature (°C) | Precipitation Rate (mm) | Wind | |
---|---|---|---|---|
Direction | Speed (m·s−1) | |||
1 | −1.7 | 1.0 | West–Northwest | 22 |
2 | −0.7 | 0 | West | 25 |
3 | −1.7 | 9.1 | West | 28 |
4 | −3.1 | 14.9 | West–Northwest | 19 |
5 | −6.7 | 4.2 | North–Northeast | 29 |
6 | −14.1 | 0.0 | N–NE | 32 |
7 | −11.7 | 1.6 | West–Northwest | 20 |
8 | −14.7 | 0.0 | Northwest | 19 |
9 | −8.7 | 0.0 | West–Northwest | 16 |
10 | −4.2 | 0.0 | West | 23 |
11 | −5.5 | 4.9 | West | 31 |
12 | −8.0 | 0.0 | West–Northwest | 25 |
13 | −8.4 | 0.0 | West–Northwest | 20 |
14 | −6.8 | 0.0 | West | 16 |
15 | −5.4 | 0.0 | West–Northwest | 12 |
16 | −4.9 | 0.0 | West–Northwest | 17 |
17 | 4.2 | 0.0 | West | 12 |
18 | 1.6 | 0.0 | West–Northwest | 18 |
19 | −2.7 | 0.0 | West–Northwest | 11 |
20 | −5.0 | 0.0 | Northwest | 8 |
21 | −6.4 | 0.0 | West–Northwest | 17 |
22 | −7.3 | 0.0 | West | 16 |
23 | −5.4 | 0.0 | West–Northwest | 24 |
24 | −3.4 | 0.0 | West | 32 |
25 | −3.0 | 0.0 | West | 22 |
26 | 1.7 | 0.0 | West | 18 |
27 | −2.8 | 6.1 | West | 20 |
28 | −7.2 | 6.0 | West–Northwest | 21 |
29 | −7.3 | 8.2 | West | 13 |
Tree Stand Characteristics | Characteristics | Area Studied | ||
---|---|---|---|---|
ha | % | |||
Tree stand origin | Artificial | Ps | 220.44 | 6.61 |
Pm | 1137.02 | 34.09 | ||
Pi | 36.71 | 1.10 | ||
Natural | Ps | 390.74 | 11.71 | |
Pm | 1485.28 | 44.53 | ||
Pi | 65.33 | 1.96 | ||
Age class | Class I (0–20 years) | 771.27 | 23.12 | |
Class II (21–40 years) | 326.44 | 9.79 | ||
Class III (41–60 years) | 702.53 | 21.06 | ||
Class IV (61–80 years) | 524.89 | 15.74 | ||
Class V (81–100 years) | 394.24 | 11.82 | ||
Class VI (>101 years) | 616.15 | 18.47 | ||
Tree stand structure | Even-aged stands | 198.00 | 5.94 | |
Relatively even-aged stand | 2429.59 | 72.84 | ||
Relatively uneven-aged stand | 707.93 | 21.22 | ||
Site class | II | 611.18 | 18.32 | |
III | 2622.30 | 78.62 | ||
IV | 102.04 | 3.06 | ||
Composition | Mixed stands | 542.49 | 16.26 | |
Spruce pure stands | 2793.03 | 83.74 | ||
Canopy cover | 0.7–0.9 | 3233.35 | 96.94 | |
0.4–0.6 | 100.98 | 3.03 | ||
0.1–0.3 | 1.19 | 0.04 | ||
Total area | 3335.52 | 100 |
Site Conditions | Characteristics | Area Studied | |
---|---|---|---|
ha | % | ||
Relief unit | Plateau | 7.68 | 0.23 |
Slope | 1960.21 | 58.77 | |
Lower slope | 332.82 | 9.98 | |
Middle slope | 543.25 | 16.29 | |
Upper slope | 441.20 | 13.23 | |
High meadow | 50.36 | 1.51 | |
Land topography | Bumpy | 3274.56 | 98.17 |
Flat | 60.96 | 1.83 | |
Aspect | South; Southwest | 768.25 | 23.03 |
West; Southeast | 1152.84 | 34.56 | |
Plane | 58.04 | 1.74 | |
North; Northeast | 605.26 | 18.15 | |
East; Northwest | 751.13 | 22.52 | |
Land inclination | <1° | 51.67 | 1.55 |
1–5° | 6.37 | 0.20 | |
6–15° | 355.99 | 10.67 | |
16–30° | 2904.42 | 87.07 | |
31–50° | 17.07 | 0.51 | |
Altitude (m) | 901–1000 | 2.24 | 0.07 |
1001–1100 | 321.20 | 9.63 | |
1101–1200 | 194.67 | 5.84 | |
1201–1300 | 585.09 | 17.54 | |
1301–1400 | 838.67 | 25.14 | |
1401–1500 | 1040.09 | 31.18 | |
1501–1600 | 330.92 | 9.92 | |
1601–1700 | 22.64 | 0.68 | |
Altitudinal plant layer | Spruce stands | 1494.51 | 44.80 |
Mixed stands | 1841.1 | 55.20 | |
Soil class | Cambisols | 2338.23 | 70.10 |
Protisoils | 10.14 | 0.30 | |
Spodosols | 966.21 | 28.97 | |
Histosols | 20.94 | 0.63 | |
Total area | 3335.52 | 100 |
Variable | Mean | Minimum | Maximum | Standard Deviation | Variation Coefficient (%) | Spearman’s rho | p-Value |
---|---|---|---|---|---|---|---|
Management unit Bâsca Mare—scattered windthrow (number of tree stands: 19) | |||||||
Windthrow intensity (m3·ha−1) | 31.19 | 5.73 | 95.58 | 21.49 | 68.89 | ||
Stand height (m) | 23.73 | 16.6 | 26.7 | 3.36 | 14.14 | ||
Slenderness coefficient (m·cm−1) | 0.70 | 0.50 | 1.01 | 0.12 | 16.54 | ||
Canopy cover | 0.74 | 0.60 | 0.90 | 0.08 | 10.33 | ||
Age stand (years) | 91.32 | 50 | 110 | 17.22 | 18.87 | ||
Altitude (m) | 1380 | 1100 | 1575 | 143.79 | 10.42 | ||
Site class | 2.89 | 2.00 | 4.00 | 0.46 | 15.85 | ||
Aspect | 3.16 (NV–V) | 2 (N) | 5 (SV) | - | 38.44 | ||
Land inclination (°) | 22.16 | 12.00 | 30.00 | 4.27 | 19.28 | ||
Stand structure | 2.26 | 2.00 | 3.00 | 0.45 | 19.99 | ||
Management unit Dealul Negru—large-scale windthrow (number of tree stands: 46) | |||||||
Windthrow intensity (m3·ha−1) | 214.98 | 12.71 | 575.00 | 126.67 | 58.92 | ||
Stand height (m) | 24.39 | 16.20 | 29.2 | 2.99 | 12.26 | ||
Slenderness coefficient (m·cm−1) | 0.70 | 0.59 | 0.87 | 0.07 | 9.68 | ||
Canopy cover | 0.73 | 0.20 | 0.90 | 0.13 | 17.29 | ||
Age stand (years) | 90.87 | 50.00 | 130.00 | 22.64 | 24.91 | ||
Altitude (m) | 1396 | 1200 | 1555 | 94.88 | 6.80 | ||
Site class | 2.78 | 2.00 | 3.00 | 0.42 | 14.99 | ||
Aspect | 5.44 (SV–S) | 2.00 (N) | 9.00 (NE) | 2.23 | 40.99 | ||
Land inclination (°) | 20.78 | 10.00 | 28.00 | 4.06 | 19.54 | ||
Stand structure | 2.17 | 1.00 | 3.00 | 0.57 | 26.21 | ||
Management unit Dealul Negru—scattered windthrow (number of tree stands: 118) | |||||||
Windthrow intensity (m3·ha−1) | 31.77 | 0.21 | 182.76 | 33.31 | 104.85 | - | - |
Stand height (m) | 23.29 | 15.00 | 33.20 | 4.03 | 17.29 | 0.32 | *** |
Slenderness coefficient (m·cm−1) | 0.70 | 0.54 | 0.89 | 0.07 | 10.40 | −0.30 | ** |
Canopy cover | 0.79 | 0.60 | 0.90 | 0.09 | 10.88 | −0.39 | *** |
Age stand (years) | 86.27 | 40 | 135 | 25.42 | 29.47 | 0.28 | ** |
Altitude (m) | 1365 | 1150 | 1550 | 90.21 | 6.61 | −0.09 | >0.05 |
Site class | 2.72 | 2.00 | 4.00 | 0.47 | 17.25 | −0.20 | * |
Aspect | 4.81 (SV) | 2.00 (N) | 9.00 (NE) | 1.93 | 40.01 | 0.08 | >0.05 |
Land inclination (°) | 20.32 | 10.00 | 30.00 | 3.67 | 18.07 | 0.10 | >0.05 |
Stand structure | 2.11 | 1.00 | 3.00 | 0.50 | 23.82 | −0.26 | ** |
ANOVA | The Significance of the Variable Coefficient | |||||||
---|---|---|---|---|---|---|---|---|
R2 | Standard Error | Degrees of Freedom | F | Variable | Coefficient | Standard Error | t Statistic | p-Value |
0.32 | 18.20 | Regression, 1 Residual, 17 | 8.08 | Constant | −33.45 | 23.12 | −1.44 | - |
Tree stand age | 0.71 | 0.25 | 2.84 | * |
ANOVA | The Significance of the Variable Coefficient | |||||||
---|---|---|---|---|---|---|---|---|
R2 | Standard Error | Degrees of Freedom | F | Variable | Coefficient | Standard Error | t Statistic | p-Value |
0.36 | 102.50 | Regression, 2 Residual, 44 | 12.52 *** | Constant | −73.50 | 154.96 | −0.47 | - |
Land inclination | −9.71 | 3.76 | −2.58 | * | ||||
Tree Stand height | 20.18 | 5.09 | 3.97 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciocirlan, M.; Câmpu, V.R. Characteristics of Forest Windthrow Produced in Eastern Carpathians in February 2020. Forests 2024, 15, 176. https://doi.org/10.3390/f15010176
Ciocirlan M, Câmpu VR. Characteristics of Forest Windthrow Produced in Eastern Carpathians in February 2020. Forests. 2024; 15(1):176. https://doi.org/10.3390/f15010176
Chicago/Turabian StyleCiocirlan, Mihai, and Vasile Răzvan Câmpu. 2024. "Characteristics of Forest Windthrow Produced in Eastern Carpathians in February 2020" Forests 15, no. 1: 176. https://doi.org/10.3390/f15010176
APA StyleCiocirlan, M., & Câmpu, V. R. (2024). Characteristics of Forest Windthrow Produced in Eastern Carpathians in February 2020. Forests, 15(1), 176. https://doi.org/10.3390/f15010176